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Montpellier, France.

ABSTRACT: Fracturing of geomaterial is involved in many geological processes and engineering applica-
tions. However, modelling of fracturing process is considered challenging owing to the heterogeneity of geo-
material. In this paper, a simple three-dimensional discontinuum method Lattice Element Method (LEM) is
introduced to simulate the fracturing process. Geomaterial is modelled as interconnected 1D spring elements.
Fracturing is modelled by simply removing lattice element exceeding a specified threshold related to the critical
energy release rate of rock. Mesh dependency phenomena can be manipulated by introducing disorder in model
which also incorporates heterogeneity in model. An in-house C++ code using a parallel conjugate gradient
solver has been developed which is capable to handle large scale model composed of millions of lattices. Three
simulations of fracturing process of a geomaterial with a pre-existing penny shape crack under uniaxial tension
are presented. A simple discretisation of domain into 1D springs and the use of efficient solver enable LEM
to model the heterogeneity of geomaterial by including large amount of rock features such as faults and joints
inferred from geophysical surveys. This can shed light on explaining the complicated fracture patterns observed
in brittle geomaterial.

1 INTRODUCTION

Fracturing of geomaterial is a fundamental geologi-
cal process governing the formation of tectonic plates
on earth crust to fissures in stiff overconsolidated
clay. It also relates to earthquakes, volcanic eruptions
and groundwater flows in geomaterial. In engineer-
ing applications, understanding of how geomaterial
fractures is crucial in mining, tunnelling in rock and
grouting in soil. Its application can also be extended
to exploitation of natural resources such as Enhanced
Geothermal System and unconventional resources in-
volving hydraulic fracturing.

Geomaterial is considered as a challenging material
for modelling because of its heterogeneity arised from
discontinuities in different scales. Modelling fractur-
ing process is another challenge. There are different
attempts to simulate fracturing of geomaterial using
continuum based or discontinuum based approaches.
Finite Element Method (FEM) (Tang 1997), Bound-
ary Element Method (BEM) (Thomas 1993) or more
recently Extended Finite Element Method (XFEM)
(Gordeliy and Peirce 2013) are continuum approaches

in geomaterial fracturing simulation whereas Dis-
continuous Deformation Analysis (DDA) (Lin et al.
1996) and Discrete Element Method (DEM) / Bonded
Particle Model (BPM) (Potyondy and Cundall 2004)
are some examples of discontinuum approaches.

A lot of literature studies on fracturing of geo-
material in laboratory scales. However, little litera-
ture covers numerical modelling on fracturing pro-
cess in field scales or on highly fracture rock mass
which are relevant to many engineering applications.
Modelling discontinuities in different scales explic-
itly leads to large models for numerical simulation.
Also, modelling complex fracture propagation such
as non-planar fracture surface and fracture branching
and coalescence cannot be modelled easily in con-
tinuum based approaches. Therefore, for large scale
problems, research mainly focuses on ground char-
acterisation from various monitoring techniques and
data analysis using geostatistical methods.

This paper presents a simple numerical method,
Lattice Element Method (LEM), which is suitable
for large scale three-dimensional fracture simulation
in geomaterial. It simplifies heterogeneous geomate-
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rial into 1D lattice elements. Fracture initiation and
growth are simply modelled by removing lattices.
Complex fracture evolution and coalescence can be
simulation in a stable manner.

2 LATTICE ELEMENT METHOD

LEM is also referred as lattice models or Lattice
Spring Model in literature. LEM is often used to sim-
ulate fracturing process of heterogeneous medium in
micro- or meso-scales. Concrete (Schlangen and Gar-
boczi 1997), cemented granular material (Topin et al.
2007), cellular material (Wang and Stronge 1999),
composite material (Snyder et al. 1992) and bioma-
terial (Hansen et al. 1996) are some of the application
areas of LEM. Recently, Zhao et al. (2012) applied
LEM on simulation of rock fracturing.

Figure 1: Sketch of components of LEM

To generate a LEM model, the domain is first dis-
cretised into nodes. A lattice network is obtained by
connecting nodes by 1D lattice elements. A 3D prob-
lem is simplified into a 1D lattice network in 3D
space. Each node represents a sub-domain called cell.
Forces between cells can only be transmitted through
lattices, which are the basic elements in LEM. It mod-
els the interaction between two cells on their shared
surfaces. Therefore, each surface represents surface
between two adjacent cells (nodes).

There are only two ways of specifying mechanical
properties of a material, by specifying lattice network
geometry and by specifying constitutive relationship
of lattice. For regular lattice network, the Poission’s
ratio υ of lattice network depends on the choice of
lattice element. If Hookeans spring is used, the Pos-
sion’s ratio is cannot be chosen freely. However, Pos-
sion’s ratio can be specified in LEM by using other
types of lattice element.

One of the major advantages of LEM is the ease of
fracture simulation, even for complicated fracture net-
work. Fracturing is modelled by simply removing or
degrading lattices that meets the failure criteria. Frac-
tures are possible along surface between two cells.

This is an analogy of preferred fracture path along ex-
isting discontinuities of geomaterial.

3 METHODOLOGY

An in-house C++ code LEM3D is under development.
The code can generate large-scale 3D disordered lat-
tice network and can simulate fracturing process ac-
cording to a specified failure criteria. A highly effi-
cient parallel solver is developed to handle millions
of DOFs so fracture simulation involving thousands
of steps can be finished within a reasonable time.

3.1 Disordered Network

Figure 2: Illustration of mesh dependency for a notched sample
under uniaxial tension in 2D. Regular triangular mesh is used in
this simulation. Only three orientations are allowed for fracture
to propagate. Fracture path deviates from theoretical horizontal
path by 60o.

One of the important issues in generation of lat-
tice models is mesh dependency. For a regular lat-
tice where only several fracture orientations are al-
lowed, fracture path is biased along one of the avail-
able orientations (see Figure 2). Such bias can be
eliminated by introducing disorder in the mesh. Local
heterogeneity of rock is modelled at the same time.
Anisotropic material can be modelled by favouring or
suppressing certain lattice orientation.

In this paper, an isotropic geomaterial is studied in
which lattice orientation is uniformly distributed such
that fracture path is not biased in any orientations. To
achieve this in LEM3D, the domain is filled by nodes
with randomly generated coordinates. Then, the sub-
domain (cell) represented by each node is determined
by Voronoi tessellation. A lattice network is formed
by searching for two nodes whose cells share a com-
mon surface and connect them by lattice.

There are two additional criteria imposed in gen-
erating disordered network. The first criterion is im-
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posed on generation of nodes to avoid generating lat-
tice of very small length. The separation between any
two nodes cannot smaller than a specified value ls,min.
The second criterion is imposed on generation of lat-
tice to avoid lattice representing a small surface area
and formation of tiny fracture surface much smaller
than the resolution we required. This is done by re-
jecting lattices whose area is less than a specified
value As,min.

3.2 Spring stiffness

The simplest elastic-brittle Hookean’s spring is cho-
sen as lattice element in this paper. Only two param-
eters, spring constant ks and failure force Fst are re-
quired to define a lattice. The scaling rule of ks is pro-
vided by

ks =
EsAs

ls
(1)

where As is the surface area represented by lattice,
ls is the lattice length and Es is a proportionality
constant related to Young’s Modulus of geomaterial.
It should be noted that Es is not the macroscopic
Young’s modulus and needs to be calibrated prior to
simulation.

3.3 Heterogeneity

The heterogeneity of rock is automatically included
in LEM model when disorder is introduced to avoid
mesh dependency issue in fracturing simulation.

There are several input parameters of LEM control-
ling the heterogeneity of geomaterial. The number of
node Nnum indicates the heterogeneity of geomate-
rial. For the same domain, fewer nodes means higher
degree of heterogeneity because of wider variation of
lattice length and fracture area. The degree of hetero-
geneity can also be increased by specifying smaller
ls,min and As,min.

3.4 Failure Criterion in relation to fracture
mechanics

For elastic-brittle lattice, it breaks when its spring
force Fs exceeding a threshold Fst. Such lattice is re-
moved from calculation in subsequence load step. The
determination of such threshold can be related to Lin-
ear Elastic Fracture Mechanics (LEFM).

According to Griffith (1921), total energy of the
material-crack system should be unchanged when
fracture propagates. Energy is required to extend a
crack which is proportional to new fracture surface
created. Such energy is provided by release of strain
energy of material and is stored in surface of crack
called surface energy. For an elastic-brittle spring, all
the strain energy is released when it breaks, hence

1

2
kse

2 = GIcAs (2)

Left hand side of (2) is strain energy stored in lattice
under elongation e. GIc is called critical energy re-
lease rate and the subscript I denotes model I (tensile)
failure. From constitutive relationship of Hookean’s
spring Fs = kse, the lattice force threshold Fst is ex-
pressed as

Fst =
√
2GIcksAs (3)

Putting (1) into (3),

Fst =
√

2GIcEs
As√
ls

(4)

Hence, Fst is proportional to surface area As and in-
versely proportional to square root of lattice length
ls. Denote microscopic tensile strength to be σts =
Fst/As, (4) becomes

ls =
2GIcEs

σ2
ts

(5)

The length scale ls is now expressed into two material
parameters, tensile strength σts and critical energy re-
lease rate GIc. In other words, the lattice length has to
be chosen to match both parameter for a given mate-
rial.

3.5 Adaptive load step

In each load step, lattice forces are calculated to check
whether failure criterion is met. In theory, load step
should be chosen small enough such that only one lat-
tice fails within one load step. However, this requires
a large number of load step unless a small model is
used. To reduce computation time, load step is cho-
sen large enough to allow multiple lattices to be failed
within one load step. However, it should be small
enough to avoid too much lattice breakage at one load
step which may not capture the progressive damage
of geomaterial.

Since the system is linearly elastic given no lattice
breakage within a load step, the load step can be adap-
tively determined after calculation of each load step
rather than adopting a small constant load increment.
First, a small initial load F0 is applied on the model.
After lattice force calculation, the most critical lattice
is identified which has the highest load to capacity ra-
tio pmax

pmax = max

{
Fs

Fst

}
(6)

where Fs and Fst are lattice axial force and lattice fail-
ure force respectively. pmax can also be the average of
most critical nmax lattices, pn,max. The new force Fi+1

depends on the value pn,max as follow

Fi+1 =


α

pn,max

Fi , pn,max < 1.0

βFi , pn,max ≥ 1.0

(7)
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Table 3: Statistics for lattices.
Lattice length l Lattice area A

Model Mean S.D. Mean S.D.
Sparse 2.253 0.649 1.720 1.227
Medium 1.614 0.358 0.993 1.145
Dense 1.249 0.189 0.646 0.702

When there is no lattice breakage (i.e. pn,max < 1.0),
loading increases and the parameter α > 1.0 controls
number of lattice to be broken in next load step. For
load step that involves lattice removal (i.e. pn,max ≥
1.0), the applied force decreases to capture the post
peak behaviour and to avoid too much lattice break-
age within a load step. The parameter β < 1.0 indi-
cates the possibility of lattice breakage in next load
step.

3.6 Computation

Given the large DOFs and load steps involved, an effi-
cient linear algebra solver is required to perform sim-
ulation in reasonable time. In LEM3D, a solver using
Preconditioned Conjugate Gradient (PCG) method is
developed. The major merit of PCG is the signifi-
cant reduction of storage as only several vectors are
required to be stored. To speed up using multi-core
CPUs, the solver uses OpenMP directives for parallel
computing. A LEM model with 2 millions DOFs and
4 millions lattices only takes less than half a minute
in solving one load step using 8-core Intel Xeron E5-
2670 (2.6GHz) CPU. The solver will be modified for
GPU computation for even greater speed up.

4 SIMULATIONS

Three simulations have been carried out by LEM3D.
The dimensions of model are all 100mx100mx100m.
All the samples are subjected to uniaxial tension
along z-axis. The models are only constrained along
z-direction on bottom face. All other faces are free.

Three different models (Spare, Medium and Dense
models) of isotropic rock with a hypothetical penny
shape crack were performed using LEM3D. All three
models use same set of input parameters as listed on
Table 1 except the number of nodes Nn in the model.
A 50m diameter penny shape crack perpendicular to
z-axis is placed at the centre (0,0,50) of model.

5 DISCUSSION

5.1 From diffusive breaking to connected fractures

The evolution of fractures in three LEM models are
illustrated in Figure 3. At the beginning of simula-
tion, all three models show diffusive breaking of lat-
tice clustering in the vicinity of the edge of penny
shape crack. The most critical lattice may not be ex-
actly adjacent to main crack. Instead, the most critical

lattice are the result of the combination of factors in-
cluding lattice orientation, lattice parameters ks and
Fst, connectivity in addition to its vicinity to main
crack. The variation of first three factors contribute
the local heterogeneity and induces local variation of
lattice forces.

At the beginning, broken lattices are largely uncon-
nected and the geomaterial behaves roughly elastic
macroscopically. This is because broken lattices are
the weaker ones and their loading can be shared to ad-
jacent lattices which are stronger. Formation of frac-
tures is under controls because the stronger ones have
enough spare capacity to take up additional loading
without breaking.

The diffusive breaking of lattice can be regarded as
fracture process zone ahead of crack tip. Before the
crack is extended, the process zone is softened by the
formation of microcracks.

When loading increases and more fractures formed,
fractures start to be connected and joins the main
crack. Breaking and coalescence of fractures lead to
overstress of adjacent lattices and further breaking of
lattice. Fracture growth starts to become unstable.

5.2 Spatial distribution of failure lattice

Initially, failure lattices distribute evenly around main
penny shape crack. The density of fracture decreases
rapidly away from main crack. Fractures grow in
radial direction without apparent bias in certain di-
rections. In Dense model, cracks are more localized
along perimeter and failure lattice tends to diffusive
in Sparse model.

Afterwards, fracture growth starts to be biased at
locations where broken lattices are connected. Such
bias is greater in Sparse model and appears at earlier
stage.

The orientation of failure surface is shown in Fig-
ure 4. The orientation of failure surface deviated from
horizontal locally because of local heterogeneity. The
overall trend of horizontal fracture grow can be ob-
served. The disorder introduced to LEM mesh suc-
cessfully removes the mesh dependency observed in
regular mesh.

5.3 From microscopic to macroscopic

The applied pressure-displacement curves of all three
models are plotted in Figure 5. From the plot, brittle
failure of rock are observed in all three LEM mod-
els. They all shows Class II behaviour (i.e. a snap
back of curve after peak) as first observed in labo-
ratory tests of brittle rock by Wawersik and Fairhurst
(1970). They explained that the snap back portion of
the curve represents unstable fracture propagation of
geomaterial, or the fracture growth is ‘self-sustaining’
without any work done from external load. In other
words, after the peak, the strain energy stored in geo-
material is sufficient to continue fracture growth until
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Table 1: Common input parameters for LEM simulations.

Es GIc F0 nmax ls,min As,min α β

20GPa 5.0 Jm-2 0.5MPa 100 1m 0.2m2 1.01 0.99

Table 2: Results for LEM simulations.
Simulation No. of Node No. of Lattice Ez,0 (GPa) Ez,0 (GPa) Ez,0 (GPa) υ
Sparse 141,421 846,421 6.112 2.052 2.048 0.335
Medium 353,553 1,948,233 6.334 2.165 2.161 0.342
Dense 707,106 3,643,421 6.580 2.313 2.315 0.352

Figure 3: Top views of fractures formed in three LEM simulations when macroscopic stiffness of geomaterial along z-axis is reduced
to 0.9, 0.8, 0.65, 0.45 and 0.25 of their initial stiffness Ez0. Fractures connected to pre-existing penny shape crack are denoted in blue.
Red are isolated fractures without any connection with the main penny shape crack. The load step number is shown at the top right
corner.

collapse. Energy must be extracted from the system
to capture the failure process. In LEM3D, this is done
by unloading of model whenever breaking of lattice is
detected.

In the simulation, the energy release rate GIc is
specified but the microscopic tensile strength σts is
related to lattice length ls according to (5) where σts
decrease with ls. From pressure-displacement curves
in Figure 5, same trend can also be observed macro-
scopically.

The macroscopic ‘brittleness’ can be indicated by
the amount of snap-back in the plot. Smallest degree
in ‘brittleness’ is shown in Sparse model which pro-
vides highest degree of heterogeneity (due to larger
variation of lattice length and area). On the other
hand, Dense model provides higher resistance in ten-
sion in the expense of higher ‘brittleness’.

6 CONCLUSIONS AND FUTURE WORK

This paper presents the principles of LEM and covers
some details in LEM implementation such as genera-
tion of disordered model and scaling rule of lattice pa-
rameters from geometric information of Voronoi tes-
sellation.

To demonstrate the possibility of LEM to model
fracturing of geomaterial considering heterogene-
ity. Three simulations using an in-house C++ code,
LEM3D, are presented. Three LEM models with
DOFs up to 2 millions are used to simulate the frac-
turing process of brittle geomaterial with pre-existing
penny shape crack under uniaxial tension. A transition
from diffusive and even lattice breaking and local-
ized crack coalescence is observed. The simulations
can successfully reproduce the stress-strain curves
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Figure 4: Lattice network of Sparse Model at load step 2250. Color of lattice shows its force to strength ratio which varies from 0 (blue)
to 1 (red). Broken lattices are shown in black. (a) shows a section along penny shape crack and (c) shows a cross section perpendicular
to the crack. The isometric view of model is shown in (b). The fracture surface formed is non-planar due to heterogeneity (shown by
curved trace of broken lattices along boundaries of model in (b) and two separated trace of lattices at bottom left corner of (a) which
are connected underneath the cut plane).

Figure 5: Force-displacement plot of three LEM simulations. All
three models demonstrate Class II behavior of brittle rock un-
der laboratory test. The discrete data points corresponding to the
snapshot shown in Figure 3 is indicated.

observed in laboratory tests.

Although geomaterial is rarely subjected to purely
uniaxial tension, the uniaxial compression and other
loading conditions can be easily simulated by by
specifying the compressive failure criteria of lattices.

More lattice models will be included such as
elastic-softening spring to model fracturing process
zone. A fluid model will be incorporated in future
LEM3D code suitable for simulation of hydraulic
fracturing in brittle and fractured geomaterial like
shale. With the capacity of LEM to model large
scale problem and the advances in parallel comput-
ing, LEM has great potential for practical applications
by realistic simulation with input from large database
from in-situ geophysics measurements such as micro-
seismic monitoring.
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