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Abstract
1.	 Calibration of local, regional or global allometric equations to estimate biomass at 

the tree level constitutes a significant burden on projects aiming at reducing Carbon 
emissions from forest degradation and deforestation. The objective of this contri-
bution is to assess the precision and accuracy of Terrestrial Laser Scanning (TLS) for 
estimating volumes and above-ground biomass (AGB) of the woody parts of tropi-
cal trees, and for the calibration of allometric models.

2.	 We used a destructive dataset of 61 trees, with diameters and AGB of up to 
186.6 cm and 60 Mg respectively, which were scanned, felled and weighed in the 
semi-deciduous forests of eastern Cameroon. We present an operational approach 
based on available software allowing the retrieving of TLS volume with low bias and 
high accuracy for large tropical trees. Edition of the obtained models proved neces-
sary, mainly to account for the complexity of buttressed parts of tree trunks, which 
were separately modelled through a meshing approach, and to bring a few correc-
tions in the topology and geometry of branches, thanks to the amapstudio-scan 
software.

3.	 Over the entire dataset, TLS-derived volumes proved highly reliable for branches 
larger than 5 cm in diameter. The volumes of the remaining woody parts estimated 
for stumps, stems and crowns as well as for the whole tree proved very accurate 
(RMSE below 2.81% and R² above of .98) and unbiased. Once converted into AGB 
using mean local-specific wood density values, TLS estimates allowed calibrating a 
biomass allometric model with coefficients statistically undistinguishable from 
those of a model based on destructive data. The Unedited Quantitative Structure 
Model (QSM) however leads to systematic overestimations of woody volumes and 
subsequently to significantly different allometric parameters.

4.	 We can therefore conclude that a non-destructive TLS approach can now be used 
as an operational alternative to traditional destructive sampling to build the allo-
metric equations, although attention must be paid to the quality of QSM model 
adjustments to avoid systematic bias.
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1  | INTRODUCTION

Tropical forest is expected to play a pivotal role in the mitigation of 
climate change (Houghton, Byers, & Nassikas, 2015) by offsetting the 
carbon released by the use of fossil fuels, whereas methods to esti-
mate forest biomass remain very tedious and impractical. To assess 
carbon stocks over large areas of forests, all methods, either sample-
based (e.g. Maniatis et al., 2011) or remote sensing based (e.g. Baccini 
et al., 2012), are dependent on above-ground biomass (AGB) estima-
tions in forest sample plots to derive larger scale statistics.

As long as harvesting and weighing complete forest plots remain 
impractical (but see Clark & Kellner, 2012), and no other method al-
lows to directly measure AGB at the plot level in dense tropical for-
ests (Raumonen et al., 2013, 2015; Tao, Wu, et al., 2015; Trochta, 
Kruček, Vrška, & Kraâl, 2017), the estimation of forests plot AGB 
and the associated error largely depend on tree-level AGB prediction 
models (Chave et al., 2004; Picard, Boyemba Bosela, & Rossi, 2015). 
The latter are calibrated on destructive datasets and combine easily 
as measurable tree descriptors—typically diameter at breast height 
(DBH), tree height (H) and wood density (WD)—to derive tree AGB 
estimate. Calibrating an AGB model requires to account for a number 
of factors known to affect allometric relationships, such as tree archi-
tecture (Goodman, Phillips, & Baker, 2014; Ploton et al., 2016), spe-
cies wood density (e.g. Bastin, Fayolle, et al., 2015; Chave et al., 2005, 
2014; Zanne et al., 2009), edaphic and climatic contraints (e.g. Chave 
et al., 2014), interactions from neighbouring trees (e.g. Feldpausch 
et al., 2012), to name only a few. Obtaining a representative sample 
accounting for all these effects across all size classes may prove to be 
not only a costly and daunting task, but also a damaging one if not 
altogether unauthorised in sensitive or protected areas. To compen-
sate for some of the limitations of existing models, accurate data from 
remote sensing are needed (e.g. Clark & Kellner, 2012; van Leeuwen 
& Nieuwenhuis, 2010) and new descriptors are progressively 
being added to improve current allometric models (e.g. Figueiredo, 
d’Oliveira, Braz, de Almeida Papa, & Fearnside, 2016; Goodman et al., 
2014; Ploton et al., 2016). Another drawback of the destructive ap-
proach is that it is impossible to go back and add new measurements 
to previously felled trees. To make matters worse, trees that con-
tribute the most to forest standing biomass, as well as its temporal 
and spatial variations, are the largest ones (e.g. Bastin, Barbier, et al., 
2015), and thus the hardest to sample. Weighing a tropical tree of 
up to 100 tons of fresh mass with only a few scales and chainsaws 
indeed require quite a bit of time and manpower (185 men-days for 
our largest tree!). Therefore, large trees are under-represented in the 
pantropical dataset model (Chave et al., 2014), which has for conse-
quence to introduce biases in tree-  and plot-level AGB predictions 
(e.g. Ploton et al., 2016).

For about a decade, a growing number of studies have been using 
three-dimensional points clouds of trees from Terrestrial Laser Scanning 
(TLS) technology to estimate above-ground tree volume (e.g. Bournez, 
Landes, Saudreau, Kastendeuch, & Najjar, 2017; Calders et al., 2015; 
Côté, Fournier, & Egli, 2011; Hackenberg, Morhart, Sheppard, Spiecker, 
& Disney, 2014; Hackenberg, Spiecker, Calders, Disney, & Raumonen, 
2015; Hackenberg, Wassenberg, Spiecker, & Sun, 2015; Mei, Zhang, Wu, 
Wang, & Zhang, 2017; Raumonen et al., 2013; Tansey, Selmes, Anstee, 
Tate, & Denniss, 2009) based on a variety of tree reconstruction meth-
ods like the Quantitative Structure Model (QSM) and Outer Hull Model 
(Stovall, Vorster, Anderson, Evangelista, & Shugart, 2017). Tree models 
volume and derived AGB estimates usually correlates well with validation 
data (Table 1). Hence, TLS data is often thought of as a promising, non-
destructive alternative to traditional data for AGB models calibration. 
Until now however, most studies focused on relatively small temperate 
trees bearing needle leaves or at the leafless stage (Table 1), while the 
accuracy of a tree model is expected to decrease (1) when tree size in-
creases, because of a lower point cloud quality in the tree crown (e.g. 
occlusions of high branches from low branches, occlusion of the upper 
side of branches from their own lower side) and/or the development of 
more complex geometrical shapes (e.g. buttresses) and (2) in dense, ev-
ergreen forests, because of the higher level of occlusion of tree woody 
structure by leaves and surrounding vegetation (neighbouring trees and 
bushes, lianas, etc.). Whether TLS technology can readily be used to es-
timate large tropical canopy trees biomass and build accurate allome-
tric equations remains an open question. Hence, our study focusses on 
measurements at the individual level, as much remains to be done there 
in terms of error quantification, as well as the exploration of tree struc-
ture and growth patterns. Our objective is, therefore, to make the most 
of TLS data to estimate volumes and AGB on individual large tropical 
trees (>10 Mg), from a range of structurally contrasted species, based 
on open (simpletree) and broadly available software, under careful user 
supervision. We test a semi-automated processing chain going from field 
data acquisition to the estimation of above-ground wood volume and 
AGB. Intermediate step is implemented in the chain to identify sources 
of error and bias in the QSM and allow for their correction, notably using 
the amapstudio-Scan (ASSc): an open-access and interactive software 
developed specifically for this purpose (http://amapstudio.cirad.fr/). We 
further use TLS-derived AGB estimates to calibrate an allometric model, 
and compare this model to its counterpart calibrated on destructive data.

2  | MATERIALS AND METHODS

2.1 | Study area

The study was conducted in the Eastern of Cameroon, in the 
Ndélélé district (4°02′20.77″N and 14°55′49.15″E), within Forest 

K E Y W O R D S

above-ground biomass, allometric equation, Central Africa, Congo Basin, REDD+, terrestrial-laser 
scanner, tropical forest trees
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Management Unit 10-051. Forests in the area are classified into semi-
deciduous and dominated by species of Malvaceae and Canabaceae 
(Letouzey, 1985). The chosen trees were not peculiar trees outside 
the forest, but were generally picked to be visible and not covered by 
lianas. Most large trees present buttressed or fluted trunks. Average 
annual precipitations range between 1500 and 2000 mm with two 
marked dry seasons and the average annual temperature is 24°C. 
Elevation ranges between 600 and 700 m a.s.l. Ferralitic red soils 
characterise the non-hydromorphic parts of the area (Gartlan, 1989).

2.2 | Tree sampling

Between July 2015 and August 2016, we scanned 61 trees, a few 
days before they were felled and their AGB destructively estimated. 
Scanned trees, which were selected to cover large ranges of tree sizes 
and species-averaged wood density, belong to fifteen different spe-
cies and have a mean height (H) of 33.72 m (±12.41) and a mean DBH) 
of 58.37 cm (±41.30) (details in Table 2).

2.3 | Estimation of tree volume and above-ground 
biomass from destructive data

Felled trees were stratified into four compartments: stump, stem, 
branches and leaves (including any reproductive parts). When a seg-
ment’s basal diameter was smaller than 70 cm, its green mass was 
obtained by direct weighing. For larger diameters, we used an indirect 
mass estimation approach combining volume and wood density esti-
mates. In the latter case, the volume of each segment of 1 m long (in 
cm3) was estimated, using the Smalian formula. For each woody com-
partment (indiced k), a 3- to 5-cm thick circular wood sample was taken 
at the extremity of one of the segments and its wood density (WDk in g/
cm3, defined as the oven-dried mass per unit of green volume) and an-
hydrous rate (rk, defined as the oven-dried mass per unit of green mass) 
were estimated in the laboratory after drying to constant mass. WDk 
and rk were used to convert the green mass (from direct weighting) or 
green volume of compartment k into dry mass. The total tree woody 
biomass (denoted AGBdest, in Mg) was obtained by summing the dry 
mass of all segments in the tree. The woody biomass was also summed 
separately for each compartment. We computed bk, defined as the ratio 
of green volume over green mass for a wood sample in compartment 
k, to convert direct weightings of a segment’s green mass into its green 
volume and thus compute woody volume at the total tree and compart-
ment levels (denoted Vdest) for comparison with TLS estimations.

2.4 | Estimation of tree volume and above-ground 
biomass from TLS data

2.4.1 | TLS data collection

We used a Leica C10 Scanstation for TLS data acquisitions. It is a time-
of-flight scanner system working at a 532 nm wavelength. The laser 
footprint size is 4.5 mm in the collimated range (50 m) and starts di-
verging afterward. The scanner possesses a large field of view (360° T
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horizontal, 270° vertical) and has a scan rate of 50,000 points per s. 
Scanning resolution was set to a spacing of 0.05 m between points at 
100 m. In the field, at least three scans were performed around each 
tree after minimal clearing of the forest undergrowth to remove some 
shrubs (below 5 cm DBH) masking our reference targets.

2.4.2 | General workflow for TLS data processing

Figure 1, summarises the workflow followed in this study from the 
raw TLS point cloud to volume estimation.

Co-registration of point clouds from the different scanning posi-
tions and extraction of individual trees were performed using the Leica 
cyclone software (v. 9.1). For each tree, we manually removed leaves 
from the point cloud (step A), which required between 1 and 15 hr per 
tree depending on its size. This step was performed using standard 
cyclone tools. The processing chain on the remaining woody parts then 
included: the automated reconstruction of tree topology and structure 
with the simpletree software (step B), resulting in unedited Quantitative 
Structure Models (QSMs); when necessary, manual improvements 
were performed on (1) stem and crown models using amapstudio-Scan 
(ASSc) software (step C2) and (2) stump models using meshing in the 
geomagic software (step C1), resulting in improved QSMs.

2.4.3 | TLS data processing

Step B: Automatic volume estimation with simpletree

The simpletree software was used to generate unedited QSMs of indi-
vidual trees (Hackenberg, Spiecker, et al., 2015). Parameters used for 
this purpose varies with the points cloud density and the tree size. 
We faced two main problems when applying simpletree to our point 

clouds. Due to the presence of large buttresses on some canopy trees, 
the circle fitting routine (i.e. Random Sample Consensus or RANSAC 
method, Fischler & Bolles, 1981) often returned circles located be-
tween two buttresses, that is, outside the wooden part of the tree. 
We therefore adapted the method described in Hackenberg, Spiecker, 
et al. (2015) by dividing point clouds into two subsections that were 
treated differently in the analyses: a lower part composed of trees 
stumps and all buttresses and an upper, buttresses-free part. As no 
branches were located in the lower part of the trees, a simpler but 
more robust reconstruction method could be applied: the cloud was 
subdivided into slices of a user given thickness (here 0.5–3 m). Each 
slice was converted to a 2D cloud in the x,y plane and a circle was fit-
ted to it using the Maximum Likelihood Sample Consensus algorithm 
(Torr & Zisserman, 2000). For each model, the average distance be-
tween the point cloud and the cylinder model was computed and the 
model with the lowest distance was chosen. The upper part of the tree 
cloud showed a sufficient quality to be modelled with the simpletree 
method without modifications (Hackenberg, Spiecker, et al., 2015) and 
both cylinder models were connected afterwards. All parameters used 
to produce unedited QSMs can be found inside simpletree output txt 
files for each tree which will be made available online. The principal 
parameters used to adjust unedited QSMs in simpletree were [with 
typical value range] are: sphereMultiplier [3.00 to 6.00]; espCluster-
Stem [0.020 to 0.400]; espClusterBranch [0.008 to 0.02]; espSphere 
[0.020 to 0.120]. Please refer to Hackenberg et al. (2014, 2015) for 
more information’s about these parameters.

Step C: Manual improvement of tree volume estimations
We used Geomagic Studio 12, to improve volume estimations on tree 
stumps with a surface meshing approach (wrap tool). Mesh models 

TABLE  2 Taxonomic information, number of sample trees per species (n) and dendrometric parameters of sampled species (maximum and 
minimum of DBH and H)

Species Family n

DBH (cm) H (m)

Min Max Min Max

Annickia chlorantha (Oliv.) Setten & Maas Annonaceae 3 10.8 35.6 12.6 35.5

Baphia leptobotrys Harms Leguminosae 3 33.3 84.7 16.5 31.1

Cylicodiscus gabunensis Harms Leguminosae 5 13.3 173.8 17.6 53.6

Duboscia macrocarpa Bocq. Malvaceae 2 26.3 35 17 39.9

Entandrophragma cylindricum (Sprague) Sprague Meliaceae 2 17.2 89.8 16.9 44.7

Eribroma oblongum (Mast.) Pierre ex A. Chev. Malvaceae 4 17.4 105.6 22.2 46.5

Erythrophleum suaveolens (Guill. & Perr.) Brenan Leguminosae 5 21.9 119.6 26.4 46.9

Macaranga barteri Müll.Arg. Euphorbiaceae 2 25.3 33.7 26.6 28.4

Mansonia altissima (A. Chev.) A. Chev. Malvaceae 3 24.9 60.6 22.3 42.5

Pentachletra macrophylla Benth. Leguminosae 1 34.1 34.1 23.5 23.5

Petersianthus macrocarpus (P.Beauv.) Liben Lecythidaceae 6 13.4 64.6 11.1 42.7

Pterocarpus soyauxii Taub. Leguminosae 6 11.1 83.2 12.4 49.4

Pycnanthus angolensis (Welw.) Warb. Myristicaceae 4 11.2 55.5 8.7 33.5

Terminalia superba Engl. & Diels Combretaceae 9 12.5 112.6 16.2 51.4

Triplochiton scleroxylon K.Schum. Malvaceae 6 25.4 186.6 27.4 52.8
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were rendered ‘water proof’ by closing all remaining holes. The ro-
bustness of this process to describe the complex geometry of stumps 
depends on the point cloud quality (density of points, number of scan-
ning position around the target trees).

We also used ASSc to improve the quality of QSMs in remaining 
parts of the trees (stems and crowns). It may be used to manually edit the 
results of automatic QSM algorithms such as simpletree, allowing the user 
to fix incomplete or incorrect structures in a tree branching network. The 
plant model is displayed over the point cloud and represented as a tree 
graph with vertices and edges. Each vertex is defined by a disk (a centre, 
a radius and a normal) and edges by two vertices and an axis identifier. 
The user can manually add vertices and edges, typically to fill-in the plant 
model in occluded areas or at the crown top, where small branches are 
only described with very few points. A new vertex can be added by draw-
ing a rough centre, radius and specifying an adjustment approach (ellipse 
fitting, ellipsoid fitting, projected convex hull) in order to visually optimise 
the results based on local characteristics of the point cloud.

2.4.4 | Tree volume and above-ground biomass 
estimations from Quantitative Structure Models

Tree compartments (i.e. stump, stem, and crown) and whole tree 
volume were obtained by summing the volume of corresponding 

cylinders. Volumes were converted to biomass (denoted AGBTLS) 
using wood density values (WD, g/cm3) either from global wood 
density database (WDb) (Zanne et al., 2009) or from local species-
averaged wood density taken on the stumps (WDdest). In WDdest, only 
WD samples from tree stumps (i.e. sampled at approximately breast 
height) were considered, to simulate what one may obtain using wood 
cores sampled on standing trees.

2.5 | Statistical analyses

2.5.1 | Comparison of TLS and destructive estimates

Assessing the size threshold for the detection of small branches
To assess possible signal attenuation below a certain size threshold, we 
looked for breakpoints in the segment diameter frequency distribution 
across the whole dataset. A bin size of 0.5 cm was used to compute the 
frequency distribution of segment diameters in QSM trees. Following the 
metabolic theory of ecology (Enquist, West, & Brown, 2009), the seg-
ment diameter-abundance relationship is expected to follow a power 
law distribution. Strong deviations from this general trend for some size 
ranges should be the result of a bias in detection (indicating a limitation 
of the TLS method to capture the smallest branches). We used a two 
steps breakpoint identification procedure to test whether the scaling of 

F IGURE  1 Workflow for woody volume estimation

Full 3D point cloud

Wood

A. Manual segmentation  
Of wood and leaves 

Leaves
Semi-automated improvement of  

Volume estimates

B. Automatic cylindrical
approximation (SIMPLE TREE)

Stump

Crown

C1. Stump meshing (Geomagic) C2. Stem & branch volume (AMAPSTUDIO-scan)

C.



910  |    Methods in Ecology and Evolu
on MOMO TAKOUDJOU et al.

segment abundance against diameter changed with segment diameter 
(Muggeo, 2003). First, we used the Davies’ test (Davies, 1987), to detect 
the presence of significant changes in the slope of the log-linear model 
for regularly spaced segment diameter values. Second, we used the seg-
ment diameter corresponding to the most significant breakpoint as a 
starting value in a segmented regression (using the “segmented” package), 
yielding a more accurate estimate of the segment diameter breakpoint 
value. Segments below the identified breakpoint where then discarded 
from comparative analyses between TLS and destructive data.

Comparison of TLS and destructive estimates
We compared estimates of volume and biomass at the compartment 
and whole tree levels between destructive (Vdest and AGBdest) and 
TLS-derived estimates (VTLS and AGBTLS). Comparisons were per-
formed using linear regression models, characterised by classical fit 
metrics (R², RMSE). Method bias (b in %) was evaluated as the mean of 
signed relative errors (bi in %) (1):

with XTLS the volume or mass estimate derive from TLS data and Xdest 
the volume or biomass estimate derived from destructive data.

We also reported the mean (s) (si in %) for evaluating the accuracy 
of TLS estimates (2):

2.5.2 | Comparison of allometric models

A standard allometric model (Chave et al., 2014) was calibrated with 
TLS (unedited or edited QSMs) and destructive data to estimate the 
consistency between the different methods for building AGB predic-
tion models.

with AGB (in Mg) representing either the AGB derived from TLS ed-
ited QSM (AGBTLS), TLS unedited QSM (AGB′TLS) or destructive data 
(AGBdest), DBH (in cm) and H (in m) derived from TLS (DBHTLS and 
HTLS) and from destructive (DBHdest and Hdest) data, WD the local 
species-averaged wood density taken on the stumps (WDdest) or from 
the individual wood density taken from all compartments (WDind) and 
ε the residual error term in each model (εTLS, ε′TLS and εdest), assumed 
to follow a normal distribution.

To compare pairs of slopes (βTLS and βdest; β′TLS and βdest) and pairs 
of intercepts (αTLS and αdest; α′TLS and αdest) of equation 3, we simulta-
neously fitted the equation with destructive and TLS-derived estima-
tions in the same model. Since pairs of estimates came from the same 
individuals, the residual variance could no more be supposed indepen-
dent. We modelled this dependence as follows:

with iid = independently and identically distributed, ρ the coefficient 
of correlation between the residuals of the two methods and the fol-
lowing hypotheses:

1.	

2.	

3.	

All analyses were performed in r statistical software (R Development 
Core Team, 2015), using the Nonlinear Mixed-effects Models (nlme) 
package and the Generalised Least Squares (gls) function to test 
hypotheses (ho1, ho2, h′o2), at the alpha risk level of 5%.

3  | RESULTS

3.1 | Signal saturation on small branches

A significant breakpoint was evidenced in the segment diameter 
density distribution at 4.5 cm (Figure 2a). Testing the effect of spe-
cies or tree size (DBH) on the breaking point value did not yield 
significant results, suggesting that tree architecture or size had no 
effect on the precision of the scans, but also in part because fit-
ting often failed at individual level. Following these results, seg-
ments below 5 cm in diameter were removed in all subsequent TLS 
vs destructive data comparisons. The proportion of these small 
branches was 4.7% of total tree biomass in the destructive data, 
and 3.9% in TLS estimations. The underestimation seemed more 
pronounced on large individuals, with a proportion of only 0.6% 
with TLS against 2.1% with destructive data for trees of more than 
10 Mg (Figure 2b).

3.2 | Estimating compartments and whole tree 
volume with TLS data

At the whole tree level, VTLS derived from unedited simpletree QSMs 
led to a large bias (b of 15.29%) compared to Vdest (Figure 3a) with a 
satisfying R² (.75) and a high relative unsigned error (s of 29%). The 
95% confidence interval (CI) increased proportionally with tree vol-
ume and error level reached s = 35% for trees with volumes larger than 
20 m3 (corresponding to trees with DBH ≥90 cm). At the compartment 
level, most of the error came from tree crowns (s = 84.72%) and from 
stumps (s = 45.99%). With an s value of 26.22%, stems were relatively 
better described (Figure 4a–c). At the tree level, we realised these 
relatively large error values were in fact coming from a few errors in 
the tree models, that could be overcome either by manually editing 
some connections in the crown, or by modelling the stump separately. 
Indeed, after editing, s decreased to 34.50% for stumps, 17.24% for 
stems and 29.18% for crowns (Figure 4d–f).

These improvements were of course passed on at the whole tree 
level (Figure 3b), leading to a R² value of .98, a RMSE of 2.81 m3 and an 
s of 12%. In addition, the 95% CI showed a lesser dependence on tree 

(1)bi=

(
XTLSi

−Xdesti

Xdesti

)
×100

(2)si= |bi|

(3)Log10
(
AGB

)
= α + β × Log10

(
DBH

2
× H × WD

)
+ ε,

(4)
(

εTLSi

εdesti

)
iid

∼
N

([
0

0

]
,

[
σ2
TLS

ρ∗

√
σ2
TLS

+σ2
dest

ρ∗

√
σ2
TLS

+σ2
dest

σ2
dest

])

ho1:αdest and βdest=0

ho2:Δ1=αdest−αTLS=0andΔ2=βdest−βTLS=0

h
�
o2:Δ

�1=αdest−α�
TLS

=0andΔ�2=βdest−β�
TLS

=0



     |  911Methods in Ecology and Evolu
onMOMO TAKOUDJOU et al.

volume, and the estimates showed a remarkable reduction in the bias 
(b of 4.68%) (Details in Table 3).

3.3 | Above-ground biomass derived from TLS 
estimates with different wood densities

When computing AGBTLS, the use of local wood density values (WDdest) 
both led to higher goodness-of-fit values, with R² and RMSE values of 
.97 and 1.78 Mg against .93 and 2.73 Mg with literature values (WDb), 
and reduced bias, as the regression with AGBdest happened to be closer 
to the 1:1 line (Figure 5). We therefore used the local density values in 
subsequent analyses, although it is worth mentioning that the use of 
WDb only had a marginal impact on subsequent analyses.

3.4 | Calibrating an allometric model with TLS data

Allometric models built with either destructive or TLS-derived (ed-
ited QSMs) biomass proved visually similar (Figure 6a) and presented 
nearly identical R² values of .98 and .95, respectively. Using unedited 
QSMs to estimate AGBTLS led to a slightly inferior R² (.93) and a visual 
discrepancy between models prediction lines (Figure 6b). Statistical 
comparisons of allometric models parameters confirmed our visual 
appraisal (Figure 6a), with no effect of the method (i.e. TLS or destruc-
tive) when using edited QSMs (Table S1) and a significant method ef-
fect when using unedited QSMs (Table S2).

The coefficients of allometric models adjusted on either destruc-
tive or TLS (edited and unedited approach) predictors are summarised 
in (Table 4).

4  | DISCUSSION AND CONCLUSION

The development of biomass allometry models has up to now been 
a daunting task as the traditional destructive approach is time-
consuming and costly. As a result, the error made on ground estima-
tions of trees and forest sample plots biomass (AGB) is among the 
largest error sources in the forest carbon mapping chain (Ahmed, 
Siqueira, Hensley, & Bergen, 2013). The rapid development of 
Terrestrial Laser Scanner (TLS) applications in forestry, in particular 
tree reconstruction methods, will soon change the game by provid-
ing reference datasets of unprecedented size and spatial representa-
tivity for the calibration of allometric models. Yet, the accuracy with 
which tree AGB can be estimated from current tree reconstruction 
algorithms has been virtually unexplored in natural tropical forests, 
in particular for large canopy trees (e.g. ≥10 Mg). While there is a 
critical need to sample more AGB reference data on large tropical 
trees (Chave et al., 2005, 2014), such trees may be seen as particu-
larly challenging to reconstruct from TLS data owing to the usual 
complexity of trunk shapes (e.g. buttresses) and to higher occlu-
sion levels in tree crowns. In this study, we used a large destructive 

F IGURE  2 Signal attenuation in 
small branches. (a) Identification of a 
breaking point in the distribution of 
segment diameters from the edited QSMs 
(Quantitative Structure Model), (b) total 
AGB (above-ground biomass) of segments 
of diameter smaller than 5 cm as a function 
of total tree AGB log10 (Diameter) (cm)
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F IGURE  4 Comparison of VTLS against Vdest for each compartment in function of the methodology: VTLS from unedited simpletree QSMs in 
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dataset to evaluate tree AGB estimation error from a commonly 
used automated QSM algorithm (i.e. simpletree), and present a semi-
automated approach tackling the most obvious error sources in the 
automated approach. We further showed that TLS data could be 
used to build an allometric equation that was identical to the one 
based on destructive data, confirming that TLS technology is on 
the verge of revolutionising our ability to estimate forest AGB from 
ground measurements. Importantly however, current automated 
volume estimation methods may introduce systematic bias when ob-
vious QSM adjustment errors are not accounted for.

The use of TLS technology to estimate tree volume and AGB is be-
ginning to be well documented in temperate forests, but its application 
to large tropical trees of contrasted architecture and often buttresses 
or fluted stems is a big step further. Direct use of raw simpletree QSMs 
to estimate tree volume highlighted the (expected) difficulties of the 
cylinder-based, automated approach to describe large tree stumps 
and crowns, requiring manual edits and the separate modelling of but-
tressed parts with a mesh model (Cushman, Muller-Landau, Condit, & 
Hubbell, 2014; Nogueira, Fearnside, Nelson, Barbosa, & Keizer, 2008; 
Nölke et al., 2015; Olagoke et al., 2016; Picard & Saint-andré, 2012). 
While reconstruction algorithms are rapidly evolving (Raumonen et al., 
2013, 2015; Stovall et al., 2017; Tao et al., 2015; Trochta et al., 2017) in 
the hope to upscale studies to entire forest stands, the semi-automated 
procedure proposed here is already fully operational even in very dense 
tropical forests at the leaf-on stage, allowing to improve validation R² for 
tree volumes from .75 to .98, and to reduce s from 29% to 12%. It offers 
a real alternative to destructive approaches, without significant loss of 
precision, and with the very significant added value that other measure-
ments will be feasible on the sampled trees at a later stage, including 
for multi-temporal comparisons, allowing the precise monitoring of tree T
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growth patterns, crown plasticity, interactions with neighbours, etc. 
(Hosoi, Nakai, & Omasa, 2013; Kaasalainen et al., 2014; Rochon, 2014).

The precision of the obtained estimates may depend on the cor-
rect identification of a size threshold below which branches are too 
small to be captured. We proposed a simple and objective approach 
to identify this threshold. This value (5 cm) is lower than threshold val-
ues chosen in previous studies (Dassot, Colin, Santenoise, Fournier, & 
Constant, 2012; Hackenberg, Wassenberg, et al., 2015) with cut-off 
values of 7 cm and 10 cm. This is all the more impressive if we consider 
the size, presence of buttresses of the trees analysed here, number of 
species and the fact they were scanned leaves-on.

Preliminary segmentation of leaves and wood is still necessary to 
obtain consistent QSMs and volume estimates. The manual segmen-
tation approach adopted here was time consuming, but some existing 
algorithms as in Hackenberg, Spiecker, et al. (2015), did not yield sat-
isfying results on our trees, although they can be used for preliminary 
trimming. The geometric and optical properties of leaves and wood are 
indeed very dependent on the species, hampering the generalisation 
of segmentation criteria. Therefore, this is a research direction from 
which we can still expect improvements towards the routine use of 
TLS data for efficient massive tree volume extraction.

The parameters of allometric models built from TLS and destruc-
tive AGB estimates proved statistically undistinguishable, despite all 
due attention brought to potential bias caused by autocorrelation in 
the paired data. This is a very important result for tropical countries 
currently involved in the readiness phase for the REDD+ initiative. TLS 
approaches will indeed allow to significantly expand sampling efforts 
for the calibration of allometric models, and allow accounting for re-
gional and local variations in tree form induced by abiotic and biotic 

effects, particularly on the largest trees, and eventually result in more 
reliable estimates of carbon stocks and fluxes.

The next challenge is now to automate the treatment chain as 
much as possible, specifically for the leaf/wood segmentation step 
(Béland, Baldocchi, Widlowski, Fournier, & Verstraete, 2014; Tao, Guo, 
et al., 2015; Tao, Wu, et al., 2015), and also for tree and crown seg-
mentation from full plots TLS-scans (Trochta et al., 2017), to allow for 
the massive and accurate collection of individual tree volumes (Wilkes 
et al., 2017). The latter step remains indeed difficult to perform in 
dense forest stands at the leaf-on stage, because of occlusions and 
overlap or contacts between neighbouring tree crowns (Raumonen 
et al., 2013, 2015; Tao, Guo, et al., 2015; Trochta et al., 2017). It is 
likely that progress in leaf-wood segmentation and tree segmentation 
will go hand-in-hand. Constant quality control of model estimates will, 
however, remain necessary to avoid introducing new bias at this level 
in the processing chain.
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F IGURE  6 AGB (above-ground biomass) 
allometric models based on TLS data 
(both AGB estimates and tree biophysical 
predictors, in grey) and destructive data 
(in black). (a) AGB estimate from unedited 
simpletree volume. (b) AGB estimate from 
edited simpletree volume
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TABLE  4 Allometric models for the estimation of tree above-ground biomass (AGB; Mg), calibrated with each method. RMSE is given in Mg

Equation type

Model parameters

R² RMSE Approachβ α

Log10(AGBdest) ~ � Log10(DBH² × H × WDind) + � 1.04*** −4.54*** .98 10.92 Destructive

Log10(AGBTLS) ~ � Log10(DBH² × H × WDdest) + � 1.01*** −4.39*** .95 10.95 Edited

Log10(AGB′TLS) ~ �
′ Log10(DBH² × H × WDdest) + �

′ 0.96*** −4.12*** .93 11.01 Unedited
***p-value of test <.001.
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