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Abstract
1. Calibration of local, regional or global allometric equations to estimate biomass at 

the tree level constitutes a significant burden on projects aiming at reducing Carbon 
emissions from forest degradation and deforestation. The objective of this contri-
bution	is	to	assess	the	precision	and	accuracy	of	Terrestrial	Laser	Scanning	(TLS)	for	
estimating	volumes	and	above-ground	biomass	(AGB)	of	the	woody	parts	of	tropi-
cal trees, and for the calibration of allometric models.

2.	 We	 used	 a	 destructive	 dataset	 of	 61	 trees,	 with	 diameters	 and	 AGB	 of	 up	 to	
186.6 cm and 60 Mg respectively, which were scanned, felled and weighed in the 
semi-deciduous	forests	of	eastern	Cameroon.	We	present	an	operational	approach	
based on available software allowing the retrieving of TLS volume with low bias and 
high accuracy for large tropical trees. Edition of the obtained models proved neces-
sary,	mainly	to	account	for	the	complexity	of	buttressed	parts	of	tree	trunks,	which	
were separately modelled through a meshing approach, and to bring a few correc-
tions in the topology and geometry of branches, thanks to the amapstudio-scan	
software.

3.	 Over	the	entire	dataset,	TLS-derived	volumes	proved	highly	reliable	for	branches	
larger than 5 cm in diameter. The volumes of the remaining woody parts estimated 
for stumps, stems and crowns as well as for the whole tree proved very accurate 
(RMSE below 2.81% and R²	above	of	.98)	and	unbiased.	Once	converted	into	AGB	
using	mean	local-specific	wood	density	values,	TLS	estimates	allowed	calibrating	a	
biomass allometric model with coefficients statistically undistinguishable from 
those of a model based on destructive data. The Unedited Quantitative Structure 
Model	(QSM)	however	leads	to	systematic	overestimations	of	woody	volumes	and	
subsequently to significantly different allometric parameters.

4.	 We	can	therefore	conclude	that	a	non-destructive	TLS	approach	can	now	be	used	
as an operational alternative to traditional destructive sampling to build the allo-
metric equations, although attention must be paid to the quality of QSM model 
adjustments to avoid systematic bias.
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1  | INTRODUCTION

Tropical	 forest	 is	expected	to	play	a	pivotal	 role	 in	 the	mitigation	of	
climate	change	(Houghton,	Byers,	&	Nassikas,	2015)	by	offsetting	the	
carbon released by the use of fossil fuels, whereas methods to esti-
mate forest biomass remain very tedious and impractical. To assess 
carbon	stocks	over	large	areas	of	forests,	all	methods,	either	sample-	
based	(e.g.	Maniatis	et	al.,	2011)	or	remote	sensing	based	(e.g.	Baccini	
et	al.,	2012),	are	dependent	on	above-	ground	biomass	(AGB)	estima-
tions in forest sample plots to derive larger scale statistics.

As	long	as	harvesting	and	weighing	complete	forest	plots	remain	
impractical	(but	see	Clark	&	Kellner,	2012),	and	no	other	method	al-
lows	to	directly	measure	AGB	at	the	plot	level	in	dense	tropical	for-
ests	 (Raumonen	 et	al.,	 2013,	 2015;	 Tao,	Wu,	 et	al.,	 2015;	 Trochta,	
Kruček,	 Vrška,	 &	 Kraâl,	 2017),	 the	 estimation	 of	 forests	 plot	 AGB	
and	the	associated	error	largely	depend	on	tree-	level	AGB	prediction	
models	(Chave	et	al.,	2004;	Picard,	Boyemba	Bosela,	&	Rossi,	2015).	
The latter are calibrated on destructive datasets and combine easily 
as measurable tree descriptors—typically diameter at breast height 
(DBH),	 tree	height	 (H)	and	wood	density	 (WD)—to	derive	tree	AGB	
estimate.	Calibrating	an	AGB	model	requires	to	account	for	a	number	
of factors known to affect allometric relationships, such as tree archi-
tecture	(Goodman,	Phillips,	&	Baker,	2014;	Ploton	et	al.,	2016),	spe-
cies	wood	density	(e.g.	Bastin,	Fayolle,	et	al.,	2015;	Chave	et	al.,	2005,	
2014;	Zanne	et	al.,	2009),	edaphic	and	climatic	contraints	(e.g.	Chave	
et	al.,	 2014),	 interactions	 from	 neighbouring	 trees	 (e.g.	 Feldpausch	
et	al.,	2012),	to	name	only	a	few.	Obtaining	a	representative	sample	
accounting for all these effects across all size classes may prove to be 
not only a costly and daunting task, but also a damaging one if not 
altogether unauthorised in sensitive or protected areas. To compen-
sate	for	some	of	the	limitations	of	existing	models,	accurate	data	from	
remote sensing are needed (e.g. Clark & Kellner, 2012; van Leeuwen 
&	 Nieuwenhuis,	 2010)	 and	 new	 descriptors	 are	 progressively	
being	 added	 to	 improve	 current	 allometric	models	 (e.g.	 Figueiredo,	
	d’Oliveira,	Braz,	de	Almeida	Papa,	&	Fearnside,	2016;	Goodman	et	al.,	
2014;	Ploton	et	al.,	2016).	Another	drawback	of	the	destructive	ap-
proach is that it is impossible to go back and add new measurements 
to previously felled trees. To make matters worse, trees that con-
tribute the most to forest standing biomass, as well as its temporal 
and spatial variations, are the largest ones (e.g. Bastin, Barbier, et al., 
2015),	 and	 thus	 the	hardest	 to	 sample.	Weighing	a	 tropical	 tree	of	
up to 100 tons of fresh mass with only a few scales and chainsaws 
indeed	require	quite	a	bit	of	time	and	manpower	(185	men-	days	for	
our	largest	tree!).	Therefore,	large	trees	are	under-	represented	in	the	
pantropical	dataset	model	(Chave	et	al.,	2014),	which	has	for	conse-
quence	 to	 introduce	biases	 in	 tree-		 and	plot-	level	AGB	predictions	
(e.g.	Ploton	et	al.,	2016).

For	about	a	decade,	a	growing	number	of	studies	have	been	using	
three-	dimensional	points	clouds	of	trees	from	Terrestrial	Laser	Scanning	
(TLS)	technology	to	estimate	above-	ground	tree	volume	(e.g.	Bournez,	
Landes, Saudreau, Kastendeuch, & Najjar, 2017; Calders et al., 2015; 
Côté,	Fournier,	&	Egli,	2011;	Hackenberg,	Morhart,	Sheppard,	Spiecker,	
&	Disney,	2014;	Hackenberg,	Spiecker,	Calders,	Disney,	&	Raumonen,	
2015;	Hackenberg,	Wassenberg,	Spiecker,	&	Sun,	2015;	Mei,	Zhang,	Wu,	
Wang,	&	Zhang,	2017;	Raumonen	et	al.,	2013;	Tansey,	Selmes,	Anstee,	
Tate,	&	Denniss,	2009)	based	on	a	variety	of	tree	reconstruction	meth-
ods	like	the	Quantitative	Structure	Model	(QSM)	and	Outer	Hull	Model	
(Stovall,	Vorster,	Anderson,	Evangelista,	&	Shugart,	2017).	Tree	models	
volume	and	derived	AGB	estimates	usually	correlates	well	with	validation	
data	(Table	1).	Hence,	TLS	data	is	often	thought	of	as	a	promising,	non-	
destructive	 alternative	 to	 traditional	 data	 for	AGB	models	 calibration.	
Until now however, most studies focused on relatively small temperate 
trees	bearing	needle	leaves	or	at	the	leafless	stage	(Table	1),	while	the	
accuracy	of	a	tree	model	is	expected	to	decrease	(1)	when	tree	size	in-
creases, because of a lower point cloud quality in the tree crown (e.g. 
occlusions of high branches from low branches, occlusion of the upper 
side	of	branches	from	their	own	lower	side)	and/or	the	development	of	
more	complex	geometrical	shapes	(e.g.	buttresses)	and	(2)	in	dense,	ev-
ergreen forests, because of the higher level of occlusion of tree woody 
structure by leaves and surrounding vegetation (neighbouring trees and 
bushes,	lianas,	etc.).	Whether	TLS	technology	can	readily	be	used	to	es-
timate large tropical canopy trees biomass and build accurate allome-
tric equations remains an open question. Hence, our study focusses on 
measurements at the individual level, as much remains to be done there 
in	terms	of	error	quantification,	as	well	as	the	exploration	of	tree	struc-
ture	and	growth	patterns.	Our	objective	is,	therefore,	to	make	the	most	
of	TLS	data	 to	estimate	volumes	and	AGB	on	 individual	 large	 tropical	
trees	 (>10	Mg),	 from	a	 range	of	 structurally	contrasted	species,	based	
on open (simpletree)	and	broadly	available	software,	under	careful	user	
supervision.	We	test	a	semi-	automated	processing	chain	going	from	field	
data	acquisition	 to	 the	estimation	of	above-	ground	wood	volume	and	
AGB.	Intermediate	step	is	implemented	in	the	chain	to	identify	sources	
of error and bias in the QSM and allow for their correction, notably using 
the amapstudio-	Scan	 (ASSc):	 an	 open-	access	 and	 interactive	 software	
developed	specifically	for	this	purpose	(http://amapstudio.cirad.fr/).	We	
further	use	TLS-	derived	AGB	estimates	to	calibrate	an	allometric	model,	
and compare this model to its counterpart calibrated on destructive data.

2  | MATERIALS AND METHODS

2.1 | Study area

The study was conducted in the Eastern of Cameroon, in the 
Ndélélé	 district	 (4°02′20.77″N	 and	 14°55′49.15″E),	 within	 Forest	

K E Y W O R D S

above-ground	biomass,	allometric	equation,	Central	Africa,	Congo	Basin,	REDD+,	terrestrial-laser 
scanner, tropical forest trees
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Management	Unit	10-	051.	Forests	in	the	area	are	classified	into	semi-	
deciduous and dominated by species of Malvaceae and Canabaceae 
(Letouzey,	1985).	The	chosen	 trees	were	not	peculiar	 trees	outside	
the forest, but were generally picked to be visible and not covered by 
lianas.	Most	large	trees	present	buttressed	or	fluted	trunks.	Average	
annual precipitations range between 1500 and 2000 mm with two 
marked	 dry	 seasons	 and	 the	 average	 annual	 temperature	 is	 24°C.	
Elevation	 ranges	 between	 600	 and	 700	m	 a.s.l.	 Ferralitic	 red	 soils	
characterise	the	non-	hydromorphic	parts	of	the	area	(Gartlan,	1989).

2.2 | Tree sampling

Between	 July	 2015	 and	August	 2016,	we	 scanned	 61	 trees,	 a	 few	
days	before	they	were	felled	and	their	AGB	destructively	estimated.	
Scanned trees, which were selected to cover large ranges of tree sizes 
and	species-	averaged	wood	density,	belong	to	fifteen	different	spe-
cies and have a mean height (H)	of	33.72	m	(±12.41)	and	a	mean	DBH)	
of	58.37	cm	(±41.30)	(details	in	Table	2).

2.3 | Estimation of tree volume and above- ground 
biomass from destructive data

Felled	 trees	 were	 stratified	 into	 four	 compartments:	 stump,	 stem,	
branches	and	 leaves	 (including	any	 reproductive	parts).	When	a	 seg-
ment’s basal diameter was smaller than 70 cm, its green mass was 
obtained	by	direct	weighing.	For	larger	diameters,	we	used	an	indirect	
mass estimation approach combining volume and wood density esti-
mates.	In	the	latter	case,	the	volume	of	each	segment	of	1	m	long	(in	
cm3)	was	estimated,	using	the	Smalian	formula.	For	each	woody	com-
partment (indiced k),	a	3-		to	5-	cm	thick	circular	wood	sample	was	taken	
at	the	extremity	of	one	of	the	segments	and	its	wood	density	(WDk in g/
cm3,	defined	as	the	oven-	dried	mass	per	unit	of	green	volume)	and	an-
hydrous rate (rk,	defined	as	the	oven-	dried	mass	per	unit	of	green	mass)	
were	estimated	in	the	laboratory	after	drying	to	constant	mass.	WDk 
and rk	were	used	to	convert	the	green	mass	(from	direct	weighting)	or	
green volume of compartment k into dry mass. The total tree woody 
biomass	 (denoted	AGBdest,	 in	Mg)	was	obtained	by	summing	 the	dry	
mass of all segments in the tree. The woody biomass was also summed 
separately	for	each	compartment.	We	computed	bk, defined as the ratio 
of green volume over green mass for a wood sample in compartment 
k, to convert direct weightings of a segment’s green mass into its green 
volume and thus compute woody volume at the total tree and compart-
ment levels (denoted Vdest)	for	comparison	with	TLS	estimations.

2.4 | Estimation of tree volume and above- ground 
biomass from TLS data

2.4.1 | TLS data collection

We	used	a	Leica	C10	Scanstation	for	TLS	data	acquisitions.	It	is	a	time-	
of-	flight	scanner	system	working	at	a	532	nm	wavelength.	The	 laser	
footprint	size	is	4.5	mm	in	the	collimated	range	(50	m)	and	starts	di-
verging	afterward.	The	scanner	possesses	a	large	field	of	view	(360°	T
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horizontal,	270°	vertical)	and	has	a	scan	rate	of	50,000	points	per	s.	
Scanning resolution was set to a spacing of 0.05 m between points at 
100	m.	In	the	field,	at	least	three	scans	were	performed	around	each	
tree after minimal clearing of the forest undergrowth to remove some 
shrubs	(below	5	cm	DBH)	masking	our	reference	targets.

2.4.2 | General workflow for TLS data processing

Figure	1,	 summarises	 the	workflow	 followed	 in	 this	 study	 from	 the	
raw TLS point cloud to volume estimation.

Co-	registration	of	point	clouds	from	the	different	scanning	posi-
tions	and	extraction	of	individual	trees	were	performed	using	the	Leica	
cyclone	software	(v.	9.1).	For	each	tree,	we	manually	removed	leaves	
from	the	point	cloud	(step	A),	which	required	between	1	and	15	hr	per	
tree depending on its size. This step was performed using standard 
cyclone tools. The processing chain on the remaining woody parts then 
included: the automated reconstruction of tree topology and structure 
with the simpletree	software	(step	B),	resulting	in	unedited	Quantitative	
Structure	 Models	 (QSMs);	 when	 necessary,	 manual	 improvements	
were	performed	on	(1)	stem	and	crown	models	using	amapstudio-	Scan	
(ASSc)	software	(step	C2)	and	(2)	stump	models	using	meshing	in	the	
geomagic	software	(step	C1),	resulting	in		improved	QSMs.

2.4.3 | TLS data processing

Step B: Automatic volume estimation with simpletree

The simpletree software was used to generate unedited QSMs of indi-
vidual	trees	(Hackenberg,	Spiecker,	et	al.,	2015).	Parameters	used	for	
this purpose varies with the points cloud density and the tree size. 
We	faced	 two	main	problems	when	applying	 simpletree to our point 

clouds. Due to the presence of large buttresses on some canopy trees, 
the	circle	fitting	routine	(i.e.	Random	Sample	Consensus	or	RANSAC	
method,	 Fischler	&	Bolles,	 1981)	 often	 returned	 circles	 located	 be-
tween two buttresses, that is, outside the wooden part of the tree. 
We	therefore	adapted	the	method	described	in	Hackenberg,	Spiecker,	
et	al.	(2015)	by	dividing	point	clouds	into	two	subsections	that	were	
treated differently in the analyses: a lower part composed of trees 
stumps	and	all	buttresses	and	an	upper,	buttresses-	free	part.	As	no	
branches were located in the lower part of the trees, a simpler but 
more robust reconstruction method could be applied: the cloud was 
subdivided	into	slices	of	a	user	given	thickness	(here	0.5–3	m).	Each	
slice	was	converted	to	a	2D	cloud	in	the	x,y	plane	and	a	circle	was	fit-
ted	to	it	using	the	Maximum	Likelihood	Sample	Consensus	algorithm	
(Torr	&	Zisserman,	2000).	For	each	model,	 the	average	distance	be-
tween the point cloud and the cylinder model was computed and the 
model with the lowest distance was chosen. The upper part of the tree 
cloud showed a sufficient quality to be modelled with the simpletree 
method	without	modifications	(Hackenberg,	Spiecker,	et	al.,	2015)	and	
both	cylinder	models	were	connected	afterwards.	All	parameters	used	
to produce unedited QSMs can be found inside simpletree	output	txt	
files for each tree which will be made available online. The principal 
parameters used to adjust unedited QSMs in simpletree were [with 
typical value range] are: sphereMultiplier [3.00 to 6.00]; espCluster-
Stem	[0.020	to	0.400];	espClusterBranch	[0.008	to	0.02];	espSphere	
[0.020	to	0.120].	Please	refer	 to	Hackenberg	et	al.	 (2014,	2015)	 for	
more information’s about these parameters.

Step C: Manual improvement of tree volume estimations
We	used	Geomagic Studio 12, to improve volume estimations on tree 
stumps	with	 a	 surface	meshing	 approach	 (wrap	 tool).	Mesh	models	

TABLE  2 Taxonomic	information,	number	of	sample	trees	per	species	(n)	and	dendrometric	parameters	of	sampled	species	(maximum	and	
minimum of DBH and H)

Species Family n

DBH (cm) H (m)

Min Max Min Max

Annickia chlorantha	(Oliv.)	Setten	&	Maas Annonaceae 3 10.8 35.6 12.6 35.5

Baphia leptobotrys Harms Leguminosae 3 33.3 84.7 16.5 31.1

Cylicodiscus gabunensis Harms Leguminosae 5 13.3 173.8 17.6 53.6

Duboscia macrocarpa Bocq. Malvaceae 2 26.3 35 17 39.9

Entandrophragma cylindricum	(Sprague)	Sprague Meliaceae 2 17.2 89.8 16.9 44.7

Eribroma oblongum	(Mast.)	Pierre	ex	A.	Chev. Malvaceae 4 17.4 105.6 22.2 46.5

Erythrophleum suaveolens	(Guill.	&	Perr.)	Brenan Leguminosae 5 21.9 119.6 26.4 46.9

Macaranga barteri	Müll.Arg. Euphorbiaceae 2 25.3 33.7 26.6 28.4

Mansonia altissima	(A.	Chev.)	A.	Chev. Malvaceae 3 24.9 60.6 22.3 42.5

Pentachletra macrophylla Benth. Leguminosae 1 34.1 34.1 23.5 23.5

Petersianthus macrocarpus	(P.Beauv.)	Liben Lecythidaceae 6 13.4 64.6 11.1 42.7

Pterocarpus soyauxii Taub. Leguminosae 6 11.1 83.2 12.4 49.4

Pycnanthus angolensis	(Welw.)	Warb. Myristicaceae 4 11.2 55.5 8.7 33.5

Terminalia superba Engl. & Diels Combretaceae 9 12.5 112.6 16.2 51.4

Triplochiton scleroxylon K.Schum. Malvaceae 6 25.4 186.6 27.4 52.8



     |  909Methods in Ecology and EvoluonMOMO TAKOUDJOU eT Al.

were rendered ‘water proof’ by closing all remaining holes. The ro-
bustness	of	this	process	to	describe	the	complex	geometry	of	stumps	
depends on the point cloud quality (density of points, number of scan-
ning	position	around	the	target	trees).

We	 also	 used	ASSc	 to	 improve	 the	 quality	 of	QSMs	 in	 remaining	
parts	of	the	trees	(stems	and	crowns).	It	may	be	used	to	manually	edit	the	
results of automatic QSM algorithms such as simpletree, allowing the user 
to	fix	incomplete	or	incorrect	structures	in	a	tree	branching	network.	The	
plant model is displayed over the point cloud and represented as a tree 
graph	with	vertices	and	edges.	Each	vertex	is	defined	by	a	disk	(a	centre,	
a	radius	and	a	normal)	and	edges	by	two	vertices	and	an	axis	identifier.	
The	user	can	manually	add	vertices	and	edges,	typically	to	fill-	in	the	plant	
model in occluded areas or at the crown top, where small branches are 
only	described	with	very	few	points.	A	new	vertex	can	be	added	by	draw-
ing a rough centre, radius and specifying an adjustment approach (ellipse 
fitting,	ellipsoid	fitting,	projected	convex	hull)	in	order	to	visually	optimise	
the results based on local characteristics of the point cloud.

2.4.4 | Tree volume and above- ground biomass 
estimations from Quantitative Structure Models

Tree	 compartments	 (i.e.	 stump,	 stem,	 and	 crown)	 and	 whole	 tree	
volume were obtained by summing the volume of corresponding 

cylinders.	 Volumes	 were	 converted	 to	 biomass	 (denoted	 AGBTLS)	
using	 wood	 density	 values	 (WD,	 g/cm3)	 either	 from	 global	 wood	
density	 database	 (WDb)	 (Zanne	 et	al.,	 2009)	 or	 from	 local	 species-	
averaged	wood	density	taken	on	the	stumps	(WDdest).	In	WDdest, only 
WD	samples	from	tree	stumps	(i.e.	sampled	at	approximately	breast	
height)	were	considered,	to	simulate	what	one	may	obtain	using	wood	
cores sampled on standing trees.

2.5 | Statistical analyses

2.5.1 | Comparison of TLS and destructive estimates

Assessing the size threshold for the detection of small branches
To assess possible signal attenuation below a certain size threshold, we 
looked for breakpoints in the segment diameter frequency distribution 
across	the	whole	dataset.	A	bin	size	of	0.5	cm	was	used	to	compute	the	
frequency	distribution	of	segment	diameters	in	QSM	trees.	Following	the	
metabolic	theory	of	ecology	 (Enquist,	West,	&	Brown,	2009),	 the	seg-
ment	 diameter-	abundance	 relationship	 is	 expected	 to	 follow	 a	 power	
law distribution. Strong deviations from this general trend for some size 
ranges should be the result of a bias in detection (indicating a limitation 
of	the	TLS	method	to	capture	the	smallest	branches).	We	used	a	two	
steps breakpoint identification procedure to test whether the scaling of 

F IGURE  1 Workflow	for	woody	volume	estimation

Full 3D point cloud

Wood
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Leaves
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segment abundance against diameter changed with segment diameter 
(Muggeo,	2003).	First,	we	used	the	Davies’	test	(Davies,	1987),	to	detect	
the	presence	of	significant	changes	in	the	slope	of	the	log-	linear	model	
for regularly spaced segment diameter values. Second, we used the seg-
ment diameter corresponding to the most significant breakpoint as a 
starting value in a segmented regression (using the “segmented”	package),	
yielding a more accurate estimate of the segment diameter breakpoint 
value. Segments below the identified breakpoint where then discarded 
from comparative analyses between TLS and destructive data.

Comparison of TLS and destructive estimates
We	compared	estimates	of	volume	and	biomass	at	the	compartment	
and whole tree levels between destructive (Vdest	 and	 AGBdest)	 and	
TLS-	derived	 estimates	 (VTLS	 and	 AGBTLS).	 Comparisons	 were	 per-
formed using linear regression models, characterised by classical fit 
metrics (R²,	RMSE).	Method	bias	(b	in	%)	was	evaluated	as	the	mean	of	
signed relative errors (bi	in	%)	(1):

with XTLS the volume or mass estimate derive from TLS data and Xdest 
the volume or biomass estimate derived from destructive data.

We	also	reported	the	mean	(s)	(si	in	%)	for	evaluating	the	accuracy	
of	TLS	estimates	(2):

2.5.2 | Comparison of allometric models

A	standard	allometric	model	(Chave	et	al.,	2014)	was	calibrated	with	
TLS	(unedited	or	edited	QSMs)	and	destructive	data	to	estimate	the	
consistency	between	the	different	methods	for	building	AGB	predic-
tion models.

with	AGB	(in	Mg)	representing	either	the	AGB	derived	from	TLS	ed-
ited	QSM	(AGBTLS),	TLS	unedited	QSM	(AGB′TLS)	or	destructive	data	
(AGBdest),	DBH	 (in	 cm)	 and	H	 (in	m)	 derived	 from	TLS	 (DBHTLS and 
HTLS)	 and	 from	 destructive	 (DBHdest and Hdest)	 data,	WD	 the	 local	
species-	averaged	wood	density	taken	on	the	stumps	(WDdest)	or	from	
the	individual	wood	density	taken	from	all	compartments	(WDind)	and	
ε the residual error term in each model (εTLS, ε′TLS and εdest),	assumed	
to follow a normal distribution.

To compare pairs of slopes (βTLS and βdest; β′TLS and βdest)	and	pairs	
of intercepts (αTLS and αdest; α′TLS and αdest)	of	equation	3,	we	simulta-
neously	fitted	the	equation	with	destructive	and	TLS-	derived	estima-
tions in the same model. Since pairs of estimates came from the same 
individuals, the residual variance could no more be supposed indepen-
dent.	We	modelled	this	dependence	as	follows:

with iid = independently and identically distributed, ρ the coefficient 
of correlation between the residuals of the two methods and the fol-
lowing hypotheses:

1. 

2. 

3. 

All	analyses	were	performed	in	r statistical software (R Development 
Core	Team,	2015),	using	 the	Nonlinear	Mixed-	effects	Models	 (nlme) 
package	 and	 the	 Generalised	 Least	 Squares	 (gls)	 function	 to	 test	
 hypotheses (ho1, ho2, h′o2),	at	the	alpha	risk	level	of	5%.

3  | RESULTS

3.1 | Signal saturation on small branches

A	 significant	 breakpoint	 was	 evidenced	 in	 the	 segment	 diameter	
density	distribution	at	4.5	cm	(Figure	2a).	Testing	the	effect	of	spe-
cies	 or	 tree	 size	 (DBH)	 on	 the	 breaking	 point	 value	 did	 not	 yield	
significant results, suggesting that tree architecture or size had no 
effect on the precision of the scans, but also in part because fit-
ting	 often	 failed	 at	 individual	 level.	 Following	 these	 results,	 seg-
ments below 5 cm in diameter were removed in all subsequent TLS 
vs destructive data comparisons. The proportion of these small 
branches	was	4.7%	of	 total	 tree	 biomass	 in	 the	destructive	 data,	
and 3.9% in TLS estimations. The underestimation seemed more 
pronounced on large individuals, with a proportion of only 0.6% 
with TLS against 2.1% with destructive data for trees of more than 
10	Mg	(Figure	2b).

3.2 | Estimating compartments and whole tree 
volume with TLS data

At	the	whole	tree	level,	VTLS derived from unedited simpletree QSMs 
led to a large bias (b	of	15.29%)	compared	to	Vdest	(Figure	3a)	with	a	
satisfying R²	 (.75)	and	a	high	 relative	unsigned	error	 (s	of	29%).	The	
95%	 confidence	 interval	 (CI)	 increased	 proportionally	with	 tree	vol-
ume and error level reached s = 35% for trees with volumes larger than 
20 m3	(corresponding	to	trees	with	DBH	≥90	cm).	At	the	compartment	
level, most of the error came from tree crowns (s	=	84.72%)	and	from	
stumps (s	=	45.99%).	With	an	s value of 26.22%, stems were relatively 
better	 described	 (Figure	4a–c).	 At	 the	 tree	 level,	 we	 realised	 these	
relatively large error values were in fact coming from a few errors in 
the tree models, that could be overcome either by manually editing 
some connections in the crown, or by modelling the stump separately. 
Indeed,	after	editing,	s	decreased	to	34.50%	for	stumps,	17.24%	for	
stems	and	29.18%	for	crowns	(Figure	4d–f).

These improvements were of course passed on at the whole tree 
level	(Figure	3b),	leading	to	a	R² value of .98, a RMSE of 2.81 m3 and an 
s	of	12%.	In	addition,	the	95%	CI	showed	a	lesser	dependence	on	tree	
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volume, and the estimates showed a remarkable reduction in the bias 
(b	of	4.68%)	(Details	in	Table	3).

3.3 | Above- ground biomass derived from TLS 
estimates with different wood densities

When	computing	AGBTLS,	the	use	of	local	wood	density	values	(WDdest)	
both	led	to	higher	goodness-	of-	fit	values,	with	R² and RMSE values of 
.97	and	1.78	Mg	against	.93	and	2.73	Mg	with	literature	values	(WDb),	
and	reduced	bias,	as	the	regression	with	AGBdest happened to be closer 
to	the	1:1	line	(Figure	5).	We	therefore	used	the	local	density	values	in	
subsequent analyses, although it is worth mentioning that the use of 
WDb only had a marginal impact on subsequent analyses.

3.4 | Calibrating an allometric model with TLS data

Allometric	models	 built	 with	 either	 destructive	 or	 TLS-	derived	 (ed-
ited	QSMs)	biomass	proved	visually	similar	(Figure	6a)	and	presented	
nearly identical R² values of .98 and .95, respectively. Using unedited 
QSMs	to	estimate	AGBTLS led to a slightly inferior R²	(.93)	and	a	visual	
discrepancy	 between	models	 prediction	 lines	 (Figure	6b).	 Statistical	
comparisons of allometric models parameters confirmed our visual 
appraisal	(Figure	6a),	with	no	effect	of	the	method	(i.e.	TLS	or	destruc-
tive)	when	using	edited	QSMs	(Table	S1)	and	a	significant	method	ef-
fect	when	using	unedited	QSMs	(Table	S2).

The coefficients of allometric models adjusted on either destruc-
tive	or	TLS	(edited	and	unedited	approach)	predictors	are	summarised	
in	(Table	4).

4  | DISCUSSION AND CONCLUSION

The development of biomass allometry models has up to now been 
a	 daunting	 task	 as	 the	 traditional	 destructive	 approach	 is	 time-	
consuming	and	costly.	As	a	result,	the	error	made	on	ground	estima-
tions	of	trees	and	forest	sample	plots	biomass	 (AGB)	 is	among	the	
largest	 error	 sources	 in	 the	 forest	 carbon	mapping	 chain	 (Ahmed,	
Siqueira,	 Hensley,	 &	 Bergen,	 2013).	 The	 rapid	 development	 of	
Terrestrial	Laser	Scanner	(TLS)	applications	in	forestry,	in	particular	
tree reconstruction methods, will soon change the game by provid-
ing reference datasets of unprecedented size and spatial representa-
tivity for the calibration of allometric models. Yet, the accuracy with 
which	tree	AGB	can	be	estimated	from	current	tree	reconstruction	
algorithms	has	been	virtually	unexplored	in	natural	tropical	forests,	
in	particular	 for	 large	 canopy	 trees	 (e.g.	 ≥10	Mg).	While	 there	 is	 a	
critical	need	 to	 sample	more	AGB	 reference	data	on	 large	 tropical	
trees	(Chave	et	al.,	2005,	2014),	such	trees	may	be	seen	as	particu-
larly challenging to reconstruct from TLS data owing to the usual 
complexity	 of	 trunk	 shapes	 (e.g.	 buttresses)	 and	 to	 higher	 occlu-
sion	levels	in	tree	crowns.	In	this	study,	we	used	a	large	destructive	

F IGURE  2 Signal attenuation in 
small	branches.	(a)	Identification	of	a	
breaking point in the distribution of 
segment diameters from the edited QSMs 
(Quantitative	Structure	Model),	(b)	total	
AGB	(above-ground	biomass)	of	segments	
of diameter smaller than 5 cm as a function 
of	total	tree	AGB log10 (Diameter) (cm)
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F IGURE  3 Comparison of VTLS against 
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F IGURE  4 Comparison of VTLS against Vdest for each compartment in function of the methodology: VTLS from unedited simpletree QSMs in 
captions	(a),	(b)	and	(c),	VTLS	from	edited	QSMs	(Quantitative	Structure	Model)	in	captions	(d),	(e)	and	(f).	The	1:1	line	is	represented	as	a	grey	
dotted line. Model fit is represented as a full black line
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dataset	 to	 evaluate	 tree	 AGB	 estimation	 error	 from	 a	 commonly	
used automated QSM algorithm (i.e. simpletree),	and	present	a	semi-	
automated approach tackling the most obvious error sources in the 
automated	 approach.	We	 further	 showed	 that	 TLS	 data	 could	 be	
used to build an allometric equation that was identical to the one 
based on destructive data, confirming that TLS technology is on 
the	verge	of	revolutionising	our	ability	to	estimate	forest	AGB	from	
ground	 measurements.	 Importantly	 however,	 current	 automated	
volume estimation methods may introduce systematic bias when ob-
vious QSM adjustment errors are not accounted for.

The	use	of	TLS	technology	to	estimate	tree	volume	and	AGB	is	be-
ginning to be well documented in temperate forests, but its application 
to large tropical trees of contrasted architecture and often buttresses 
or fluted stems is a big step further. Direct use of raw simpletree QSMs 
to	 estimate	 tree	volume	highlighted	 the	 (expected)	 difficulties	 of	 the	
cylinder-	based,	 automated	 approach	 to	 describe	 large	 tree	 stumps	
and crowns, requiring manual edits and the separate modelling of but-
tressed	parts	with	a	mesh	model	(Cushman,	Muller-	Landau,	Condit,	&	
Hubbell,	2014;	Nogueira,	Fearnside,	Nelson,	Barbosa,	&	Keizer,	2008;	
Nölke	et	al.,	2015;	Olagoke	et	al.,	2016;	Picard	&	Saint-	andré,	2012).	
While	reconstruction	algorithms	are	rapidly	evolving	(Raumonen	et	al.,	
2013,	2015;	Stovall	et	al.,	2017;	Tao	et	al.,	2015;	Trochta	et	al.,	2017)	in	
the	hope	to	upscale	studies	to	entire	forest	stands,	the	semi-	automated	
procedure proposed here is already fully operational even in very dense 
tropical	forests	at	the	leaf-	on	stage,	allowing	to	improve	validation	R² for 
tree volumes from .75 to .98, and to reduce s	from	29%	to	12%.	It	offers	
a real alternative to destructive approaches, without significant loss of 
precision, and with the very significant added value that other measure-
ments will be feasible on the sampled trees at a later stage, including 
for	multi-	temporal	comparisons,	allowing	the	precise	monitoring	of	tree	T
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growth patterns, crown plasticity, interactions with neighbours, etc. 
(Hosoi,	Nakai,	&	Omasa,	2013;	Kaasalainen	et	al.,	2014;	Rochon,	2014).

The precision of the obtained estimates may depend on the cor-
rect identification of a size threshold below which branches are too 
small	to	be	captured.	We	proposed	a	simple	and	objective	approach	
to	identify	this	threshold.	This	value	(5	cm)	is	lower	than	threshold	val-
ues	chosen	in	previous	studies	(Dassot,	Colin,	Santenoise,	Fournier,	&	
Constant,	2012;	Hackenberg,	Wassenberg,	et	al.,	2015)	with	cut-	off	
values of 7 cm and 10 cm. This is all the more impressive if we consider 
the size, presence of buttresses of the trees analysed here, number of 
species	and	the	fact	they	were	scanned	leaves-	on.

Preliminary segmentation of leaves and wood is still necessary to 
obtain consistent QSMs and volume estimates. The manual segmen-
tation	approach	adopted	here	was	time	consuming,	but	some	existing	
algorithms	as	in	Hackenberg,	Spiecker,	et	al.	(2015),	did	not	yield	sat-
isfying results on our trees, although they can be used for preliminary 
trimming. The geometric and optical properties of leaves and wood are 
indeed very dependent on the species, hampering the generalisation 
of segmentation criteria. Therefore, this is a research direction from 
which	we	can	still	expect	 improvements	 towards	 the	 routine	use	of	
TLS	data	for	efficient	massive	tree	volume	extraction.

The parameters of allometric models built from TLS and destruc-
tive	AGB	estimates	proved	statistically	undistinguishable,	despite	all	
due attention brought to potential bias caused by autocorrelation in 
the paired data. This is a very important result for tropical countries 
currently	involved	in	the	readiness	phase	for	the	REDD+	initiative.	TLS	
approaches	will	indeed	allow	to	significantly	expand	sampling	efforts	
for the calibration of allometric models, and allow accounting for re-
gional and local variations in tree form induced by abiotic and biotic 

effects, particularly on the largest trees, and eventually result in more 
reliable	estimates	of	carbon	stocks	and	fluxes.

The	 next	 challenge	 is	 now	 to	 automate	 the	 treatment	 chain	 as	
much as possible, specifically for the leaf/wood segmentation step 
(Béland,	Baldocchi,	Widlowski,	Fournier,	&	Verstraete,	2014;	Tao,	Guo,	
et	al.,	2015;	Tao,	Wu,	et	al.,	2015),	and	also	for	tree	and	crown	seg-
mentation	from	full	plots	TLS-	scans	(Trochta	et	al.,	2017),	to	allow	for	
the	massive	and	accurate	collection	of	individual	tree	volumes	(Wilkes	
et	al.,	 2017).	The	 latter	 step	 remains	 indeed	 difficult	 to	 perform	 in	
dense	forest	stands	at	 the	 leaf-	on	stage,	because	of	occlusions	and	
overlap or contacts between neighbouring tree crowns (Raumonen 
et	al.,	 2013,	2015;	Tao,	Guo,	 et	al.,	 2015;	Trochta	 et	al.,	 2017).	 It	 is	
likely	that	progress	in	leaf-	wood	segmentation	and	tree	segmentation	
will	go	hand-	in-	hand.	Constant	quality	control	of	model	estimates	will,	
however, remain necessary to avoid introducing new bias at this level 
in the processing chain.
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F IGURE  6 AGB	(above-ground	biomass)	
allometric models based on TLS data 
(both	AGB	estimates	and	tree	biophysical	
predictors,	in	grey)	and	destructive	data	
(in	black).	(a)	AGB	estimate	from	unedited	
simpletree	volume.	(b)	AGB	estimate	from	
edited simpletree volume
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TABLE  4 Allometric	models	for	the	estimation	of	tree	above-	ground	biomass	(AGB;	Mg),	calibrated	with	each	method.	RMSE	is	given	in	Mg

Equation type

Model parameters

R² RMSE Approachβ α

Log10(AGBdest)	~	� Log10(DBH² × H	×	WDind)	+	� 1.04*** −4.54*** .98 10.92 Destructive

Log10(AGBTLS)	~	� Log10(DBH² × H	×	WDdest)	+	� 1.01*** −4.39*** .95 10.95 Edited

Log10(AGB′TLS)	~	�
′ Log10(DBH² × H	×	WDdest)	+	�

′ 0.96*** −4.12*** .93 11.01 Unedited
***p-value	of	test	<.001.
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