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ABSTRACT 20 

Metagenomics studies have revolutionized the field of biology by revealing the presence of 21 

many previously unisolated and uncultured micro-organisms. However, one of the main problems 22 

encountered in metagenomic studies is the high percentage of sequences that cannot be assigned 23 

taxonomically using commonly used similarity-based approaches (e.g. BLAST or HMM). These 24 

unassigned sequences are allegorically called « dark matter » in the metagenomic literature and are 25 

often referred to as being derived from new or unknown organisms. Here, based on published and 26 

original metagenomic datasets coming from virus-like particle enriched samples, we present and 27 

quantify the improvement of viral taxonomic assignment that is achievable with a new similarity-28 

based approach. Indeed, prior to any use of similarity based taxonomic assignment methods, we 29 

propose assembling contigs from short reads as is currently routinely done in metagenomic studies, 30 

but then to further map unassembled reads to the assembled contigs. This additional mapping step 31 

increases significantly the proportions of taxonomically assignable sequence reads from a variety -32 

plant, insect and environmental (estuary, lakes, soil, feces) - of virome studies.  33 

 34 

Keywords: Dark Matter, Viral metagenomics, BLAST, Mapping 35 
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1. Introduction 36 

The advent of high throughput sequencing has enabled the cataloguing and enumeration of 37 

microbial species without a priori information on their life cycles. When specifically focusing on 38 

viruses, this so-called viral metagenomics approach, has so-far revealed the extraordinary diversity 39 

and prevalence of viruses in aquatic and terrestrial ecosystems, highlighting the key contributions of 40 

these microbes to all ecosystems on Earth (Brum and Sullivan, 2015; Mokili et al., 2012; Suttle, 41 

2007).  42 

One simple but important insight yielded by these astonishing discoveries is that we 43 

probably currently know far less than 1% of all viral species that are circulating on Earth (Anthony 44 

et al., 2013; Mokili et al., 2012). It is sobering to consider that despite the large numbers of viromes 45 

that have been examined over the past 20 years, almost every new viromics project yields large 46 

numbers of sequences that have no significant degree of similarity with those referenced in 47 

databases. These sequences are often referred to as "dark matter". Our inability to properly 48 

categorize the latter sequences has the potential to strongly bias our view of both the actual diversity 49 

of viruses in a given environment and their ecological roles (Krishnamurthy and Wang, 2017; 50 

Roossinck et al., 2015; Rosario and Breitbart, 2011).   51 

When attempting to characterize any virome from metagenomic datasets, researchers face 52 

two main challenges: i) purifying viral genomes present in heterogeneous materials or biological 53 

tissues without introducing biases due to technical processes and ii) accurately assign sequence 54 

reads. Whereas solutions to the first of these challenges will vary from environment to environment, 55 

the second challenge could be met both with improved computational methods that are capable of 56 

accounting for compositionally biased databases, and by vastly increasing the diversity of viral 57 
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genome sequences within public databases. For instance in most viral metagenomics projects, only 58 

approximately 10 to 20% of sequence reads can be confidently attributed to viruses and, in most 59 

cases, the remaining sequence reads are treated as unanalyzable dark matter (Krishnamurthy and 60 

Wang, 2017; Rosario and Breitbart, 2011).  61 

In viral metagenomic studies, the classical bioinformatical workflow consists of de novo 62 

assembling contigs from short reads generated by high throughput sequencing and then performing 63 

homology inferences via alignments of sequences (both reads and contigs) to reference databases 64 

using a tool such as BLAST (Allander et al., 2001; Angly et al., 2006; Breitbart et al., 2002). 65 

However, this method usually yields low quality taxonomic assignments due, at least in part, to both 66 

the length of sequence reads generally being <500nts, and the low degrees of sequence identity that 67 

are commonly shared between query sequences and the virus genomic sequences present in public 68 

databases (Tangherlini et al., 2016). Moreover, the classical BLAST workflow most often leads to a 69 

high number of reads that cannot be attributed with high confidence to related sequences and are 70 

thus considered as unknown sequences.  71 

To decrease the amount of this dark matter, it has been recently proposed to integrate a new 72 

step in the computational workflow: a recruitment process consisting of the mapping of 73 

unassembled short sequence reads onto assembled contigs prior BLASTx requests (Krishnamurthy 74 

and Wang, 2017), a workflow that we will referred to as assembly-mapping-BLAST (AM-BLAST 75 

for short) as opposed to the classical BLAST workflow. Although this methodology is used in viral 76 

metagenomics (Cotten et al., 2014), no comparative study has ever been made to evaluate how 77 

efficiently the use of AM-BLAST reduces the amount of dark matter relative to the classical 78 

BLAST workflow. 79 
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Alternatives to BLAST have been developed to improve taxonomic assignments of query 80 

sequences being compared to a database of reference sequences. One of the most used alternative 81 

approaches involves a hidden Markov model (HMM) based classifier where position-specific 82 

information on nucleotide variation across a set of related sequences is taken into account when 83 

determining whether there are statistically significant matches within a database to query sequences. 84 

This approach outperformed BLAST when attempting to find database matches to divergent viral 85 

sequences, although it remained less accurate than BLAST with respect to taxonomic assignment 86 

(Fancello et al., 2012; Remmert et al., 2012; Skewes-Cox et al., 2014).  87 

The aim of the present study was to quantify improvement in the taxonomic assignment of 88 

viral sequences after the use of AM-BLAST relative to classical-BLAST workflows. We thus 89 

compared the number of unassigned reads after running these two workflows on fifteen datasets 90 

consisting of samples enriched for virus-like particles (VLP). Our results indicate that the AM-91 

BLAST workflow reduced significantly the number of unassigned viral reads compared to the 92 

classical-BLAST workflow.  93 

 94 

2. Materials and methods 95 

2.1. Sampling, virome preparation and sequencing 96 

 Three insect species (Hypera postica, Acyrthosiphon pisum and Coccinella septempunctata) 97 

and one plant species (Medicago sativa) were collected in the Montpellier area of Southern France 98 

(domaine de Restinclières, Prades le Lez, France, N 43°42’54.362” EO 3°51’31.749”); for each 99 

species, several individuals were pooled and constituted one sample. Samples were stored at -80°C 100 

without addition of any preservative solutions. One gram of insect or plant material was processed 101 
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using a virion-associated nucleic acids (VANA) based metagenomics approach to screen for the 102 

presence of viruses (Palanga et al., 2016). Amplified and tagged DNA products of the VANA 103 

approach were sequenced using an Illumina platform (MiSeq sequencing: 2 x 300 nt paired-end 104 

sequencing with V3 chemistry, Beckman Coulter Genomics, USA). 105 

2.2. Bioinformatics analysis: virome cleaning, read assembly, taxonomic assignment 106 

and clustering  107 

Raw reads were first demultiplexed using agrep (Wu and Manber, 1992). Illumina adaptors 108 

were removed and we selected reads based on their quality (≥q30 and length elimination of reads < 109 

45 nt) using Cutadapt 1.9 (Martin, 2011). The remaining reads will be hereafter referred to as 110 

“cleaned reads”. Paired cleaned reads were merged using FLASH 1.2.11 (Magoc and Salzberg, 111 

2011). Then, random subsets of two hundred thousand cleaned reads per virome were used for all 112 

the following steps.  113 

First, we performed the classical-BLASTx workflow which involved taxonomically 114 

assigning reads using BLASTx searches against the non-redundant GenBank viral protein 115 

sequences database for taxonomic attribution (e-value cutoff of < 10-3) (Altschul et al., 1990) on 116 

200,000 randomly chosen “cleaned reads” (Fig. 1A).  117 

Second, we performed the AM-BLAST workflow which involved subjecting the cleaned 118 

reads to assembly using SPAdes (different kmer sizes: 21, 33, 55, 77, 125) (Bankevich et al., 2012). 119 

Contigs and unassembled reads were then assembled using CAP3 with default parameters (Huang, 120 

1999). It is to notice that CAP3 was only used to recruit reads; it should not be used for 121 

identification of genomes because this software can result in creation of chimaeras. Mapping of the 122 

remaining reads both (i) onto the new contigs obtained after de novo assembly and (ii) to the 123 
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remaining unassembled reads was performed using Bowtie 2.1.0 (using the local and very sensitive 124 

option) (Langmead, 2010; Toland et al., 2013). All contigs and unassembled reads were then 125 

subjected to BLASTx searches against the non-redundant GenBank viral protein sequences 126 

database for taxonomic attribution (e-value cutoff of < 10-3) (Altschul et al., 1990) (the whole 127 

procedure is summarized in Fig. 1 B). 128 

To obtain an overview of genetic diversity across all the metagenomic datasets, 10,000 reads 129 

were randomly chosen (3 replicates) and subjected to BLASTx searches against the NCBI non-130 

redundant protein sequences database.  131 

Seven publicly available metagenomic datasets were also analyzed in this study, originating 132 

from five independent datasets after enrichment for virus-like particles from mosquitoes (Ng et al., 133 

2011), a human fecal sample (Kim et al., 2011), an estuary sample (McDaniel et al., 2008), two lake 134 

samples (Roux et al., 2012), and two Antarctic ecosystem samples (Zablocki et al., 2014) (Table 1). 135 

These seven datasets were de novo assembled and analyzed as described above.  136 

 137 

3. Results 138 

The aim of our study was to compare the efficiency with which classical-BLASTx (Fig. 1 A) 139 

and AM-BLAST (Fig. 1 B) workflows taxonomically assign reads from metagenomic sequencing 140 

datasets. These datasets were obtained from samples of various origins and enriched for virus-like 141 

particles using different procedures (Table 1): (i) eight insects and plants processed for the purpose 142 

of the present study (hereafter referred to as viromes 1 to 8) and (ii) seven datasets from published 143 

studies originating from environmental and insect samples (hereafter referred to as viromes 9 to 15) 144 
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(Table 1). The viromes represented by these two set will be hereafter referred to as original and 145 

published viromes, respectively.  146 

The classical BLASTx workflow was able to assign, with high level of confidence 147 

(according to E-value of BLASTx, see M&M section), between 59% and only 1.3% of reads from 148 

the original viromes (Insects 6 and Insects 4, respectively) and between 7.5% and 0.15% of reads 149 

for the published viromes (Lake Bourget and Hypolith, respectively), in agreement with published 150 

results (Fig. 2). The AM-BLASTx workflow on the other hand, allowed the assignment of 89.4% 151 

and 42.5% of reads for the original viromes (Insects 4 and Insects 5, respectively) and between 152 

18.6% and 1.4% of reads for the published viromes (Lake Pavin and Estuary, respectively) (Fig. 2). 153 

AM-BLASTx workflow yielded a significant improvement in overall taxonomic assignment 154 

efficiency (P = 6.1x10-5, Wilcoxon comparison test) (Fig. 2, Supplemental Table 1). This 155 

improvement was particularly notable for insect virome 4 where the AM-BLASTx workflow 156 

yielded a 70-fold improvement in the proportion of taxonomically assignable reads. 157 

Proportions of assignable reads varied markedly between the analyzed viromes. For the 158 

original datasets an average of 21% of reads were assignable by classical-BLASTx and 62% by 159 

AM-BLASTx. For the published datasets an average of only 3% of reads were assignable by 160 

classical-BLASTx and 13% by AM-BLASTx (Fig. 2 and Supplemental Table 1). On one hand, the 161 

aquatic, marine and fecal environmental viromes were dominated by large dsDNA bacteriophages 162 

(> 250 kb) belonging to the Myoviridae and Siphoviridae families. On the other hand, insect and 163 

plant viromes were dominated by small RNA and DNA viruses (< 10 kb) belonging to the 164 

Iflaviridae, Dicistroviridae, Parvoviridae, Amalgaviridae and Partitiviridae families (Supplemental 165 

Table 2). 166 

In order to assign the remaining unclassified reads to cellular origin or to dark matter, we 167 
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taxonomically assigned a subset of ten thousand reads that were randomly sampled from each 168 

dataset (i.e. 5% of the total number of reads per dataset) using BLASTx. Despite the datasets all 169 

being derived from samples that were processed to enrich for viral-like particles, from 1% to 55% 170 

of the reads in both the original and published datasets were most likely of cellular origin (Fig. 3). 171 

On the one hand, for the original viromes, up to 22% and 53% of the reads were respectively 172 

assigned to bacteria and eukaryotes. From 47% and 53% of reads from the two plant viromes were 173 

assignable to plant genomic sequences, while 18% and 22% of the reads from two of the insect 174 

viromes (viromes 3 and 4 from the aphid A. pisum) were likely derived from Candidatus 175 

Hamiltonella defensa, the aphid's endosymbiotic bacteria (Fig. 3). On the other hand, for the 176 

published viromes, 3% to 39% and 0 to 1% of reads were assigned to bacterial and eukaryotic 177 

organisms respectively, in agreement with published results (Fig. 3, Supplemental Table 3). 178 

Specifically, lake datasets (viromes 11 to 14), contained similar proportions (about 25%) of 179 

bacterial and bacteriophage sequences, indicating the presence of bacteria, bacteriophage particles 180 

and prophage nucleic acids as already reported (Enault et al., 2016; Roux et al., 2013). Moreover, 181 

the human feces and soil viromes contained a higher proportion of reads assigned to bacteria (from 182 

15% to 39%) than those from other sources (Fig. 3).  183 

4. Discussion 184 

In this study, we propose a modification of the classical BLASTx-based workflow that 185 

improves the taxonomic assignment of sequences from metagenomic virome studies. Based on the 186 

statement that increasing the length of query sequences could improve the accuracy with which they 187 

could be taxonomic assigned using BLASTx, we introduced a recruitment step of remapping 188 

unassembled reads onto assembled contigs prior to BLASTx searches (a workflow that we called 189 

“assembly-mapping BLASTx” or AM-BLASTx for short) and tested this on viral metagenomic 190 
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datasets. These datasets were obtained after different technical procedures, both prior to sequencing 191 

(i.e. use of rolling-circle amplification or random PCR amplification) and during the sequencing 192 

process (i.e. MiSeq Illumina or 454 Pyrosequencing ; Table 1). We found that, when applied to each 193 

datasets, the AM-BLASTx workflow systematically and substantially increased the numbers of 194 

virus-derived sequences that could be taxonomically assigned relative to the numbers that were 195 

assignable using the classical BLASTx workflow. Analyses made on fifteen metagenomic datasets 196 

lead to an average five-fold increase in the number of assignable reads.  197 

Our analyses thus revealed that one major parameter to improve the performance of 198 

BLASTx-based approaches for taxonomically assigning viral reads is likely the lengths of the 199 

sequences that will be analyzed by BLASTx. Indeed, viral genomes are more variable than those 200 

cellular organisms because of high mutation rates, so longer reads and contigs decrease the impact 201 

of point mutations that decrease the degrees of similarity between query and reference sequences 202 

within the database that is being searched by BLAST or HMM-based approaches. The lengths of 203 

query sequences can be increased both by computational processing of the sequence data prior to 204 

performing blast searches (as is done in the AM-BLASTx workflow), and by technical procedures 205 

during virus-like particle enrichment. Specifically, it is desirable to lengthen the query sequences, 206 

either by using sequencing technologies that enable long reads (such as 454 that is no longer used or 207 

Pacific BioScience) or by increasing sequencing depth (such as with Illumina) so as to enable the 208 

assembly of longer contigs. In fact, with simulated metagenomic datasets, a positive correlation has 209 

been found between sequencing depth and the proportions of reads that could be taxonomically 210 

assigned (García-López et al., 2015). Interestingly, our analyses did not reveal differences in the 211 

degrees of taxonomic improvement between studies using 454 and Illumina sequencing 212 

technologies, suggesting that large sequencing depth can compensate shorter read lengths.  213 
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Our analyses also revealed that viral metagenomic dataset obtained for the purpose of this 214 

study from arthropods and plants (our so called “original viromes”) seemed to be dominated by 215 

small viruses (<10 kb), while published environmental viromes contained a high number of reads 216 

assigned to prophages and genomic bacterial DNA. The generality of such differential viral 217 

communities according to different environments is, however, questionable because only very few 218 

studies have reported insect and plant viromes (Junglen and Drosten, 2013) and we can thus not 219 

compare our results with those of others. Moreover, technical procedures during the preparation of 220 

the original and published viromes differed in that the latter were obtained by rolling-circle 221 

amplification, a technique known to induce amplification biases toward circular genomes, while the 222 

former viromes were obtained after random PCR, a technique that is not known to have this bias.  223 

Altogether, the AM-BLASTx workflow represents a simple and rapid way to improve the 224 

taxonomic assignment of viral sequences from metagenomic datasets independently of the origin of 225 

the samples. Our results indicate that the proportion of unassigned reads (i.e. the “dark matter”) in 226 

virome datasets can be significantly reduced by combining the following approaches: (i) the use of 227 

purification techniques that rigorously enrich samples for virus-like particles in order to minimize 228 

amounts of cellular genomic DNA, (ii) use of sequencing technologies that maximize the number of 229 

reads, and (iii) use of computational workflows that include steps of mapping of reads to de novo 230 

assembled contigs prior to BLAST searches.  231 
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Table 337 

Table 1. Recapitulative history of the original (our data) and already published metagenomic 338 

datasets that were used in this study.  339 

 340 

Origin of 

samples 

Technic of 

virus-like 

particles 

enrichment 

Technic of 

sequencing 

Cleaned 

reads median 

length 

Total read 

number 

Reference 

Insects 1  

0.45 µm 

filtration, 

DNA and 

RNA 

extraction, 

random PCR 

amplification 

 

 

 

MiSeq 

Illumina 

219 324 246  

 

 

 

Our data 

Insects 2 230 399 954 

Insects 3 228 428 089 

Insects 4 217 611 722 

Insects 5 225 203 015 

Insects 6 212 343 955 

Plants 1 195 224 890 

Plants 2 245 440 408 

Estuary  

0.2 µm 

filtration, 

DNA 

extraction, 

RCA 

amplification 

 

454 

pyrosequensing 

105 294 068 26 

Lake Bourget 471 593 084  

27 Lake Pavin 445 649 290 

Antarctic 

open soil 

 

MiSeq 

Illumina 

250 870 687  

 

28 Antarctic 

hypolith 

250 1 057 555 

Human feces 454 

pyrosequensing 

466 504 646 25 

Mosquitoes 104 336 760 24 

 341 
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Figures 342 

Fig. 1 Comparative analyses of two BLASTx-based methods of taxonomic assignment. A: Direct 343 

taxonomic assignment by: After the classical BLASTx-based approach; B: the de novo assembly, 344 

mapping and BLASTx approach (AM-BLASTx). 345 

Fig. 2 Comparison on the performance of BLASTx searches. BLASTx searches were performed on 346 

raw reads (blue) and after mapping on contigs (red).  347 

Fig. 3 Average proportions of reads in each virome according to their taxonomic assignment using 348 

BLASTx. Query read sequences were assigned to viral (purple), bacterial (red), eukaryotic (green) 349 

and unclassified (black) published sequences. Each analysis has been performed three times on a 350 

random sample of 10,000 reads from each dataset.   351 



FIGURE 1 Comparative analyses of two BLASTx-based methods of taxonomic assignment. A: Direct taxonomic 

assignment by: After the classical BLASTx-based approach; B: the de novo assembly, mapping and BLASTx approach (AM-

BLASTx). 
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FIGURE 2 Comparison on the performance of BLASTx searches. BLASTx searches were performed on raw reads (blue) 

and after mapping on contigs (red).   
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FIGURE 3 Average proportions of reads in each virome according to their taxonomic assignment using BLASTx. Query 

read sequences were assigned to viral (purple), bacterial (red), eukaryotic (green) and unclassified (black) published 

sequences. Each analysis has been performed three times on a random sample of 10,000 reads from each dataset.   
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Supplementary materials 352 

Supplemental Table 1: Comparison of the performance of BLASTx searches against the viral 353 

published sequence database with or without a prior read to contig mapping step. BLASTx searches 354 

were performed on raw reads and after mapping of reads to contigs.   355 

Supplemental Table 2: Five most abundant viral families found across the 15 viromes used in this 356 

study 357 

Supplemental Table 3: Global diversity in samples (BLASTx searches on 10.000 reads) 358 



TABLE S1 Comparison of the performance of BLASTx searches against the viral published sequence database with or without a prior read to contig mapping step. BLASTx searches were performed on raw reads and after mapping of reads to contigs.  

Insects 1 Insects 2 Insects 3 Insects 4 Insects 5 Insects 6 Plants 1 Plants 2 Mosquitoes Human feces Estuary Lake Bourget Lake Pavin Open soil Hypolith

Number of viral reads classical BLASTx analyses 59028 16268 13983 2525 10608 117304 65600 45443 7169 5155 1599 15124 11187 1733 304

Percentage of viral reads classical BLASTx analyses 29,51% 8,13% 6,99% 1,26% 5,30% 58,65% 32,80% 22,72% 3,58% 2,58% 0,80% 7,56% 5,59% 0,87% 0,15%

Number of viral reads AM-BLASTx 145327 91962 89002 178828 84934 154178 112934 136233 18661 19426 2746 68340 37271 29688 4751

Percentage of viral reads AM-BLASTx 72,66% 45,98% 44,50% 89,41% 42,47% 77,09% 56,47% 68,12% 9,33% 9,71% 1,37% 34,17% 18,64% 14,84% 2,38%



TABLE S2 Five most abundant viral families found across the 15 viromes used in this study

Viromes Viral Taxonomy Genome length (kb) Abundance rank Host range

Iflaviridae <10 1 Eukaryotic macroorganisms

Partitiviridae <10 2 Eukaryotic macroorganisms

Alphaflexiviridae <10 3 Eukaryotic macroorganisms

Luteoviridae <10 4 Eukaryotic macroorganisms

Flexviridae <10 5 Eukaryotic macroorganisms

Iflaviridae <10 1 Eukaryotic macroorganisms

Partitiviridae <10 2 Eukaryotic macroorganisms

Luteoviridae <10 3 Eukaryotic macroorganisms

Alphaflexiviridae <10 4 Eukaryotic macroorganisms

Tymoviridae <10 5 Eukaryotic macroorganisms

Parvoviridae <10 1 Eukaryotic macroorganisms

Carmotetraviridae <10 2 Eukaryotic macroorganisms

Podoviridae 40 3 Bacteria

Iflaviridae <10 4 Eukaryotic macroorganisms

Mesoniviridae 20 5 Eukaryotic macroorganisms

Podoviridae 40 1 Bacteria

Parvoviridae <10 2 Eukaryotic macroorganisms

Iflaviridae <10 3 Eukaryotic macroorganisms

Tymoviridae <10 4 Eukaryotic macroorganisms

Luteoviridae <10 5 Eukaryotic macroorganisms

Parvoviridae <10 1 Eukaryotic macroorganisms

Iflaviridae <10 2 Eukaryotic macroorganisms

Tymoviridae <10 3 Eukaryotic macroorganisms

Dicistroviridae <10 4 Eukaryotic macroorganisms

Partitiviridae <10 5 Eukaryotic macroorganisms

Dicistroviridae <10 1 Eukaryotic macroorganisms

Nanoviridae <10 2 Eukaryotic macroorganisms

Amalgaviridae <10 1 Eukaryotic macroorganisms

Partitiviridae <10 2 Eukaryotic macroorganisms

Luteoviridae <10 3 Eukaryotic macroorganisms

Bromoviridae <10 4 Eukaryotic macroorganisms

Iflaviridae <10 5 Eukaryotic macroorganisms

Amalgaviridae <10 1 Eukaryotic macroorganisms

Partitiviridae <10 2 Eukaryotic macroorganisms

Tymoviridae <10 3 Eukaryotic macroorganisms

Parvoviridae <10 1 Eukaryotic macroorganisms

Anelloviridae <10 2 Eukaryotic macroorganisms

Nudiviridae 90-230 3 Eukaryotic macroorganisms

Microviridae <10 4 Bacteria

Circoviridae <10 5 Eukaryotic macroorganisms

Microviridae <10 1 Bacteria

Siphoviridae 50 2 Bacteria

Podoviridae 40 3 Bacteria

Myoviridae 30-250 4 Bacteria

Phycodnaviridae 100-550 5 Eukaryotic microorganisms

Phycodnaviridae 100-550 1 Eukaryotic microorganisms

Myoviridae 30-250 2 Bacteria

Circoviridae <10 3 Eukaryotic macroorganisms

Podoviridae 40 4 Bacteria

Siphoviridae 50 5 Bacteria

Microviridae <10 1 Bacteria

Phycodnaviridae 100-550 2 Eukaryotic microorganisms

Myoviridae 30-250 3 Bacteria

Siphoviridae 50 4 Bacteria

Podoviridae 40 5 Bacteria

Circoviridae <10 1 Eukaryotic macroorganisms

Phycodnaviridae 100-550 2 Eukaryotic microorganisms

Siphoviridae 50 3 Bacteria

Myoviridae 30-250 4 Bacteria

Microviridae <10 5 Bacteria

Phycodnaviridae 100-550 1 Eukaryotic microorganisms

Podoviridae 40 2 Bacteria

Myoviridae 30-250 3 Bacteria

Siphoviridae 50 4 Bacteria

Mimiviridae 1200 5 Eukaryotic microorganisms

Siphoviridae 50 1 Bacteria

Myoviridae 30-250 2 Bacteria

Phycodnaviridae 100-550 3 Eukaryotic microorganisms

Podoviridae 40 4 Bacteria

Mimiviridae 1200 5 Eukaryotic microorganisms

Hypolith

Mosquitoes

Human feces

Estuary

Lake Bourget

Lake Pavin

Open Soil

Insects 6

Plants 1

Plants 2

Insects 1

Insects 2

Insects 3

Insects 4

Insects 5



TABLE S3 Global diversity in samples (BLASTx searches on 10.000 reads)

Taxonomy Insects 1 Insects 2 Insects 3 Insects 4 Insects 5 Insects 6 Plants 1 Plants 2 Mosquitoes Human feces Estuary Lake Bourget Lake Pavin Open soil Hypolith

Archaea 0 0 0 0 0 0 0 1 0 11 29 50 36 28 6

Bacteria 44 23 1848 2244 389 51 69 209 3304 3935 294 2507 2920 2356 1528

Eukaryota 210 41 545 47 427 378 4705 5254 81 21 8 32 31 87 27

Viruses 2000 714 5360 6515 1389 5695 3495 2143 749 1543 1241 2526 1278 231 232

Unclassified Unclassified 7746 9222 2247 1194 7795 3877 1732 2394 5866 4491 8427 4885 5736 7298 8206

Archaea 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0%

Bacteria 0% 0% 18% 22% 4% 1% 1% 2% 33% 39% 3% 25% 29% 24% 15%

Eukaryota 2% 0% 5% 0% 4% 4% 47% 53% 1% 0% 0% 0% 0% 1% 0%

Viruses 20% 7% 54% 65% 14% 57% 35% 21% 7% 15% 12% 25% 13% 2% 2%

Unclassified Unclassified 77% 92% 22% 12% 78% 39% 17% 24% 59% 45% 84% 49% 57% 73% 82%

Number of reads
Classified

Percentage of reads
Classified
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