open science

Isolation and characterization of microsatellites in the endoparasitic ichneumonid wasp carrying a polydnavirus Hyposoter didymator

Philippe Audiot, Véronique Jouan, Marie Frayssinet, Anne-Nathalie Volkoff, Denis Bourguet

To cite this version:

Philippe Audiot, Véronique Jouan, Marie Frayssinet, Anne-Nathalie Volkoff, Denis Bourguet. Isolation and characterization of microsatellites in the endoparasitic ichneumonid wasp carrying a polydnavirus Hyposoter didymator. Conservation Genetics Resources, 2014, 6 (1), pp.21-23. 10.1007/s12686-013-0036-0 . hal-01837256

HAL Id: hal-01837256
https://hal.science/hal-01837256
Submitted on 12 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Isolation and characterization of microsatellites in the endoparasitic ichneumonid wasp carrying a polydnavirus Hyposoter didymator

Philippe Audiot - Véronique Jouan -
Marie Frayssinet • Anne-Nathalie Volkoff •
Denis Bourguet

Abstract

The wasp Hyposoter didymator (Hymenoptera, Ichneumonidae) parasitizes several agricultural pest moths and could therefore be used in biological control. The 454 FLX Titanium pyrosequencing technology was used to define two distinct sets of multiplex combining 14 polymorphic microsatellite loci: 10 (referred to as HD) located within the genome of H. didymator and 4 (referred to as HdIV) located within the Ichnovirus genome which is integrated into the wasp genome. Genotyping of two populations collected in France on Helicoverpa armigera revealed that most of the loci are independent and at Hardy-Weinberg equilibrium.

Keywords Hyposoter didymator • Helicoverpa armigera \cdot Pyrosequencing • Parasitoid

Hyposoter didymator is a larval endoparasitoid wasp of many Lepidoptera larvae that carries a symbiotic polydnavirus (named H. didymator Ichnovirus, HdIV) integrated into its genome, insuring, like many other wasps, its vertical transmission. The most common host of H. didymator is the moth Helicoverpa armigera (Lepidoptera: Noctuidae), but this wasp can also parasitize other noctuid pest species. H. didymator may partly regulate their

[^0]populations and therefore can be used in biological control of those pests.

Microsatellite markers of this parasitoid were isolated using the new generation 454 FLX titanium pyrosequencing technology (Malausa et al. 2011). Enrichment of microsatellite loci was carried out at Genoscreen (Lille, France) using the procedure described by Clamens et al. and Dumas et al. (in Arias et al. 2012). The selection of 454 FLX Titanium sequences for primer design was done using QDD software (Meglécz et al. 2010).

A total of 1,290 microsatellites loci were identified, amongst which 298 allowed designs of PCR amplification primers. Based on the expected sizes of amplification products, first attempts for polymorphism, multiplexing and quality of the chromatograms (details not shown), we chose 14 polymorphic microsatellite loci: 10 HD (referred to as HD loci) were located within the genome of H. didymator and 4 (referred to as HdIV) were located within the HdIV genome (Table 1). Those 14 loci were then amplified in two multiplex (M1 and M2) PCRs. PCRs were conducted in $10 \mu \mathrm{~L}$ reaction volume containing the Qiagen Multiplex PCR Master Mix ($1 \times$)-with a final concentration of 3 mM of MgCl_{2} and an annealing at $58{ }^{\circ} \mathrm{C}$ for 1.5 min .

To assess the polymorphism at these 14 loci, we genotyped 10 males and 19 females from Notre-Dame-deLondres (NDL, $43^{\circ} 49^{\prime} \mathrm{N}, 3^{\circ} 46^{\prime} \mathrm{E}$, France) and 28 males and 42 females from Mauguio ($43^{\circ} 37^{\prime} \mathrm{N}, 4^{\circ} 00^{\prime} \mathrm{E}$, France). Each individual originated from an H. armigera larva collected on alfalfa (Medicago sativa L.). DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen). All microsatellite loci displayed at least 4 alleles per locus (Table 1).

As expected, at all loci, all males $(\mathrm{n}=38)$ displayed only one allele, whereas all females ($n=61$) displayed two different alleles-i.e., were heterozygotes-at least at
Table 1 Characteristics of loci isolated in Hyposoter didymator, with primer sequences, size of cloned allele, number of alleles (No), size range of PCR products, Fis

Locus	Primer sequence $\left(5^{\prime}-3^{\prime}\right)$ Include fluro-label dye	Repeat motif	$\begin{aligned} & \text { SetNo- } \\ & \text { PCR } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (bp) } \end{aligned}$	Total No	NDL (France)				Mauguio (France)				GenBank accession no.
						No	Size range	Fis	Freq NA	No	Size range	Fis	Freq NA	
HD42	F: FAM-CAGCCTTTCTCTATTTTTATCTCCA R: CTTGCGCAAATGCAGGAG	$(\mathrm{CT})_{9}$	M2	092	7	5	086-094	0.066	0.000	7	086-100	0.147	0.000	KF226121
HD43	F: VIC-CGAGAGTCAACATTCGCCTT R: GATGATCGTTGTGATCCTCG	$(\mathrm{ATC})_{9}$	M2	110	4	3	110-116	0.055	0.016	4	105-116	-0.100	0.000	KF226122
HD47	F: PET-AAATGCAACTAACTGGGTGT R: ATGACGTTAACAACTACGAA	$(\mathrm{CGT})_{9}$	M2	099	5	4	093-105	0.128	0.021	5	093-105	0.222	0.014	KF226123
HD59	F: NED-AGAAACAACCCCTGAAATGG R: TCCTATCTTGACGTGGAGGG	$(\mathrm{ACA})_{5}$	M1	170	4	3	164-170	0.190	0.000	4	164-173	-0.138	0.000	KF226124
HD65	F: FAM-GATCGTCGTCCTTGTCGTTT R: CAGACCGAGACTGGAAGGAG	$(\mathrm{TCG})_{6}$	M1	282	4	4	276-285	-0.323	0.000	4	276-285	0.072	0.000	KF226125
HD70	F: NED-GCAACAGCAACGGCAATA R: GTGTACGAATCGCTGGGACT	$(\mathrm{AGC}){ }_{6}$	M2	159	4	3	159-165	-0.362	0.000	4	156-165	-0.010	0.000	KF226126
HD77	F: FAM-CTCTTGTCAAACGCCACAAA R: GGTAATGGTCTCGTTGCGAT	$(\mathrm{CAA})_{8}$	M1	230	5	4	227-236	-0.161	0.000	5	277-239	-0.049	0.000	KF226127
HD80	F: NED-TACTCCCACTTTACCACCGC R: CATCAACTCGCTGTGCGATA	(CA) 8	M1	188	10	7	186-202	0.470	0.127	9	184-200	-0.020	0.000	KF226128
HD81	F: PET-GTGGTCAGCTACGGAAGAGC R: CAGCGTGCATCTTCGTGTTA	(AG) ${ }_{9}$	M2	192	11	5	163-195	0.127	0.026	11	163-198	0.061	0.028	KF226129
HD90	F: VIC-CATTGTTGTTTTGCTGGGG R: GGCTTTGTCTGGTTATGGGA	$(\mathrm{GTT})_{9}$	M1	154	7	4	148-157	0.023	0.000	7	145-163	0.004	0.000	KF22630
HdIV6	F: FAM-GATTGGGGTCATTGTATGGT R: ATGAGTTGATAGCTGCCACA	(TA) ${ }_{8}$	M2	386	4	3	382-386	-0.113	0.000	4	382-388	-0.051	0.000	KF22631
HdIV7	F: VIC-CTGACGCCACTGTTACTTTG R: AAACCCAACTGATTGTTCGT	$(\mathrm{GT})_{9} \mathrm{TT}(\mathrm{GT})_{3}$	M2	484	5	3	482-486	0.161	0.000	5	476-490	-0.052	0.000	KF22632
HdIV8	F: FAM-ACGTGATGGATGTCAGTACG R: AGTTACCCTATGACTCTGGCA	$(\mathrm{GT})_{5} \mathrm{AT}(\mathrm{GT})_{8}$	M1	333	11	8	329-347	0.080	0.000	10	329-353	0.037	0.001	KF22633
HdIV9	F: PET-GGGACCCAAATGATCAACAG R: GCCTCAACTGCTGCCAATTA	$(\mathrm{GT})_{9}$	M1	126	5	3	122-126	-0.045	0.000	5	122-130	-0.068	0.000	KF22634

[^1]six loci, which is consistent with H. didymator displaying the dominant mode of sex determination (females being diploid, males being haploid) in Hymenoptera (Heimpel and de Boer 2008).

Tests performed with GENEPOP 4.0 (Rousset 2008) revealed that the genotypic distribution did not significantly differ from those expected at Hardy-Weinberg equilibrium (HWE) except at NDL for one locus (Table 1). Accordingly, null allele frequencies were $<3 \%$ at all loci but one and in each population (Table 1). Across the two populations, three pairs of loci showed significant linkage disequilibrium ($P<0.001$ after multiple testing correction): HD43 and HD77, HD77 and HD90 and HD47 and HdIV8.

Acknowledgments The Titanium pyrosequencing was funded by the grant AIP BioRessources EcoMicro from Inra. Genotyping was part of a project funded by the "Département Santé des Plantes et Environnement" from Inra. Data were (partly) produced through
molecular genetic analysis technical facilities of the labex "Centre Méditerranéen de l'Environnement et de la Biodiversité".

References

Arias MS et al (2012) Permanent genetic resources added to molecular ecology resources database 1 December 2011-31 January 2012. Mol Ecol Resour 12:570-572
Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209-230
Malausa T, Gilles A, Meglécz E et al (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638-644
Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403-404
Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103-106

[^0]: P. Audiot (\triangle) • D. Bourguet

 CBGP, UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, CS 30016, 34988
 Montferrier-sur-Lez Cedex, France
 e-mail: audiot@supagro.inra.fr
 V. Jouan • M. Frayssinet • A.-N. Volkoff DGIMI, INRA-Université Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France

[^1]: Freq $N A$ frequency of null alleles

