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Spatial CART Classification Trees

Avner Bar-Hen∗, Servane Gey†, Jean-Michel Poggi‡

Abstract

Based on links between partitions induced by CART classification trees and
marked point processes, we propose a variant of spatial CART method, SpatCART,
focusing on the two populations case. While usual CART tree considers marginal
distribution of the response variable at each node, we propose to take into account
the spatial location of the observations. We introduce a dissimilarity index based on
Ripley’s intertype K-function quantifying the interaction between two populations.
This index used for the growing step of the CART strategy, leads to a heterogene-
ity function consistent with the CART original algorithm. Then different pruning
strategies, including the classical pruning step using the misclassification rate, are
performed. The proposed procedure is implemented, illustrated on classical exam-
ples and compared to natural competitors. SpatCART is finally applied to a tropical
forest example.

1 Introduction

CART (Classification And Regression Trees) is a statistical method, introduced by
Breiman et al. [7], and designing tree predictors for both regression and classifica-
tion. The general principle is to partition recursively the input space using binary
splits and then determine an optimal partition for prediction. Let us restrict our
attention on the classification case with two populations. Each observation is char-
acterized by some input variables gathered in vector X and a binary label Y which
is the output or response variable.

The classical representation of the model relating Y to X is a tree representing
the underlying process of construction of the model as a recursive partitioning of the
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space of explanatory variables. In the special case where the explanatory variables
are spatial coordinates, we get a spatial decision tree. Focusing on the observations
of a cell of a given partition which is a piecewise constant function, it is possible
to consider it as points of the space variables and class assignment as the mark of
those points, leading to a natural link with the representation of binary marked
point processes.

Even if CART is often limited to the one most commonly used and implemented,
presented in the book of Breiman et al. [7], there exist several ways to build CART
type decision trees, by changing the family of admissible splits, the cost function
or the stopping rule. A classical assumption is to consider a sample of i.i.d. obser-
vations, our variant take into account some spatial dependence through the quan-
tification of the interaction between the two considered populations, i.e. the link
between the labels of the points.

In Section 2, we recall some basics about CART decision trees in the classification
case and some variants and extensions. In Section 3, we review some conventional
ways to quantify the interaction between two point processes and define the hetero-
geneity function associated with the Ripley’s intertype K-function. Then in Section
4 we propose a variant of spatial CART dealing with point processes and describe
how the variants are implemented and illustrates its use on classical examples. Sec-
tion 5 finally addresses an application to the spatial distribution of two species of
tropical forest.

2 CART method

Let us briefly recall, following Bel et al. [4], some general background on classical
settings about Classification And Regression Trees (CART). The data are considered
as an independent sample of the random variables (X1, . . . , Xp, Y ), where the Xks
are the explanatory variables (supposed to be numerical in this article) and Y is the
categorical variable to be explained. CART is a rule-based method that generates
a binary tree through recursive partitioning that splits a subset (called a node) of
the data set into two subsets (called sub-nodes) according to the minimization of a
heterogeneity criterion computed on the resulting sub-nodes. Each split involves a
single variable. Some variables may be used several times while others may not be
used at all.

2.1 CART classification trees

Let us consider a decision tree T . When Y is a categorical variable a class label is
assigned to each terminal node (or leaf) of T . Hence T can be viewed as a mapping
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to assign a value Ŷi = T (X1
i , . . . , X

p
i ) to each observation. The growing step leading

to a deep maximal tree is obtained by recursive partitioning of the training sample
by selecting the best split at each node according to some heterogeneity index,
such that it is equal to 0 when there is only one class represented in the node to
be split, and is maximum when all classes are equally frequent. The two most
popular heterogeneity criteria are the Shannon entropy and the Gini index. Among
all binary partitions of each set of values of the explanatory variables at a node t,
the principle of CART is to split t into two sub-nodes tL and tR according to a
threshold on one of the variables (or a subset of the labels for categorical variables),
such that the reduction of heterogeneity between a node and the two sub-nodes is
maximized. The growing procedure is stopped when there is no more admissible
splitting. Each leaf is assigned to the most frequent class of its observations. Of
course, such a maximal tree (denoted by Tmax) generally overfits the training data
and the associated prediction error R(Tmax), with

R(T ) = P(T (X1, . . . , Xp) 6= Y ), (1)

is typically large. Since the goal is to build from the available data a tree T whose
prediction error is as small as possible, in a second stage the tree Tmax is pruned to
produce a subtree T ′ whose expected performance is close to the minimum of R(T ′)
over all binary subtrees T ′ of Tmax. Since the joint distribution P of (X1, . . . , Xp, Y )
is unknown, the pruning is based on the penalized empirical risk R̂pen(T ) to balance
optimistic estimates of empirical risk by adding a complexity term that penalizes
larger subtrees. More precisely the empirical risk is penalized by a complexity term,
which is linear in the number of leaves of the tree:

R̂pen(T ) =
1

n

n∑
i=1

1lT (X1
i ,...,X

p
i )6=Yi

+ α|T | (2)

where 1l is the indicator function, n the total number of observations, α a positive
penalty constant, |T | denotes the number of leaves of the tree T and Yi is the ith
random realization of Y .

2.2 Variants of CART trees

Let us start this section by a direct variant of CART designed to predict probabili-
ties.

2.2.1 CART class probability trees

In the case of class probability trees, one aims at predicting probabilities p(j|x) =
P (Y = mj | X = x) rather than labels Y ∈ {m1; . . . ;mJ}. To construct such trees,
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the growing step is the same as the one used for classification trees, using either the
Shannon entropy or the Gini index. The only difference relies on the pruning step,
derived from the mean square error risk constructed as follows: let (Z1, . . . , ZJ) be
defined by Zj = 1lY=mj , and let p(j|x) = P (Y = mj | X = x), j = 1; . . . ; J . Then
E(Zj | X = x) = p(j|x) and the mean square error of the class probability tree
T = (T1, . . . , TJ) is given by

RG(T ) = E

 J∑
j=1

(
Zj − Tj(X1, . . . , Xp)

)2 . (3)

RG is minimum for the Bayes estimator (P (Y = mj | X = x))j=1;...;J , and it is
proved in [7], section 4.6, that the empirical version of the risk RG can be writ-
ten using Gini index, leading to the following penalized criterion:

R̂penG(T ) =
1

n

∑
t∈T̃

nt

1−
J∑

j=1

p̂(j|t)2
+ α|T |, (4)

where T̃ denotes the set of the leaves of T , nt the number of observations falling in
note t, and p̂(j|t) the proportion of observations with mark j falling in node t.

2.2.2 Other variants

As mentioned in the introduction, variants of CART trees have been proposed for
various purposes.
Let us first mention an extension to spatial data in [4] in the regression context, for
environmental data. It considers the observations as a sample of regionalized vari-
ables, which can be modeled as random fields with spatial dependence. It proposes
various reweighing schemes to equalize the contribution of each surface unit for the
choices of splits. It is not adapted to the classification case.
To determine optimal splits, chosen among a family of deterministic admissible
splits, eliminating the dependency of the family of models with respect to data,
which is one of the difficulties to derive theoretical results. In [12] for applications
in image processing, the considered admissible splits are dyadic. Indeed, the initial
dyadic splitting of a rectangle map is deterministic and complete until the resolution
of the pixel, it is the analogue of the maximal tree and pruning is performed with
the algorithm for the choice of the best basis for wavelet packets. Similar ideas have
been extended to the general settings by introducing the so-called dyadic CART,
see [5].
There are also extensions, in the regression case, which build smoother predictors
as usual trees that are piecewise constant, for example, the algorithm MARS in-
troduced by [14]. We should also mention one of the most used extensions: CART
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methods for survival data, for example [18] and [21], as well as the most recent re-
view article [6]). The recent book [27] presenting more widely the methods based on
recursive partitioning and also variants of CART for longitudinal data or functional
data. In this line, note the use of CART in chemometrics in [25].

3 Quantifying the link between two point pat-

terns

3.1 Basics on point processes

A point process is a random variable that gives the localization of events in a set
W ⊂ Rd. Another way to define a given point process is to consider, for each
B ⊂ W , the number of events φ(B) occurring in B, where φ is the distribution of
the occurrences of the point process.
Since characterization of a spatial repartition is strongly dependent on the scale of
observation, the repartition has to be characterized for each scale.

There are classical assumptions about point processes. At first we consider that the
probability to observe two points at the same place is null. Up to misrecording, this
hypothesis is not very restrictive. Two extra common hypotheses are stationarity
and isotropy. Intuitively, it means that the distribution of the occurrences of the
point process φ is not affected by translation or rotation around the origin. More-
over, this means that the characteristics of the point process are the same for the
whole area under study.
A marked point process is a point process such that a random mark is associated
with each localization. In this article, we only consider bivariate point processes, i.e.
the mark is a qualitative random variable with two possible issues. Equivalently,
the bivariate point process can be viewed as the realization of two point processes
(one par level of the mark).
There are several ways to consider the relationships between two clouds of points,
mainly related to three aspects: independence, association and random labelling
(see [3] for example). It ends up that relationships between two clouds of points can
be described in various ways and therefore many indices can be defined. Each index
will give a specific information about these relationships and will greatly depends
on the point process that leads to the observed repartition. For bivariate point
processes, many tools based, using first-order characteristics of the point processes,
may be used to quantify departure from independence (see [9] for example).
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3.2 Intertype K-function

3.2.1 Definition

Under the assumptions of stationarity and isotropy, the intertype Kij-function is a
bivariate extension of Ripley’s K-function, proposed in [20], and defined as

Kij(r) = λ−1j E(number of points of type j within distance r of a randomly chosen point of type i)
(5)

where the intensity parameters λi and λj correspond to the expected numbers of
type i and type j points per unit area, respectively.

While Ripley’s K-function characterizes the spatial structure of a univariate pattern
at various scales, the intertype Kij-function characterizes the spatial structure of a
bivariate pattern, and more precisely the spatial relationship between two types of
points located in the same study area. The intertype Kij-function is defined so that
λjKij(r) is the expected number of type j points in a circle of radius r centered on
an arbitrary type i point of the pattern. Symmetrically, we can define an intertype
Kji-function so that λiKji(r) is the expected number of type i points in a circle of
radius r centered on an arbitrary type j point.
If the bivariate spatial process is stationary and homogeneous then Kij(r) = Kji(r).
Under independence, the intertype K function is Kij(r) = πr2, regardless of the
individual univariate spatial patterns of the two types of events. Note that it is easier
to work with the corresponding Lij(r) =

√
Kij(r)/π function, because the variance

of Lij(r) is approximately constant. Under independence, Lij(r) = r. Positive
values of Lij(r)−r indicate attraction between the two processes at distance r while
negative values indicate repulsion. Because of its definition, Kij(r) characterizes
the spatial interaction between points of type i and points of type j. In order to
interpret the observed values of Kij(r), we need to compare them to the theoretical
values obtained for simple cases of bivariate patterns, and especially to πr2 that
corresponds to a null hypothesis of absence of interaction between the two types
of points. However, depending on the context of the study, this appropriate null
hypothesis can correspond to at least two different statistical hypotheses (see [10]):
independence or random labelling. Hypothesis of random labelling means that the
probability that one event occurs is the same for all points and does not depend on
neighbors.

3.2.2 Estimation

The estimator of the intertype Kij-function can be defined by:

K̂ij(r) = (λ̂iλ̂jA)−1
∑
k,l

1ldik,jl
<r (6)
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where dik,jl is the distance between the kth location of type i point and the lth

location of type j point, A is the area of the region of interest and where λ̂i and λ̂j
are the estimated intensities.
This estimator characterizes the relationship between the marginal patterns at all
scales. K̂ij(r) is a function of the distance between points. It can be integrated to
provide single valued indices (see [11] for example).
As the theoretical distributions of the estimators are unknown, confidence intervals
are commonly estimated through Monte Carlo simulations of a specified null hy-
pothesis. To test independence, a classical method is to keep the patterns of both
point processes unchanged, but to randomize their relative position at each Monte
Carlo simulation while to test random labelling a classical approach is to simulate
realizations of a point process with the same spatial structure as the overall observed
pattern (i.e. without type distinction), and a random attribution of marks.
Various edge corrections have been suggested; one common example is the extension
of Ripley’s estimator, leading to:

K̂ij(r) = (λ̂iλ̂jA)−1
∑
k,l

w(ik, jl)1ldik,jl
<r

The coefficient w(ik, jl) is the inverse of the proportion of the perimeter of the circle
centered at the kth location of type i point with radius dik,jl that lies inside the
study area. Basically, this corresponds to an estimate of the number of points at the
same distance that would be outside the study area. Ripley ([23]) shows that this
corrected estimator is unbiased. Unfortunately this correction leads to two prob-
lems. At first, when edge corrections are used, then K̂ij(r) and K̂ji(r) are positively
correlated and no more equal. Moreover, our aim is to focus on points within the
study area and it is out of sense to have an estimate of points outside the window.
In the sequel we use a Ripley’s intertype function without edge correction.

4 Spatial CART

4.1 Impurity loss based on Kij

The key idea is to take into account in the splitting strategy, the spatial dependency
of the data. It is done by modifying the original impurity loss, which is usually the
entropy index. We introduce a dissimilarity index based on Ripley’s intertype K-
function quantifying the interaction between two populations.
Let focus on the impurity loss associated with K̂ij . For a node t and a split s
splitting t into two child nodes tL and tR, we define
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K̂t
ij(r) =

AtL

At

λ̂tLi λ̂
tL
j

λ̂tiλ̂
t
j

K̂tL
ij (r) +

AtR

At

λ̂tRi λ̂
tR
j

λ̂tiλ̂
t
j

K̂tR
ij (r)

+
1

λ̂tiλ̂
t
jA

t

∑
ik∈tR

∑
jl∈tL

1ldik,jl
<r +

∑
ik∈tL

∑
jl∈tR

1ldik,jl
<r


where one has:

At the area of node t

λ̂t∗, ∗ = i, j, the estimation of the density of mark ∗ in node t

dikjl the euclidean distance between i-marked individual ik and

j-marked individual jl

K̂t
ij the estimation of the Ripley’s intertype K function restricted to

node t

This leads to the natural definition of ∆Iij(s, t, r) as the variation of heterogeneity
coming from the split of node t using s, at radius r:

∆Iij(s, t, r) := K̂t
ij(r)− αs

λ̂tLi λ̂
tL
j

λ̂tiλ̂
t
j

K̂tL
ij (r)− (1− αs)

λ̂tRi λ̂
tR
j

λ̂tiλ̂
t
j

K̂tR
ij (r) (7)

where αs = AtL

At . The area factor αs is natural when dealing with spatial data since
it leads to reweight properly the impurity of the two nodes tR and tL.

The idea of intertype Kij function is to characterize interaction between two point
processes, i.e. second order characteristic of the bivariate point process. Hypothesis
of stationarity is quite strong and can be relaxed using local estimation of the in-
tensity [2] but this lead to instability of the estimator of the intertype Kij function.
To robustify the algorithm we assume the hypothesis of stationarity.

This choice of impurity loss is natural since equivalently:

∆Iij(s, t, r) =
1

λ̂tiλ̂
t
jA

t

∑
ik∈tR

∑
jl∈tL

1ldik,jl
<r +

∑
ik∈tL

∑
jl∈tR

1ldik,jl
<r

 (8)

Note that ∆Iij(s, t, r) is positive, which is necessary to define it as impurity loss.
In addition, ∆Iij(s, t, r) is null if and only if the children nodes tL and tR are pure
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at distance r along split s, that is

∀ik ∈ tL, jl ∈ tR and ∀ik ∈ tR, jl ∈ tL dik,jl > r,

highlighting splits that do not discriminate labels at all.

Hence maximizing ∆Iij(s, t, r) leads to increasing spatial purity at fixed scale r.
In addition to the positivity of s 7→ ∆Iij(s, t, r), which is mandatory, a desirable
property is the strict concavity, which would ensure that the best split is unique,
and then avoids ties. This is an ingredient of the original CART algorithm but
this is not the case here as in most extensions of CART. It should be noted that
nevertheless, the growing part of the algorithm still work, that is splitting always
purifies nodes even if from an algorithmic point of view, the choice of the split could
be arbitrary, without any statistical drawback.

4.2 Description of the algorithm

While the usual penalized misclassification error rate (equation 2) used in CART
classification trees, is natural to predict marks, it is no more convenient in the
context of intensity estimation. Our focus is either to classify conveniently the
point process in terms of its marks, or to estimate the marks’ intensity. In the
latter case, to be able to choose a convenient definition for the risk, we consider
the following property of the intensity of the marks: in the case where the marked
spatial point process (X,M) is stationary, then the intensity of points with mark
j ∈ {1; 2} inside surface A can be written as

Λ(A, j) = P (X ∈ A,M = j)

= P (M = j | X ∈ A)P (X ∈ A)

= P (M = j | X ∈ A)λA

where λ > 0 is a constant depending only on the marginal distribution of X, and A is
the area of A. Then estimating Λ(A, j) is equivalent to estimate P (M = j | X ∈ A),
since the constant λ can be estimated directly from the point process. Thus the
penalized criterion (4) used in CART class probability trees is natural to estimate
the intensities of the marks: each intensity will then be locally estimated on a tes-
sellation of the plane.

We propose an algorithm using impurity loss ∆Iij defined by (7) to develop the
maximal tree Tmax. The estimator K̂ij of the intertype K-function Kij is computed
at each node t, the value of r is fixed as the one for which the estimated intertype
K-function is the farthest from the one of random labelling.

9



A maximal tree Tmax is computed via recursive partitioning, and then pruned with
the penalized criterion based on misclassification rate defined in (2), or based on
Gini index defined in (4). This produces a decreasing sequence of K subtrees pruned
each one from another, denoted by T1 � . . . � TK = {t1}, and associated with an
increasing sequence of K complexities, denoted by 0 = α1 < . . . < αK .

Rephrasing the algorithm in spatial terms, we could say that starting from the
whole original region, for which we compute r0 which can be considered as the char-
acteristic scale at this resolution. Then before splitting, we consider for r = r0 the
quantity ∆Iij(s, t, r) and we seek to the best split. After splitting we seek to the best
r ≤ r0 maximizing ∆Iij(ŝ, t, r). Then after splitting, the two child are considered in
parallel in the same way, recomputing r0,L and r0,R. It turns out that ∆Iij(s, t, r)
is decreasing along any branch of the tree. So the reordered sequence of ri can be
used to define a sequence of nested subtrees. Let us remark that, in the algorithm,
the value of rt maximizing the impurity criterion for the best split is set to 0 if t is
a leaf, what corresponds to the smallest possible value of r that is the best resolution.

The final step is to choose a convenient tree among the sequence T1 � . . . � TK =
{t1}. This choice can be made via cross-validation Nevertheless, to avoid random-
ness due to the choice of subsamples, we use a heuristic method proposed in [15]
and based on the behavior of the number of leaves with respect to the complexity.
The general idea is that, if a tree is a good predictor, then high energy is necessary
to prune it. Hence, the penalty to be chosen in the penalized criterion shall increase
a lot before the tree is pruned. An artificial example of such behavior is given in
Figure 1. We can see a plateau in the right hand side of the graph, corresponding
to the focused complexity. Hence, we select the tree associated with the plateau,
here on the figure the tree having 3 leaves.

The algorithm used to obtain the final tree is detailed in Table 1. Let us emphasize
that the sequences of pruned subtrees and complexities can also be kept to allow
the user to choose another tree if needed (especially if the best subtree is the root).

5 CART and SpatCART in action: illustra-

tion by simulations

We use the following R packages to implement the SpatCART algorithm and to
display the results:

– spatstat to deal with point processes, and in particular to compute ∆Iij in
the construction of the maximal tree,
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Figure 1: Typical example of the behavior of number of leaves with respect to complexity.

– tree to deal with tree structures.

Two methods are to be compared: Spatial CART (SpatCART, see Table 1), and
CART with Gini splitting criterion. Class probability trees and Classification trees
are constructed using either SpatCART or CART.

We expect the following results:

– Since the pruning strategy is the same for the two methods, based either on
the minimization of penalized misclassification rate or on the minimization of
penalized Gini index rate, the major differences between our proposal (Spatial
CART) and the existing schemes must be concentrated on the growing step.
In addition to the final trees, we also have to look at the comparison of the
two maximal trees.

– Since the new splitting criterion reduces more or less to the classical one in the
case of spatial homogeneity, we have to consider some artificial homogeneous
examples to illustrate this and, what is more crucial, to define some artificial
inhomogeneous examples to capture the interest of our proposition. This sec-
ond point must be considered because the spatial nature of the data must be
taken into account, and we can refer to [17] and [1].
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Spatial Classification Trees

Input Marked point process,
scale r ∈]0; 1[,
minimal number of observations in node to split minsplit,
minimal value of Gini deviance in node to split mindev.

Maximal tree Initialize,
node t = t1 the root of the tree containing all observations,
nt = nt1 the number of observations in node t,
rt = r the scale value at node t,
R(t) = R(t1) the value of entropy in node t,
argmax{λt1, λt2} the label of node t.

While nt > minsplit and R(t) > mindev,
Compute

i0 = argmaxi∈{1;2}λ
t
i, j0 = argmini∈{1;2}λ

t
i,

ŝ = argmaxs∆Ii0j0(s, t, rt),
Set

tL = {points in t | answer ”yes” to ŝ},
tR = {points in t | answer ”no” to ŝ}.

Recursion

rt = argmaxr∆Ii0j0(ŝ, t, r),
left: t = tL ,
right: t = tR.

Output

Maximal tree Tmax.

Pruning Sequence (Tαk
)16k6K of subtrees pruned from Tmax,

and complexities (αk)16k6K (see Table 2).

Selection Set k̂ = max
{
k | k = argmax06j6K−1(αj+1 − αj)

}
.

Output Tree Tk̂, sequences T1 � . . . � TK = {t1} and 0 = α1 < . . . < αK .

Table 1: Spatial Classification Trees (SpatCART).

5.1 Illustrative examples

The first example is the Chess bivariate Poisson point process on the unit square,
with marks simulated from a blue and red chessboard with 9 squares, represented in
Figure 2. It is an example of spatial homogeneity for which CART and SpatCART
should lead to similar results.
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Pruning Algorithm

Input Maximal tree Tmax,
number of observations n,
risk ρ from misclassification error or Gini index.

Initialization k = 1 and α1 = 0,
T = T1 the smallest subtree pruned from Tmax at complexity α1,
nf the number of leaves of T ,

Compute for each node t of T
nt the number of observations in t,
ρ(t) the local risk of t:

ρ(t) = n−1
∑

(xi,mi)∈t 1lm̂t 6=mi
for misclassification rate

ρ(t) = (1−
∑2
j=1 p(j|t)2)nt/n for Gini index

ρ(Tt) =
∑
{f leaf of Tt} ρ(f) the risk of the branch Tt issued from t,

nTt
the number of leaves of branch Tt.

While While nf > 1,
compute

αk+1 = min
{t internal node of T}

ρ(t)− ρ(Tt)

nTt
− 1

.

Prune all branches Tt of T verifying
ρ(Tt) + αk+1nTt = ρ(t) + αk+1

Set Tk+1 the pruned subtree obtained in that way.
Set T = Tk+1 and k = k + 1.

Output Sequence (Tαk
, αk)16k6K .

Table 2: Pruning Algorithm.

The second example is the Locally repulsive bivariate Poisson point process on
the unit square, with a majority red mark, and a minority blue one. The marked
point process is designed by splitting vertically the unit square into two parts (see
Figure 3): on the left part, the minority blue marked points repulse red ones, with a
constant repulsion radius equal to r = 0.05 ; on the right part, blue and red marked
points are independently distributed.
In this last example, a spatial inhomogeneity is introduced, then CART and Spat-
CART should lead to different results: CART should miss the difference between
the two parts and SpatCART should highlight it. With these two different scenarios
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Figure 2: Chess simulated data set.
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Figure 3: Locally repulsive simulated data set.

in mind, it remains to analyze the results. But before that, we propose to focus
on the kernel of our proposal: the new splitting criterion convenient for detecting a
certain kind of spatial heterogeneity and the initial spatial resolution to be selected.

5.2 Intertype K-function and splitting criterion

The key tool for defining the splitting criterion is the intertype K-function. More
precisely the difference between the estimated one and its theoretical value in the
homogenous situation is evaluated in order to select the split. In Figure 4 in the
homogeneous situation Chess simulated example, one can find, on the left, the esti-
mated intertype K function (as a function of r) and its theoretical counterpart and,
on the right, the difference between these two functions. In this typical situation,
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this difference is strictly deceasing and the naturel choice is to take r as large as
possible.
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Figure 4: Example of intertype K function and its theoretical value in the homogeneous situation
for Chess simulated example. Left : Intertype K functions. Right : Difference between estimated and
theoretical intertype K functions.

The next object of interest is the impurity function directly connected with the
splitting criterion. Figure 5 illustrates the behavior of the impurity function with
respect to first split for Chess example, which appears to be clear and expected.
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Figure 5: Behavior of impurity with respect to first split for Chess example.

5.3 The initial resolution r

The other parameter is the initial resolution r which is crucial to define the first
split (the most important one). One first idea to provide a default value is to take
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as initial value for r the one corresponding to maximum of the difference between
the estimated one and its theoretical value, that the one the one for which the
dissimilarity with the homogeneous case is maximal. Depending on the criterion
configurations, it appears that critical values r can be far from this default value.
So the advice is to let the user define this value.

Let us consider the same difference for 2 simulated examples (see Figure 6).
Except for the Locally repulsive bivariate Poisson point process, the behavior is
the same as previously. But in this last, the function seems to highlight a bump
and we should select the value r leading to this bump instead of the larger one.
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Figure 6: Difference between estimated intertype K function and its theoretical value for 2 typical
simulated examples.

5.4 Maximal and optimal partitions

With two different situations depicted by the Figures 2 and 3, we compare the
results of the usual CART strategy (for growing and pruning) and those obtained
applying our new proposal.

5.4.1 The homogeneous case

The first global difference is to examine the respective performance indices and il-
lustrate its stability. Figure 7 gives the percentage of the number of times where
maximal and minimal optimal pruned subtrees classify differently from Bayes clas-
sifier over 1000 simulations of Chess data set. The two algorithms lead globally
to accurate classifiers (less than 4% of the observations are classified differently by
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the Bayes classifier), and it appears clearly that SpatCART exhibits slightly lower
accuracy, but higher stability. One can also see that the maximal plateau method
generally lead to less accurate classifiers, what illustrates its penchant to overpenal-
ize the misclassification rate.
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Figure 7: Percentage of number of times where maximal and minimal optimal pruned subtrees classify
differently from Bayes classifier over 1000 simulations of Chess data set.

Comparing the maximal trees in Figure 8 for SpatCART (top) and CART (bot-
tom) on Chess data set, leads to the conclusion that the partitions are quite similar.
More precisely they are the same for the true underlying frontiers and the only dif-
ferences appear inside the blocks to be recovered.

So, in this homogeneous case, as expected, CART and SpatCART lead to similar
results. Examining the corresponding behaviors of the number of leaves as a function
of complexity for SpatCART and CART (see Figure 9), reinforce this similarity.

It remains to inspect the maximal trees (see Figure 10) for SpatCART (top)
and two variants of the usual CART (bottom). The two variants of CART differ
only in the selection step, the min variant corresponds to the largest plateau while
the max variant corresponds to the largest jump. In that case all the variants lead
to essentially the same result. Therefore we decide to keep the min variant which
leads to the most stable results.

So to summarize, as expected, when there is nothing to discover from the spa-
tial viewpoint, it seems that SpatCART behaves as the usual CART, without any
degradation.

17



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chess
 SpatCART maximal tree

red

red

red

blue

blue

blue

red

red

red

blue blue

blue

red red red red

blue

blue

blue

red red blue blue blue

red

red

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chess
 CART maximal tree

red

red red

blue

blue

blue red red red

blue

blue

blue

red red

red

red

blue

blue

blue blue

blue

red red blue blue

red

red

Figure 8: Maximal trees for SpatCART and CART on Chess data set.

5.4.2 The inhomogeneous case

Using roughly the same sequence of plots, let us examine now a more interesting
aspect, crucial to illustrate what is the specific contribution of SpatCART.

The first step is to compare the maximal trees. We start with an initial res-
olution r0 smaller than the locally repulsion scale r = 0.05. Figure 11 contains
the SpatCART results (top) and the CART (bottom) ones on Locally repulsive

data set. The partitions are extremely different. More precisely, since r0 is small
enough SpatCART does not split the left half of the square, and the right half is
split iteratively according to the direction of the first split. This is expected since
the precision of the estimation of the intensities is directly related to the number
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Figure 9: Behavior of number of leaves versus complexity for SpatCART and CART on Chess data set.

of points and the intensity of the rarer is too low to provide a reliable estimate. A
solution could be to impose a minimum number of points for each mark to allow
splitting. We haven’t implement it since pruning will remove these artificial splits.
Note that If the gain of impurity is the same for both direction the x direction is
chosen. On the other hand, CART splits according to the empirical distribution
of the blue points leading a very different partition. So the generated maximal
partitions are, as expected, different in the inhomogeneous situation.

The corresponding sequences of complexities are given by Figure 12. A second
difference appears: SpatCART seems to generate less splits to provide partitions
similar to CART in terms of spatial repartition, generating less false alarms.

To end this analysis, Figure 13 shows the optimal pruned subtrees (represented
as trees and not through the corresponding partitions as previously) for this inho-
mogeneous case. It should be noted that in this case, results using the pruning
strategy are convenient for Class Probability Trees: the tree based on misclassifi-
cation rate leads to a tree without leaves. This is logical since the percentage of
blue marks is too low to be recovered. Here, the difference is clear: since there is
no heterogeneity in the marginal structures of the response distribution nothing is
inferred using CART. On th other hand SpatCART recovers the spatial structure.

To summarize, it seems that:

– SpatCART seems to provide better partitions in terms of marks spatial repar-
tition (see the maximal trees figures),

– SpatCART needs less splits to provide partitions similar to CART in terms of
spatial repartition (see figures and number of leaves of the pruned subtrees),
suggesting that it avoids false alarms in a better way.
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6 Example

6.1 Data

We applied these methods to a tropical rain-forest located at Paracou, 40 km west
from Kourou in French Guiana (5◦15’N, 52◦55’W). It is an experimental site that is
devoted to studying the effects of logging damage on stock recovery. Twelve plots
(6.25 hectares each) of undisturbed forest were settled in 1984. On each plot, the
circumference of every tree with a dbh (diameter at breast height) greater than 10
cm was measured with a precision of 0.5 cm. Its spatial coordinates (± 50 cm) and
its specie were noted too. Measurements have been carried annually from 1984 to
1995, and once every two years since. A more precise description of the Paracou
plots may be found in [16].

We focus on two species:

• Vouacapoua americana is a hermaphroditic shade tolerant tree specie of ma-
ture tropical rainforests and whose distribution spans the eastern part of the
Guiana shield. Its local density averages around 10 individuals per hectare for
trees with greater than 10 cm dbh, but this varies greatly because of spatial
clustering. Individuals are clustered in large patches of a few hectares that are
mainly located on hill tops and slopes [26].

• Oxandra asbeckii is a specie of the understorey, the largest individuals of which
measure less than 15 cm dbh. It is a shade tolerant specie [13]. It shows
animal dispersal: the seeds are dispersed after passage through the vertebrate
gut. Oxandra asbeckii is located on hill tops and slopes

The two species Vouacapoua americanaa and Oxandra asbeckii were selected at
Paracou because their spatial distribution is linked to the relief: they are both lo-
cated on hill tops and slopes. Elevation is the environmental factor that drives their
spatial distribution and this creates a strong interaction between both repartitions.
We focus on one plot represented in Figure 15. The figure also gives the contour
lines in order to be able to determine hill tops and slopes of the plot. Seventy trees
of Vouacapoua americana and eighty trees of Oxandra asbeckii were referenced fort
his plot.

The data consists of seventy lines (one par tree) and four columns: the 3-D
coordinates (longitude, latitude and elevation) as well as the specie indication.

6.2 Results and discussion

From the representation of the estimated and theoretical intertype K−functions
and their difference evaluated on the Paracou data set (see Figure 14), we can see
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three regimes: one before the scale value r = 6 (blue dashed line on the right of
Figure 14), where there is no interactions between species; one between scale values
r = 6 and r = 24 (red dashed line on the right of Figure 14) where species begin
to interact; and one after the scale value r = 24 where the interaction between
species increases rapidly. Hence we choose the initial median scale value r0 = 15 to
proceed with SpatCART, in order to be sure to catch a sufficiently large scale to
catch interaction, and not too large to avoid deeper maximal trees.
Figure 15 highlights the presence of Oxandra asbeckii at the hill of left top of the
plot as well as the competition between both species for the hill at the bottom of
the plot. Even if class probability tree has more leaves than classification tree, both
trees are coherent and lead to the same conclusions.

A contrario, CART results are really poor with only two leaves. Basically it sepa-
rates the hill at the bottom of the plot from the rest but cannot catch the mixed
structure of species with this hill or the hill at the top left of the plot. The spatial
structure as well the ecology of the two species on this plot cannot be inferred from
CART results.
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[5] G Blanchard, C Schäfer, Y Rozenholc, and K-R Müller. Optimal dyadic deci-
sion trees. Machine Learning, 66(2-3):209–241, 2007

[6] I Bou-Hamad, D Larocque, H Ben-Ameur. A review of survival trees. Statistics
Surveys, 5:44–71, 2011

[7] L Breiman, JH Friedman, RA Olshen and CJ StoneJ. Classification and re-
gression trees. Chapman & Hall, 1984

[8] DR Brillinger Measuring the association of point processes: a case history
American Mathematical Monthly 83:16–22, 1976

21



[9] N Cressie Statistics for Spatial Data, John Wiley & Sons, New York, 1991

[10] PJ Diggle and AG Chetwynd Second-order analysis of spatial clustering for
inhomogeneous populations, Biometrics 47:1155–1163, 1991

[11] PJ Diggle and RK Milne Bivariate Cox processes: some models for bivariate
spatial point patterns Journal of the Royal Statistical Society, Series B 45:11–
21, 1983

[12] DL Donoho Cart and best-ortho-basis: a connection. The Annals of Statistics,
25(5):1870–1911, 1997
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Figure 10: Optimal pruned subtrees for SpatCART and CART on Chess data set.

24



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

repulsion
 SpatCART maximal tree

red

red

red red red red red red red red red redred red

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

repulsion
 CART maximal tree

red red

red red red
red red red

red
red

red
red red red

red red red red red
red

red
red

red

red
red
red
red

red red red red

Figure 11: Maximal trees for SpatCART and CART on Locally repulsive data set, with initial
resolution r0 smaller than the locally repulsion scale r = 0.05.
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Figure 12: Behavior of number of leaves versus complexity for SpatCART and CART on Locally

repulsive data set, with initial resolution r0 smaller than the locally repulsion scale r = 0.05.
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Figure 15: SpatCART and CART optimal trees on the Paracou data set.
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Figure 16: SpatCART and CART maximal trees on the Paracou data set.
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