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Spatial CART Classification Trees

Avner Bar-Hen∗ Servane Gey† Jean-Michel Poggi‡

Abstract

We propose to extend CART for bivariate marked point processes to provide a segmenta-
tion of the space into homogeneous areas for interaction between marks. While usual CART
tree considers marginal distribution of the response variable at each node, the proposed algo-
rithm, SpatCART, takes into account the spatial location of the observations in the splitting
criterion. We introduce a dissimilarity index based on Ripley’s intertype K-function quan-
tifying the interaction between two populations. This index used for the growing step of
the CART strategy, leads to a heterogeneity function consistent with the original CART
algorithm. Therefore the new variant is a way to explore spatial data as a bivariate marked
point process using binary classification trees. The proposed procedure is implemented in an
R package, and illustrated on simulated examples. SpatCART is finally applied to a tropical
forest example.

Keywords: CART; Bivariate Marked Point Process; Spatial CART; Ripley’s intertypeK-function

1 Introduction

We propose an extension of CART for bivariate marked spatial point processes, which takes into
account the spatial information in the splitting criterion and providing a segmentation of the
space into homogeneous areas for interaction between marks.

CART (Classification And Regression Trees) is a statistical method, introduced by Breiman
et al. [7], and designing tree predictors for both regression and classification. We restrict our
attention on the classification case with two populations. Each observation is characterized by
some input variables gathered in vector X and a binary label Y which is the output (or response)
variable.
The general principle of CART is to recursively partition the input space using binary splits and
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then determine an optimal partition for prediction. The classical representation of the model
relating Y to X is a tree representing the underlying process of construction of the model. If
the explanatory variables are spatial coordinates, we get a spatial decision tree and this induces
a tessellation of the space (of the X variables). A cell of this tessellation corresponds to a leaf
of the decision tree. For a leaf of this tree, the response variable Y is constant and corresponds
to the majority label of the observations belonging to this leaf.

The aim of this article is to adapt CART decision trees within the framework of binary marked
point processes by considering that the points inside the cells defined by the partition are a
realization of a spatial point process, where the response variable Y can be seen as a mark of the
point of position given by X. Following this idea, the proposed variant of the CART algorithm
takes into account the spatial dimension of the bivariate marked point processes, and thus makes
it possible to provide the user a partition of the plan defining homogeneous areas for interaction
between the two marks. Hence, the new variant is a way to explore spatial data as a bivariate
marked point process using binary classification trees.

While a classical assumption for CART is to consider a sample of i.i.d. observations, our vari-
ant takes into account spatial dependence using the Ripley’s intertype K-function to suitably
redefine the splitting criterion in CART. Instead of being based only on the respective marks’
proportions, the splits will be selected according to the strength of interaction between the
two populations. When exist, the spatial patterns corresponding to homogeneous interaction
sub-windows cannot, in general, be discriminated by traditional CART. Indeed, CART segments
space according to the marks’ proportions, favoring nodes of individuals of the same mark, with-
out any reference to the spatial positions of the individuals. At the contrary, the new impurity
function based on spatial interaction between the marks is adapted to capture homogeneous
interaction sub-windows.

Let us mention some akin methods, out of the scope of this paper, since they are related to the
regression case. Among the various extensions of CART, Bel et al. ([6]) proposed a variant for
spatial data by considering the observations as a sample of regionalized variables modeled as a
random field with spatial dependence. Various reweighting schemes to equalize the contribution
of each surface unit for the choices of splits are proposed. In [14], the authors suggested the use of
recursive partitioning scheme like CART for space segmentation for the spatio-temporal hotspot
detection problem, where the response variable is continuous. We could also cite some methods
able to take into account the spatial effect even if they are not especially designed to cope with
spatial data. For example a model-based regression tree with a spatial lag is considered in [23].
Complexifying the approach, by merging the possibility of incorporating covariates and taking
into account the spatial effect, we could refer to the GAM regression models framework. For
example, the BAMLSS family [22] which allows the parameters of the response distribution to be
modeled by explanatory variables. Then ensembles of models like the BART (Bayesian Additive
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Regression Trees) [8] method implementing a sum-of-trees model and a regularization prior on
the parameters of that model. Finally, other extensions of GAM combined with boosted trees
may also be mentioned, see for example [18].

The paper is organized as follows. In Section 2, we recall some basics about CART decision
trees in the classification case. In Section 3, we review some conventional ways to quantify
interaction between two point processes and we define the heterogeneity function associated
with the Ripley’s intertype K-function. Then, in Section 4, we propose a spatial variant of
CART dealing with point processes and describe how to implement it. Section 5 illustrates its
use on simple simulated examples. Section 6 addresses an application to the spatial distribution
of two species of tropical forest. Finally, the concluding Section 7 sketches some perspectives.

2 CART method

Let us briefly recall some general background on classical settings about Classification And
Regression Trees (CART). The data are considered as an independent sample of the random
variables (X1, . . . , Xp, Y ), where the Xks are the explanatory variables (supposed to be numer-
ical in this article) and Y is the categorical variable to be explained. In a general framework, Y
is a multinomial variable, but we suppose here that Y is a binary variable with two labels.
CART is a rule-based method that generates a binary tree through recursive partitioning. Let
us consider a classification tree T , where a class label is assigned to each terminal node (or
leaf) of T . Hence T can be viewed as a mapping to assign a value Ŷi = T (X1

i , . . . , X
p
i ) to each

observation.

The growing step leading to a deep maximal tree is obtained by recursive partitioning of the
training sample by selecting the best split at each node according to some heterogeneity index,
such that it is equal to 0 when there is only one class represented in the node to be split, and
is maximum when all classes are equally frequent. The two most popular heterogeneity criteria
are the Shannon entropy and the Gini index. Among all binary partitions of each set of values of
the explanatory variables at a node t, the principle of CART is to split t into two sub-nodes tL
and tR according to a threshold on one of the variables, such that the reduction of heterogeneity
between a node and the two sub-nodes is maximized. Some variables may be used several times
while others may not be used at all. The growing procedure is stopped when there is no more
admissible splitting. Each leaf is assigned to the most frequent class label of its observations.

Of course, such a maximal tree (denoted by Tmax) generally overfits the training data and the
associated prediction error R(Tmax), with

R(T ) = P(T (X1, . . . , Xp) 6= Y ), (1)
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is typically large. Since the goal is to build from the available data a tree T whose prediction
error is as small as possible, in a second stage the tree Tmax is pruned to produce a subtree T ′

whose expected performance is close to the minimum of R(T ′) over all binary subtrees T ′ of
Tmax. Since the joint distribution P of (X1, . . . , Xp, Y ) is unknown, the pruning is based on a
penalized empirical risk to balance optimistic estimates of empirical risk by adding a complexity
term α|T ′| that penalizes larger subtrees, with |T ′| the number of leaves of tree T ′ and α a pos-
itive penalty constant. The pruning step produces a decreasing sequence of K subtrees pruned
each one from another, denoted by T1 � . . . � TK = {t1}, and associated with an increasing
sequence of K complexities, denoted by 0 = α1 < . . . < αK .

According to the penalized criterion used in the pruning procedure, the sequences of subtrees
pruned from the same maximal tree are quite different. In the most commonly used variant
of CART classification trees, the aim is to predict labels Y ∈ {m1;m2}. Hence the natural
penalized criterion R̂pen(T ) used in this context is based on the misclassification rate of a tree
T :

R̂pen(T ) =
1

n

n∑
i=1

1{T (X1
i ,...,X

p
i )6=Yi} + α|T | (2)

where 1 is the indicator function, n the total number of observations, α the positive penalty
constant, |T | the number of leaves of the tree T , and Yi the ith random realization of Y .
In the variant of CART class probability trees, the aim is to predict probabilities p(j|x) =
P(Y = mj | X = x) rather than labels Y ∈ {m1;m2}. Hence this variant prunes the maximal
tree through a penalized criterion based on estimation error of the (p(j|x))j=1,2 rather than
misclassification rate. As it will be seen in subsection 4.2, this kind of variant is useful when
dealing with marks’ spatial intensity rather than marks’ majority vote. The penalized criterion
used for class probability trees is derived from the mean square error risk as follows. Let (Z1, Z2)
be defined by Zj = 1{Y=mj} and let p(j|x) = P(Y = mj | X = x). Then E(Zj | X = x) = p(j|x),
j = 1, 2. In this context, the criterion is a penalized version of the Gini index. An empirical
version of penalized Gini index can be written as [7, sec. 4.6]:

R̂penG(T ) =
1

n

∑
t∈T̃

nt

1−
2∑

j=1

p̂(j|t)2
 + α|T |, (3)

where nt is the number of observations falling in node t, and p̂(j|t) the proportion of observations
with mark j falling in node t.

The maximal tree Tmax is computed via recursive partitioning, and then pruned with the pe-
nalized criterion based on misclassification rate defined in (2) to produce classification trees,
or based on Gini index defined in (3) to produce class probability trees. For all α ≥ 0,
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argminT�Tmax
R̂pen(T ), or argminT�Tmax

R̂penG(T ), belongs to the sequence of nested pruned
subtrees (Tk)16k6K . The final step is to choose a convenient tree among the sequence T1 � . . . �
TK = {t1} or equivalently a convenient complexity among the sequence 0 = α1 < . . . < αK .
This choice can be made via cross-validation.

In this article, p = 2 since we only consider the spatial coordinates as available information.

3 Quantifying the link between two point patterns

3.1 Basics on point processes

A point process is a random variable that gives the localization of events in a set W ⊂ Rd.
Another way to define a given point process is to consider, for each B ⊂ W , the number of
events φ(B) occurring in B, where φ is the distribution of the occurrences of the point process.
Since characterization of a spatial repartition is strongly dependent on the scale of observation,
the repartition has to be characterized for each scale.

There are classical assumptions about point processes. At first we consider that the probability
to observe two points at the same place is null. Up to misrecording, this hypothesis is not very
restrictive. Two extra common hypotheses are stationarity and isotropy. Intuitively, it means
that the distribution of the occurrences of the point process φ is not affected by translation or
rotation around the origin, i.e. the characteristics of the point process are the same for the whole
area under study. A point process that is stationary and isotropic is said to be homogeneous.
A marked point process is a point process such that a random mark is associated with each
localization. In this article, we only consider bivariate point processes, i.e. the mark is a
qualitative random variable with two possible issues. Equivalently, the bivariate point process
can be viewed as the realization of two point processes (one per level of the mark).
There are several ways to consider the relationships between two clouds of points, mainly related
to three aspects: independence, association and random labelling (see [5] for example). It ends
up that relationships between two clouds of points can be described in various ways and therefore
many indices can be defined. Each index will give a specific information about these relationships
and will greatly depend on the point process that leads to the observed repartition. For bivariate
point processes, many tools based on first-order characteristics of the point processes, may be
used to quantify departure from independence (see [9] for example).
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3.2 Intertype K-function

3.2.1 Definition

Under the assumptions of stationarity and isotropy, the intertype Kij-function is a bivariate
extension of Ripley’s K-function, proposed in [19], and defined as

Kij(r) = λ−1j E(number of points of type j within distance r of a randomly chosen point of type i)
(4)

where the intensity parameters λi and λj correspond to the expected numbers of type i and
type j points per unit area, respectively.

The idea of intertype Kij-function is to characterize interaction between two point processes,
i.e. second order characteristic of the bivariate point process. The assumption of stationarity
is quite a strong hypothesis and could be relaxed using local estimation of the intensity [3], but
this leads to instability of the estimator of the intertype Kij-function.

While Ripley’s K-function characterizes the spatial structure of a univariate pattern at various
scales, the intertype Kij-function characterizes the spatial structure of a bivariate pattern, and
more precisely the spatial relationship between two types of points located in the same study
area. The intertype Kij-function is defined so that λjKij(r) is the expected number of type j
points in a circle of radius r centered on an arbitrary type i point of the pattern. Symmetrically,
we can define an intertype Kji-function so that λiKji(r) is the expected number of type i points
in a circle of radius r centered on an arbitrary type j point.
If the bivariate spatial process is homogeneous, then Kij(r) = Kji(r). Under independence, the
intertype K function is Kij(r) = πr2, regardless of the individual univariate spatial patterns of
the two types of events.

In order to interpret the observed values of Kij(r), we need to compare them to the theoretical
values obtained for simple cases of bivariate patterns, and especially to πr2 that corresponds
to a null hypothesis of absence of interaction between the two types of points. Positive values
of Kij(r) − πr2 indicate attraction between the two processes at distance r while negative
values indicate repulsion. However, depending on the context of the study, this appropriate null
hypothesis can correspond to at least two different statistical hypotheses (see [10]): independence
or random labelling. Note that these two hypotheses are different. On one hand, independence
of the marginal processes states that the point process that gives the locations of the first point
process is independent of the point process that gives the locations of the second point process.
The two processes are therefore distributed independently. On the other hand, random labelling
states that, conditionally on the locations of points, their mark is assigned to them at random.

6



3.2.2 Estimation

The estimator of the intertype Kij-function can be defined by:

K̂ij(r) = (λ̂iλ̂jA)−1
∑
k,l

1{dik,jl
<r} (5)

where dik,jl is the distance between the kth location of type i point and the lth location of type

j point, A is the area of the region of interest and λ̂i and λ̂j are the estimated intensities.
This estimator K̂ij(r) is a function of the distance between points. It can be integrated to
provide single valued indices (see [11] for example).
As the theoretical distributions of the estimators are unknown, confidence intervals are com-
monly estimated through Monte Carlo simulations of a specified null hypothesis. To test inde-
pendence, a classical method is to keep the patterns of both point processes unchanged, but to
randomize their relative position at each Monte Carlo simulation. On the other hand, a classical
approach to test random labelling is to simulate realizations of a point process with the same
spatial structure as the overall observed pattern (i.e. without type distinction), and to randomly
attribute marks.

Remark 1. Various edge corrections have been suggested; one common example is the extension
of Ripley’s estimator, leading to:

K̂ij(r) = (λ̂iλ̂jA)−1
∑
k,l

w(ik, jl)1{dik,jl
<r}.

The coefficient w(ik, jl) is the inverse of the proportion of the perimeter of the circle centered at
the kth location of type i point with radius dik,jl that lies inside the study area. Ripley ([20])
shows that this corrected estimator is unbiased. When edge corrections are used K̂ij(r) and
K̂ji(r) are positively correlated and no more equal.
In the sequel, in order to obtain explicit formulation for variation of heterogeneity, we use a
Ripley’s intertype function without edge correction as defined in Equation 5.

4 Spatial CART

4.1 Impurity loss based on Kij

The key idea is to take into account the spatial dependence of the data in the CART splitting
strategy. It is done by modifying the original impurity loss, which is usually the entropy index.
We introduce a dissimilarity index based on Ripley’s intertype K-function quantifying the in-
teraction between two populations within a rectangular window of finite area A.
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Let us focus on the impurity loss associated with K̂ij as defined in (5). First, we define the
impurity of a node t at radius r as K̂t

ij(r), the estimation of the Ripley’s intertype K-function
restricted to node t:

K̂t
ij(r) =

1

λ̂tiλ̂
t
jA

t

∑
ik,jl∈t

1{dik,jl
<r}, (6)

where one has:

At the area of node t

λ̂t∗ the estimation of the density of mark ∗ in node t(∗ = i, j)

dikjl the euclidean distance between i-marked individual ik and

j-marked individual jl

Then, for a split s splitting node t into two child nodes tL and tR, the impurity (6) of node t at
radius r is decomposed as the sum of the contribution within nodes and between nodes:

K̂t
ij(r) =

1

λ̂tiλ̂
t
jA

t

∑
ik,jl∈t

1{dik,jl
<r}

=
1

λ̂tiλ̂
t
jA

t

∑
ik,jl∈tR

1{dik,jl
<r} +

1

λ̂tiλ̂
t
jA

t

∑
ik,jl∈tL

1{dik,jl
<r} (7)

+
1

λ̂tiλ̂
t
jA

t

 ∑
ik∈tR

∑
jl∈tL

1{dik,jl
<r} +

∑
ik∈tL

∑
jl∈tR

1{dik,jl
<r}


=

AtL

At

λ̂tLi λ̂
tL
j

λ̂tiλ̂
t
j

K̂tL
ij (r) +

AtR

At

λ̂tRi λ̂
tR
j

λ̂tiλ̂
t
j

K̂tR
ij (r) (8)

+
1

λ̂tiλ̂
t
jA

t

 ∑
ik∈tR

∑
jl∈tL

1{dik,jl
<r} +

∑
ik∈tL

∑
jl∈tR

1{dik,jl
<r}


This leads to the natural definition of the impurity loss ∆Iij(s, t, r) as the variation of hetero-
geneity, i. e. the variation of interaction between marks i and j, coming from the split of node
t using s, at radius r:

∆Iij(s, t, r) := K̂t
ij(r)− αs

λ̂tLi λ̂
tL
j

λ̂tiλ̂
t
j

K̂tL
ij (r)− (1− αs)

λ̂tRi λ̂
tR
j

λ̂tiλ̂
t
j

K̂tR
ij (r), (9)

where αs = AtL

At . The intensity ratios are similar to marks’ proportions within each child node
in a spatial context, leading to a classical form for ∆Iij(s, t, r) as an impurity loss, up to the
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area factor αs. Nonetheless, this area factor is natural when dealing with spatial data since it
leads to reweight properly the impurity of the two nodes tR and tL.

Finally, this choice of impurity loss is convenient since it can be rewritten as (see (8) and (9)):

∆Iij(s, t, r) =
1

λ̂tiλ̂
t
jA

t

 ∑
ik∈tR

∑
jl∈tL

1{dik,jl
<r} +

∑
ik∈tL

∑
jl∈tR

1{dik,jl
<r}

 . (10)

∆Iij(s, t, r) is positive, which is necessary to define it as impurity loss. In addition, ∆Iij(s, t, r)
is null if and only if the children nodes tL and tR are pure at distance r along split s, that is

∀ik ∈ tL, jl ∈ tR and ∀ik ∈ tR, jl ∈ tL dik,jl > r,

highlighting splits that do not discriminate marks at all. Hence maximizing ∆Iij(s, t, r) leads
to increasing spatial purity at fixed scale r.

In addition to the positivity of s 7→ ∆Iij(s, t, r), which is mandatory, a desirable property is the
strict concavity, which would ensure that the best split is unique, and then avoids ties. This is
an ingredient of the original CART algorithm but this is not the case here as in most extensions
of CART. It should be noted that the growing part of the algorithm still works, that is splitting
always purifies nodes even if from an algorithmic point of view, the choice of the split could be
arbitrary, without any statistical drawback. However, a possibility, not implemented here, could
be to look for a resolution r avoiding ties.

4.2 Description of the algorithm

The usual penalized misclassification error rate (Equation 2) used in CART classification trees
is natural to determine areas that are homogeneous in terms of mark. Our focus is to determine
areas of the point process that are homogeneous in terms of marks’ intensity. To be able to
choose a convenient definition for the risk (as defined in Equation 3), we consider the following
property of the intensity of the marks: in the case where the marked spatial point process (X,M)
is stationary, then the intensity of points with mark j ∈ {1; 2} inside surface A can be written
as

Λ(A, j) = P(X ∈ A,M = j)

= P(M = j | X ∈ A)P(X ∈ A)

= P(M = j | X ∈ A)λA

where λ > 0 is the intensity of X (without marks), and A is the area of A. Then estimating
Λ(A, j) is equivalent to estimate P(M = j | X ∈ A), since λ can be estimated directly from the
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point process. Thus the penalized criterion of Equation 3 used in CART class probability trees
is natural to estimate the intensities of the marks: intensity for each mark will then be locally
estimated on a tessellation of the plane.

We propose an algorithm using impurity loss ∆Iij defined by (9) to develop the maximal tree
Tmax. The estimator K̂ij of the intertype Kij-function is computed at each node t, the value of
r = r0 is fixed as the one for which the estimated intertype K-function is the farthest from the
one of random labelling.
Recall that a maximal tree Tmax is computed via recursive partitioning, and then pruned with
the penalized criterion defined in (2) or (3). This produces a decreasing sequence of K subtrees
pruned each one from another, denoted by T1 � . . . � TK = {t1}, and associated with a sequence
of complexities 0 = α1 < . . . < αK .

Rephrasing the algorithm in spatial terms, r0 can be considered as the characteristic scale from
the region for which we compute r0. Then before splitting, we consider for r = r0 the quantity
∆Iij(s, t, r) and we seek to the best split. After splitting we seek to the best r ≤ r0 maximizing
∆Iij(ŝ, t, r). Then, after splitting, the two child are considered in parallel in the same way,
recomputing r0,L and r0,R. It turns out that ∆Iij(s, t, r) is decreasing along any branch of the
tree. So the reordered sequence of ri can be used to define a sequence of nested subtrees. Let
us remark that, in the algorithm, the value of rt maximizing the impurity criterion for the best
split is set to 0 if t is a leaf, what corresponds to the smallest possible value of r that is the best
resolution.

The final step is to choose a convenient tree among the sequence T1 � . . . � TK = {t1}. This
choice can be made via cross-validation. Nevertheless, to avoid randomness due to the choice
of subsamples, we use two variants of the slope heuristic method proposed by Birgé, Massart in
the 2000s (see [2, 4, 13] for more details), and based on the behavior of the number of leaves
with respect to the complexity. First, the general idea is that, if a tree is a good predictor, then
high energy is necessary to prune it. Hence, the penalty to be chosen in the penalized criterion
shall increase a lot before the tree is pruned, leading to a large plateau in the αk 7→ |Tk| graph.
Second, if there exist plateaus negligible with respect to the largest one, the corresponding trees
can be considered as artefacts of the pruning procedure. These trees are then removed from the
sequence, and the final tree model is selected through the classical maximal jump in the number
of leaves for this new collection of trees. In practice, only jumps occurring before the largest
plateau are considered. An artificial example of such a behavior is given in Figure 1, where 4
represents the tree selected via the modified largest jump method, while � represents the tree
selected via the largest plateau method.

The algorithm used to obtain the final tree is detailed in Table 1 for the calculation of the max-
imal tree, and in Table 2 for the pruning strategy, and the calculation of the nested sequence of
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Figure 1: Typical behavior of number of leaves with respect to complexity,4 and � represent the two highlighted
trees.

pruned subtrees. It should be noted that this pruning step is the same as for original CART,
since it is based either on the minimization of penalized misclassification rate or on the minimiza-
tion of penalized Gini index. Let us emphasize that this sequence of pruned subtrees and the
corresponding complexities allow the user to choose the final partition according to the data and
the peculiarity of the studied problem. This is of particular interest if the best subtree is the root.

Remark 2. To avoid too strong edge effects, a minimum distance from the boundaries is
imposed to candidate splits in the construction of maximal tree.

4.3 The initial resolution r0

The other parameter of our algorithm is the initial resolution r0, which is crucial to define the
first split (the most important one). One first idea to provide a default value is to take as initial
value for r0 the one corresponding to the maximum of the difference between the estimated Kij

and its theoretical value, that is the one for which the dissimilarity with the homogeneous case
is maximal. Depending on the criterion configurations, it appears that critical values can be far
from this default value and user should be careful about automatic choice of r0.

5 CART and SpatCART in action: illustration by simulations

An R package spatcart, and the R codes to reproduce experiments of this section, are available
on https://github.com/Servane-Gey/Spatial-classification-trees. Package spatcart

may also be directly installed with R package devtools from the github repository Servane-Gey/spatcart.
Package spatcart requires the following R packages to implement the results:
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Spatial Classification Trees

Input Marked point process,
scale r0 ∈]0; 1[,
minimal number of observations in node to split minsplit,

Maximal tree Initialize,
node t = t1 the root of the tree containing all observations,
nt = nt1 the number of observations in node t,
rt = r0 the scale value at node t,
argmax{λt

1, λ
t
2} the label of node t.

While nt > minsplit,
Compute

i0 = argmaxi∈{1;2}λ
t
i, j0 = argmini∈{1;2}λ

t
i,

ŝ = argmaxs∆Ii0j0(s, t, rt),
Set

tL = {points in t | answer ”yes” to ŝ},
tR = {points in t | answer ”no” to ŝ}.

Recursion

rt = argmaxr∆Ii0j0(ŝ, t, r),
left: t = tL ,
right: t = tR.

Output

Maximal tree Tmax.

Pruning Sequence (Tk)16k6K of subtrees pruned from Tmax,
and complexities (αk)16k6K (see Table 2).

Selection Set

k̂1 = max
{
k | k = argmax06j6K−1(αj+1 − αj)

}
,

k̂2 the index of the tree selected via the modified largest jump method,

Output Trees Tmax, Tk̂1
, Tk̂2

.

Sequences T1 � . . . � TK = {t1} and 0 = α1 < . . . < αK .
Collections rt and Kij(rt) for each node t of Tmax.

Table 1: Spatial Classification Trees (SpatCART).

– spatstat to deal with point processes, and in particular to compute ∆Iij in the construc-
tion of the maximal tree,

– tree to deal with tree structures.

Two methods are to be considered: Spatial CART (SpatCART, see Table 1), and CART with
Gini splitting criterion. Class probability trees and classification trees are constructed using
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Pruning Algorithm

Input Maximal tree Tmax,
number of observations n,
risk ρ from misclassification error or Gini index.

Initialization k = 1 and α1 = 0,
T = T1 the smallest subtree pruned from Tmax at complexity α1,
nf the number of leaves of T ,

Compute for each node t of T
nt the number of observations in t,
ρ(t) the local risk of t:

ρ(t) = n−1∑
(xi,mi)∈t 1m̂t 6=mi for misclassification rate, or

ρ(t) = (1−
∑2

j=1 p̂(j|t)
2)nt/n for Gini index

ρ(Tt) =
∑
{f leaf of Tt}

ρ(f) the risk of the branch Tt issued from t,

nTt the number of leaves of branch Tt.

While While nf > 1,
compute

αk+1 = min
{t internal node of T}

ρ(t)− ρ(Tt)

nTt − 1
.

Prune all branches Tt of T verifying
ρ(Tt) + αk+1nTt = ρ(t) + αk+1

Set Tk+1 the pruned subtree obtained in that way.
Set T = Tk+1 and k = k + 1.

Output Sequence (Tk, αk)16k6K .

Table 2: Pruning Algorithm.

either SpatCART or CART. We could expect the following results.
First, since the pruning strategy (see Table 2) is the same for the two methods, based either
on the minimization of penalized misclassification rate or on the minimization of penalized Gini
index, the major differences between our proposal (Spatial CART) and the existing schemes
must be concentrated on the growing step. In addition to the final trees, we also have to look
at the comparison of the two maximal trees.
Second, since the new splitting criterion reduces more or less to the classical one in the case
of spatial homogeneity, we have to consider some artificial homogeneous examples to illustrate
this and, what is more crucial, to define some artificial inhomogeneous examples to capture the
interest of our proposition. This second point must be considered because the spatial nature of
the data must be taken into account, and we can refer to [17] and [1].
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5.1 Illustrative examples

So, the idea here is to check that CART and SpatCART behave as expected on two typical ex-
amples: (a) a control example where the Bayes classifier is a classification tree. In this case, the
two algorithms could find a partition close to the partition defined by the underlying model. (b)
an example where the classification problem is trivial, and where the interaction between marks
plays an important role. In this case, SpatCART must produce splits significantly different from
those produced by CART. Let us detail the two illustrative simulated examples.

The first example is the Chess bivariate Poisson point process on the unit square, with marks
simulated from a blue and red chessboard with 9 squares, represented in the left panel of Fig-
ure 2. It is an example of spatial homogeneity for which CART and SpatCART could lead to
similar results.

The second example is the Locally repulsive bivariate Poisson point process on the unit
square, with a majority red mark, and a minority blue one. The marked point process is de-
signed by splitting vertically the unit square into two parts (see the right panel of Figure 2): on
the left part, the minority blue marked points repulse red ones, with a constant repulsion radius
equal to r = 0.05 ; on the right part, blue and red marked points are independently distributed.

In this example, a spatial inhomogeneity is introduced, then CART and SpatCART should lead
to different results: CART should miss the difference between the two parts and SpatCART
should highlight it.

Figure 2: Left: Chess simulated data set. Right: Locally repulsive simulated data set.

14



With these two different scenarios in mind, it remains to analyze the results. But before that,
we propose to focus on the kernel of our proposal: the new splitting criterion convenient for
detecting a certain kind of spatial heterogeneity and the initial spatial resolution to be selected.

5.2 Intertype K-function and splitting criterion

The key tool for defining the splitting criterion is the intertype K-function. More precisely the
difference between the estimated one and its theoretical value is evaluated in order to select the
split. In each cell of the tesselation, the intensity is assumed to be constant, i.e. the process
is assumed to be homogeneous. Figure 3 presents the Chess simulated example: on the left we
have the estimated intertype K-function (as a function of r) and its theoretical counterpart and,
on the right, the difference between these two functions. In this typical situation, this difference
is strictly decreasing and the natural choice is to take r0 as large as possible.

Figure 3: Example of intertype K function and its theoretical value in the homogeneous situation for Chess

simulated example. Left : Intertype K-functions. Right : Difference between estimated and theoretical intertype
K-functions.

The next object of interest is the impurity function directly connected with the splitting criterion.
Figure 4 illustrates the behavior of the impurity function with respect to first split for Chess

example, which appears to be clear and expected.

5.3 Maximal and optimal partitions

With two different situations depicted by Figure 2, we compare the results of the usual CART
strategy (for growing and pruning) and those obtained applying our new proposal.

5.3.1 The homogeneous case

Depending on the run of simulations, the obtained partitions can be roughly the same, or
quite different due the ties problem for the split choice, which occurs more frequently in such an
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Figure 4: Behavior of impurity with respect to first split for Chess example.

example exhibiting high symmetry. Selecting an example for which the maximal trees are similar
leads to Figure 5, where SpatCART trees have been obtained from initial resolution r0 = 0.25
equal to the maximal difference between estimated and theoretical intertype K-functions (see
Figure 3). Let us remark that the true underlying frontiers are recovered by the CART and
SpatCART optimal classification trees, and that the differences appear inside the blocks of the
maximal trees.
Examining the corresponding behaviors of the number of leaves as a function of complexity for
SpatCART and CART (see Figure 6), this similarity is visible.
So to summarize, as expected, when there is nothing to discover from the spatial viewpoint,
SpatCART can behave as the usual CART but in most cases would lead to quite different
partitions, due to ties.

5.3.2 The inhomogeneous case

Using roughly the same sequence of plots, let us examine now a more interesting aspect, crucial
to illustrate what is the specific contribution of SpatCART.
The first step is to compare the maximal trees. We start with an initial resolution r0 smaller
than the locally repulsion scale r = 0.05. Indeed, since the domain consists of a left part where
the points of the minority mark push back those of the majority mark to at least 0.05 units,
and a right part where the two marks are distributed independently, therefore, to detect this
difference, it is necessary to adopt a sufficiently small resolution, which corresponds to values of
r0 lower than the repulsion threshold.
Figure 7 contains the SpatCART (top) and the CART (bottom) trees on Locally repulsive
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Figure 5: Maximal (left) and optimal (right) trees for SpatCART (up) and CART (bottom) on Chess data set
with initial resolution r0 = 0.25. The pruned subtrees are selected through the largest plateau method (see Figure
6)

data set. The partitions are extremely different. More precisely, since the initial r0 is small
enough, SpatCART does not split the left half of the square, and the right half is split iteratively
according to the direction of the first split. This is expected since the precision of the estimation
of the intensities is directly related to the number of points and the intensity of the rarer is
too low to provide a reliable estimate. A solution could be to impose a minimum number of
points for each mark to allow splitting. We have not implemented it since pruning will remove
these artificial splits. Note that if the gain of impurity is the same for both direction, the x
direction is chosen. On the other hand, CART splits according to the empirical distribution of
the blue points, leading to a very different partition. So the generated maximal partitions are,
as expected, different in the inhomogeneous situation.
The corresponding sequences of complexities for class probability trees are given by Figure 8. A
second difference appears: SpatCART seems to generate less splits to provide partitions similar
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Figure 6: Behavior of number of leaves versus complexity for SpatCART and CART on Chess data set. For each
case, 4 represents the tree selected via the modified largest jump method, while � represents the tree selected
via the largest plateau method.

to CART in terms of spatial repartition, generating less false alarms (useless spurious splits).
To end this analysis, let us mention that in this case, results using the pruning strategy are
convenient: the selection based on misclassification rate leads to root trees. This is logical since
the percentage of blue marks is too low to be recovered. Here, the difference is clear: since there
is no heterogeneity in the marginal structures of the response distribution, nothing is inferred
using CART.

To summarize, SpatCART seems to provide better partitions in terms of marks spatial reparti-
tion (see the maximal trees figures) and SpatCART needs less splits to provide partitions similar
to CART in terms of spatial repartition, suggesting that it avoids false alarms in a better way.

6 Example

6.1 Data

We applied these methods to a tropical rain-forest located at Paracou, 40 km west from Kourou
in French Guiana (5◦15’N, 52◦55’W). It is an experimental site that is devoted to studying
the effects of logging damage on stock recovery. Twelve plots (6.25 hectares each) of undis-
turbed forest were settled in 1984. On each plot, the circumference of every tree with a dbh
(diameter at breast height) greater than 10 cm was measured with a precision of 0.5 cm. Its
spatial coordinates (± 50 cm) and its specie were noted too. Measurements have been carried
annually from 1984 to 1995, and once every two years since. A more precise description of the
Paracou plots may be found in [16] and the data can be freely downloaded from the website
https://paracou.cirad.fr/. Experiments on the Paracou data set may be reproduced with
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Figure 7: Maximal (left) and optimal (right) trees for SpatCART (up) and CART (bottom) on Locally

repulsive data set, with initial resolution r0 smaller than the locally repulsion scale r = 0.05.

the Paracou function from R package spatcart.

We focus on two species:

• Vouacapoua americana is a hermaphroditic shade tolerant tree specie of mature tropical
rainforests and whose distribution spans the eastern part of the Guiana shield. Its local
density averages around 10 individuals per hectare for trees with greater than 10 cm dbh,
but this varies greatly because of spatial clustering. Individuals are clustered in large
patches of a few hectares that are mainly located on hill tops and slopes [21].

• Oxandra asbeckii is a specie of the understorey, the largest individuals of which measure
less than 15 cm dbh. It is a shade tolerant specie [12]. It shows animal dispersal: the
seeds are dispersed after passage through the vertebrate gut. Oxandra asbeckii is located
on hill tops and slopes.
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Figure 8: Behavior of number of leaves versus complexity for SpatCART and CART on Locally repulsive

data set, with initial resolution r0 smaller than the locally repulsion scale r = 0.05. For each case, 4 represents
the tree selected via the modified largest jump method, while � represents the tree selected via the largest plateau
method.

This explains the spatial distribution for the two species displayed on Figure 11. The two species
Vouacapoua americanaa and Oxandra asbeckii were selected at Paracou because their spatial
distribution is linked to the relief: they are both located on hill tops and slopes. Elevation is the
environmental factor that drives their spatial distribution and this creates a strong interaction
between both repartitions. We focus on one plot represented in Figure 11. The figure also gives
the contour lines in order to be able to determine hill tops and slopes of the plot. Seventy trees
of Vouacapoua americana and eighty trees of Oxandra asbeckii were referenced for this plot.
The data consists of seventy lines (one per tree) and four columns: the 3-D coordinates (longi-
tude, latitude and elevation) as well as the specie indication.

6.2 Results and discussion

From the representation of the estimated and theoretical intertype K-functions and their differ-
ence evaluated on the Paracou data set (see Figure 9), we can see three regimes: one before the
scale value r = 6 (blue dashed line on the right of Figure 9), where there is no interaction be-
tween species; one between scale values r = 6 and r = 24 (red dashed line on the right of Figure
9) where species begin to interact; and one after the scale value r = 24 where the interaction
between species increases rapidly. From an ecological point of view, r = 24 can be interpreted
as the limit of seeds dispersal (see [21]). Hence, we choose the initial median scale value r0 = 15
to proceed with SpatCART, in order to be sure to catch a sufficiently large scale to capture
interaction, and not too large to avoid deeper maximal trees.
To better interpret the regions highlighted by the algorithm in terms of interaction between
marks, we color each region of the space (each leaf t) using a monotonic gray colormap based
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Figure 9: Intertype K function and its theoretical value in the homogeneous situation for the Paracou data set.
Left : Intertype K-functions. Right : Difference between estimated and theoretical intertype K-functions; blue:
scale r = 6, red: scale r = 24.

on the value of K̂t
ij(rt) (see equation 6). Thus Figure 10 colouring the pieces of the partition

using this interaction-based colormap, highlights the presence of Oxandra asbeckii at the hill of
left top of the plot as well as the competition between both species for the hill at the bottom of
the plot. This representation magnifies the regions of high interaction, showing that SpatCART
recovers the spatial structure and that the interaction-based grey colormap is meaningful. In
addition, the colormap based on interaction allows to visually appreciate the difference between
two adjacent regions. This opens a very natural post-processing by ignoring useless frontiers
and provides more interpretable tessellations.

The class probability tree has more leaves and if both resulting partitions are coherent, even
exactly the same from the right side of the window space, an interesting difference must be
noted. On the right side of the window space, the class probability tree partition provides a
more detailed segmentation (possibly induced by the slope of the hill) but cleaning the two
partitions according to the interaction-based colormap leads to highlight the same areas.
A contrario, CART results are really poor with only two leaves, for the modified largest jump
variant (left panel of Figure 11). Basically it separates the hill at the bottom of the plot from
the rest but cannot catch the mixed structure of species along the hill. The spatial structure as
well as the ecology of the two species on this plot cannot be inferred from CART results. CART
results using the largest plateau variant (see the right panel of Figure 11) are not more infor-
mative for the spatial viewpoint, highlighting the regions only according to the most prevalent
specie.

From an ecological perspective, few points can be highlighted. At first, elevation is a key variable
to describe interactions between these two species. Even if this two species are shade tolerant,
competition for light is a major determinant of forest composition. Hills intercept a greater
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Figure 10: SpatCART class probability (left) and classification (right) optimal trees on the Paracou data set
with initial resolution r0 = 15. The grey colored Interaction between marks is the estimation of the intertype
K-function restricted to each leaf of the tree as defined by (6).

Figure 11: CART common optimal class probability and largest plateau optimal classification tree (left), and
modified largest jump variant optimal classification tree (right) on the Paracou data set.

portion of incoming solar radiation and thus, generate contrasting strategies between species to
invest a greater portion of their resources in expanding their crowns. The result is not surprising
but the method allows to determine more precisely the interaction areas.
On the other hand, below-ground competition for water is also an important driver of tree
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growth. Slope does not store water and it is a strong disadvantage during drought events. Com-
petition for water among neighbouring trees clearly lead an advantage to Vouacapoua americana
compared to Oxandra asbeckii.

7 Conclusion and perspectives

For a bivariate marked spatial point process, we extend CART to segment the space into ho-
mogeneous areas for interaction between marks. The original CART constructs homogeneous
zones with respect to the distribution of the variable of interest (here, the mark) conditionally
to the explanatory variables (here, the position in space). By modifying the splitting criterion
in the CART algorithm, using an empirical version of the intertype K-function, we obtain a new
procedure, called SpatCART, adapted to the problem at hand. The intertype function itself
depends on a parameter r0 which must be carefully chosen: not to set it once and for all, but
rather to start from a rather large value (at the root of the tree) and gradually decrease it as the
tree is built by SpatCART. The proposed variant is a way to explore spatial data as a bivariate
marked point process using binary classification trees.

This paper is strongly dependent on the binary case, some extensions to handle the multiclass
case can be sketched. One possibility is to adopt the strategy used to handle multiclass Sup-
port Vector Machines (SVMs) which are intrinsically two-class classifiers (see [15]). A technique
widely used in practice is to build one-versus-rest classifiers. Then we could obtain several tes-
sellations and select the final partition by taking into account some criterion maximizing some
global measure of heterogeneity between cells, which could be related to the Kij(r∗) for a suit-
ably chosen scale r∗.

Another possible extension is to modify, not only the growing step of the CART algorithm, but
also the pruning strategy in order to drive it by point processes properties. This requires to
define some additive measure of heterogeneity of the partitions. An intermediate solution could
be to use a classical pruning step to simplify and avoid spurious useless splits but the final choice
could be to select the final tree among the nested sequence of tree by maximizing the same kind
of heterogeneity criterion mentioned before.

Instability is one of the main drawbacks of CART and many classical ways to contain it are
available. Ensemble methods like bagging, boosting and random forests (see [15] for example)
can then be similarly defined in the spatial case but the aggregation part should be defined. To
introduce and experiment a bagging-like scheme could be of interest for a future work. Note
that the sensitivity of CART with respect to rotation could also be used as an alternative way
to generate several tessellations.
Using such an idea, we could imagine to develop a variant selecting randomly, in case of ties, the
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splits on each direction to choose, the best candidate per direction and if necessary to randomly
select the direction. Such a scheme would lead to equivalent but different partitions which could
finally be combined.

Another possible extension is to incorporate covariables. In the specific forestry example, it is
possible to think about the introduction of the elevation as a third spatial coordinate. Never-
theless, it is not straightforward to estimate intensity of a point process in higher dimension.
Alternatively and more generally, we could imagine to incorporate covariables using a three-
steps procedure. First by performing a classical CART using only the additional covariables
and then, in each leaf, to apply a SpatCART on spatial variables and finally select the best
space tessellation or aggregate them.

R package and source codes

An R package spatcart, and the R codes to reproduce experiments of sections 5 and 6, are avail-
able on the repository https://github.com/Servane-Gey/Spatial-classification-trees.
Package spatcart may also be directly installed with R package devtools from the github

repository Servane-Gey/spatcart.
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