Organometallic-Mediated Alternating Radical Copolymerization of tert -Butyl-2-Trifluoromethacrylate with Vinyl Acetate and Synthesis of Block Copolymers Thereof
Résumé
Organometallic‐mediated radical polymerization (OMRP) has given access to well‐defined poly(vinyl acetate‐alt‐tert‐butyl‐2‐trifluoromethacrylate)‐b‐poly(vinyl acetate) and poly(VAc‐alt‐MAF‐TBE) copolymers composed of two electronically distinct monomers: vinyl acetate (VAc, donor, D) and tert‐butyl‐2‐trifluoromethacrylate (MAF‐TBE, acceptor, A), with low dispersity (≤1.24) and molar masses up to 57 000 g mol−1. These copolymers have a precise 1:1 alternating structure over a wide range of comonomer feed compositions. The reactivity ratios are determined as rVAc = 0.01 ± 0.01 and rMAF‐TBE = 0 at 40 °C. Remarkably, from a feed containing >50% molar VAc content, poly(VAc‐alt‐MAF‐TBE)‐b‐PVAc block copolymers are produced via a one‐pot synthesis. Such diblock copolymers exhibit two glass transition temperatures attributed to the alternating and homopolymer sequences. The OMRP of this fluorine‐containing alternating monomer system may provide access to a wide range of new polymer materials.
Origine | Fichiers produits par l'(les) auteur(s) |
---|