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Gel layers bound to a rigid substrate are used in cell culture to con-
trol differentiation and migration and to lower the friction and tailor
the wetting of solids. Their thickness, often considered a negligi-
ble parameter, affects cell mechanosensing or the shape of sessile
droplets. Here we show that the adjustment of coating thickness pro-
vides control over energy dissipation during the spreading of flowing
matter on a gel layer. We combine experiments and theory to pro-
vide an analytical description of both the statics and the dynamics
of the contact line between the gel, the liquid and the surrounding
atmosphere. We extract from this analysis a hitherto unknown scal-
ing law that predicts the dynamic contact angle between the three
phases as a function of the properties of the coating and the velocity
of the contact line. Finally, we show that droplets moving on vertical
substrates coated with gel layers having linear thickness gradients
drift towards regions of higher energy dissipation. Thus thickness
control opens the opportunity to design a priori the path followed
by large droplets moving on gel-coated substrates. Our study shows
that thickness is another parameter, besides surface energy and sub-
strate mechanics, to tune the dynamics of liquid spreading and wet-
ting on a compliant coating, with potential applications in dew col-
lection and free-surface flow control.

Wetting | Soft Materials | Interfacial Science |

Gels are soft complex materials made of a polymeric scaf-
fold in which a liquid may be embedded (1). They can be

obtained from a broad catalogue of macromolecules and sol-
vents such as poly(dimethylsiloxane) (PDMS) or water-based
solutions of poly(vinyl alcohol) (PVA). In turn, gels offer great
flexibility with respect to the tuning of their mechanical and
physicochemical properties. These materials find uses in a
diverse range of applications, such as cell culture (2), regen-
erative medicine, drug delivery (3), or the modification of
solid surfaces to control friction, wetting and heterogeneous
nucleation (4–6). Finally, gels as coatings have attracted re-
newed interest in recent years due to the opportunity they
offer to generalize existing descriptions of the wetting of solids
to arbitrary materials (7–19).

Most of the reports dealing with wetting involve a sessile
droplet sitting on a solid with a large shear modulus µ0 '
O(GPa)(20, 21). In this context, the normal component ~F⊥cap
of the resulting capillary force at the contact line between the
droplet, the rigid substrate and the atmosphere deforms the
interfacial region of the solid on molecular scales. As a result,
this contribution is neglected in the rationalization of wetting
on solids, and the problem is usually described with the Young-
Dupré equation. In contrast, gels can be soft enough (1 ≤
µ0 ≤ 104 Pa) that ~F⊥cap deforms their surface on micrometer
scales, much larger than the size of the polymers and of the
solvent molecules. Due to progresses in experimental methods,
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Fig. 1. Sliding of a droplet on a soft layer. (a) A water droplet is deposited on the
surface of a glass slide covered with a poly(dimethylsiloxane) layer of thickness h0.
The glass slide is inclined to the vertical at t = 0. (b,c) Motion of 2µL droplets on
glass slides covered with PDMS layers 9 µm and 270 µm thick. Labels: time in
minutes elapsed since inclination. Scale bar: 1mm.

many recent studies have investigated how the presence of this
deformation, known as a ridge, may alter the force balance at
the contact line and modify the shape of both the sessile drop
and the substrate (13, 14, 16–18, 22).

The presence of a soft coating also modifies wetting dynam-
ics. The velocity V at which a contact line between a solid, a
liquid and a gas moves on a rigid substrate coated with a soft
elastomeric layer is smaller than the velocity of the contact
line on the bare substrate. This velocity reduction, known as
viscoelastic braking (23), results from an additional mecha-
nism of energy dissipation due to the viscoelasticity of the gel.
As a consequence, the spreading of liquids and the motion
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of droplets are slowed down. Nonetheless, this description
of the problem is incomplete: Figures 1b-c demonstrate that
the velocity of a water droplet moving down a vertical glass
slide coated with a soft viscoelastic silicone layer (µ0 = 1.1
kPa, used for all experiments in this study, see Materials for a
rheological characterization) also decreases as the elastomer
thickness increases. The purpose of this paper is to uncover the
link between substrate thickness and the motion of a contact
line.

1. Results

As we want to understand a dynamic wetting observation, we
must characterize the reference state, i.e. the statics of wetting.
We investigated the properties of the region surrounding the
contact line between a sessile droplet and a silicone elastomer
layer using both side-view microscopy to measure the apparent
contact angle at equilibrium θeq and a non-invasive optical
method based on Schlieren photography (24) (Fig. 2a). We
find that θeq depends on the contact radius R of the droplet
on the elastomer at constant sample thickness h0 but it is
independent of h0 for constant R (Fig. 2b-c), accounting
for measurement uncertainties. For large droplets, θeq tends
towards a saturation at a value θ∞ ' 106◦. The Schlieren
results show that the connection between the ridge and the
flat elastomer surface far from the droplet is monotonically
decreasing for large thicknesses while the surface profile shows
a sub-micrometre surface depression in the vicinity of the
ridge at small thicknesses, known as a micro-trough (13, 14).
The micro-trough results from the incompressibility of the
gel, which has to accommodate the Poisson effect at small
thicknesses under the zero-motion constraint at its basis due
to its bonding to a rigid substrate. Its depth ζ increases with
a decrease of h0 and an increase of the droplet radius R (see
Supplementary Materials).

We interpret these observations with an analytical theo-
retical description of the statics of elasto-wetting in the limit
of linear elasticity developed recently by Dervaux and Limat
(25) that we extend to account for finite-depth effects (see
Supplementary Materials). The model (and the model used in
the dynamic context later) considers a rivulet, i.e. a column of
liquid whose axis of symmetry is parallel to the surface of the
gel, sitting on the surface of the coating. As the angles that
we have measured are rather close to π

2 , we assume that the
interfacial tensions of the solid with the liquid and the gas are
identical, γSL = γSV = γs, and this quantity is the only fitting
parameter. The model is able to capture the surface profiles of
the elastomer for all the thicknesses that we investigated (Fig.
2d) as well as the evolution of ζ as a function of h0 and R (see
Supplementary Materials). The model indicates that γs = 40
mN m−1, a value comparable to those reported earlier(17, 26).
To sum up, the surface profile of the elastomer layer in the
vicinity of the contact line depends on layer thickness. In
contrast, the apparent equilibrium contact angle θeq is inde-
pendent of the geometry of the gel layer; it depends only on the
surface energies of the materials , a feature that is predicted
by the model (See Supplementary Materials). The analysis of
the statics of wetting allows us to define the reference state of
the study of wetting dynamics as a function of the thickness
of the elastomer layer to which we now turn.

Wetting dynamics is characterized by the measurement of
the dependence of the difference ∆θ = θeq − θdyn, the latter

being the dynamic contact angle, on the velocity of the contact
line V (21). As θeq > π

2 , we studied a receding contact line
surrounding a droplet with an initial contact radius R >> 1
mm that we deflated at a constant flow rate. We recall that
θeq reaches its saturation value θ∞ for such large droplets. For
all thicknesses, ∆θ increases with an increase of V (Fig. 3a).
The dynamic contact angle differs by almost 30◦ from the
static equilibrium contact angle for the largest velocities we
investigated. The two curves show that ∆θ is also a function
of thickness: it grows by 30% with an augmentation of h0
from 10 to around 100 µm (Fig 3b). ∆θ saturates to its
velocity-dependent value when h0 > 100 µm. To interpret
these observations, we recall that, in general, large energy
dissipation induces large values for ∆θ at fixed contact line
velocity (21). In this context, our results show that the thinner
the elastomer is, the more energy dissipation is reduced. Voué
et al. reported a similar observation for a silicone oil wetting
a silicone elastomer (27). As the liquid can permeate through
the gel in their system, the wetting dynamics they report are
difficult to interpret, especially since the thickness of their
elastomer layers is of the order of 10 µm. Permeation does
not occur in our system. We now unveil how thickness and
dissipation are related in elastowetting.

To identify the mechanism relating dissipation to the thick-
ness of the coating, we developed an analytical model based on
linear viscoelasticity that is a generalization to large velocities
and arbitrary rheology of a framework proposed by Long et al.
(10). In this model, dissipation in the solid balances the energy
that sets the contact line in motion. We assume that the shear
relaxation modulus of the soft layer is described by the Chasset-
Thirion model, µ(ω) = G′(ω) + iG′′(ω) = µ0(1 + (iωτ)m) (10).
We find this assumption to be valid for our material with
µ0 = 1085 ± 124 Pa, m = 0.66 ± 0.04 and τ = 15.4 ± 0.4
ms (see Materials). We also use the surface tension of the
solid γs = 40 mN m−1 obtained from the statics. The model
predicts that the function describing the dependence of the
dynamic contact angle on the properties of the substrate and
the velocity of the contact line G(θdyn) = cos (θeq)−cos (θdyn)

sin2 (θdyn)
is proportional to V m, in excellent agreement with the data
(Fig. 3a), with an adjusted exponent madj = 0.62± 0.02 close
to the experimental value of m = 0.66 ± 0.04 we obtained
from rheology (inset in Fig. 3a). The full model also captures
the dependence of G(θdyn) on h0 at constant velocity of the
contact line (Fig. 3b). Finally, we note that we did not observe
effects related to the Laplace pressure inside the droplet. Thus
the 2D results obtained with the model are valid in 3D (see
Supplementary Materials).

We can extract from the model scaling laws that describe
the asymptotic behavior of G(θdyn) for thick and thin coatings.
We assume that the problem is invariant with a translation
along the contact line. Our considerations are based on the
Fourier transform of the problem. The power per unit length
of the contact line injected by the driving capillary force is:

Pin ∝ γV (cos (θdyn)− cos (θeq)) [1]

where γ is the interfacial tension of the liquid-gas interface.
Power Pin is balanced by dissipation in the gel. Using the
Chasset-Thirion model, we estimate the power dissipated in
the gel per unit volume:

pdis ∝ µ0(ωτ)mε2ω [2]
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Fig. 2. Experimental set-up and characterization of the static three-phase contact line. (a) The region surrounding the contact line between water, the elastomer and the
atmosphere is visualised simultaneously from the side with camera C1 and from the bottom with camera C2 that captures the output of a Schlieren photography set-up. The
former allows us to measure the contact angle θ and the contact radius between the droplet and the solid R. The latter is used as a surface profilometer along the yellow
dashed line. Scale bar on the images: 0.5 mm. (b,c) Dependence of the equilibrium value of the contact angle θeq on R for four different layer thicknesses and on the thickness
h0 of the soft layer for sub and supra-millimetric droplets. In the latter graph, the dashed lines represent a spread of one standard deviation around the average value of θeq

over all thicknesses. (d) Dependence of the surface position ζ on the distance to the contact line for two different thicknesses. The origin of the x axis is arbitrary; we use it to
note that part of the contact line is hidden to the Schlieren set-up by the droplet as θeq > π/2. Dashed lines: predictions of our model.

where ω is a typical frequency that we assume to be of the
order of V

`
, with ` a length scale to be determined. The dissi-

pated power per unit length of the contact line is obtained by
integrating Eq. 2 over `2, as this length scale also corresponds
to the typical vertical displacement experienced by the solid
as well as the horizontal extent of the moving ridge. Taking
ε = γ

γs
sin (θdyn) as a typical scale for strains:

Pdis ∝ µ0(V τ
`

)mV `
(
γ

γs
sin (θdyn)

)2

[3]

Equating Eqs. 1 and 3, we find that:

G(θdyn) ∝ γ

γ2
s
µ0`

(
V τ

`

)m
[4]

The length ` is related to the balance between capillarity and
elasticity in the system. Its expression depends on whether
the coating has a finite thickness or not. We can express `
in the limit of thin and thick samples by investigating the
asymptotics of the amplitude A of the Fourier transform of
the Fourier transform of the surface vertical displacement field
ζ̃(k) (see Eq. 20 in the Supplementary Materials):

A(k) = 1
γsk2 + µ0K(k)−1 [5]

where k is the wavenumber and:

K(k) = (2k)−1 sinh (2h0k)− 2h0k

2h2
0k

2 + cosh (2h0k) + 1 . [6]

For large thicknesses, h0 → ∞, and we obtain that K(k) →
(2k)−1. Then:

A(k)→ 1
γsk2

1
1 + 2 µ0

γsk

. [7]

The characteristic length scale in Eq. 7 is ` = γs
µ0

, i.e. the
elastocapillary length. Injecting this value of ` in Eq. 4, we
find the scaling predicted 20 years ago by Long et al.(10) :

G(θdyn) ∝ γ

γs

(
µ0V τ

γs

)m

. [8]

In the limit of thin coatings, we carry out the Taylor expansion
of K(k) around h0 = 0 and we keep the first non-vanishing
term:

K(k) ∼ h3
0k

2 [9]

We find that the characteristic length scale is ` =
(
γsh

3
0

µ0

)1/4

in this case. Injecting ` in Eq. 3, we obtain the following
expression for the dissipated power:

Pdiss ∝ µ0ε
2V (V τ)m

(
γsh

3
0

µ0

)(1−m)/4

[10]

and we obtain a new scaling law reflecting thickness effects on
the dynamic contact angle for thin coatings:

G(θdyn) ∝ γLV
γs

(
V τµ0

γs

)m (
h0µ0

γs

)3(1−m)/4

[11]
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Fig. 3. Characterization of the dynamics of the receding three-phase contact line on soft elastic layers. (a) Dependence of the contact angle difference θeq − θdyn on the
velocity of the receding contact line on two layers of thickness h0 = 15 and 900 µm. Dashed lines: predictions based on our model. Inset : log-log plot of the function
G(θdyn) as a function of the contact-line velocity for the same systems. Dashed line: power-law fit with an exponent m = 0.62± 0.02. (b) Dependence of θeq − θdyn on
h0 at constant receding velocity V = 0.1 mm s−1. Dashed lines: predictions of our model for two values of the solid surface tension γs. (c) Test of Eq. 11, relating the
dynamic contact angle to the velocity of the contact line and the thickness of the sample in the small-thickness regime against experimental data. Dashed line: Eq. 11, with
m = 0.62± 0.02 and a slope of 2. The horizontal line is a guide for the eyes. (d) Schematic of the motion of a point of the surface of the elastomer (red dot) during the
passage of the contact line.Time starts at the top left and ends at the bottom right.

Equation 11 can be tested by rescaling the experimental data
as in figure 3c. We see that the data follow Eq. 11 when
h0 << `s = γs

µ0
. When h0 >> `s, the data is independent of

h0 and it follows Eq. 8. We are the first to report the validity
of Long et al.’s model (10) to the best of our knowledge. Thus,
our results show that dissipation during the wetting of a soft
coating by a liquid can be engineered in a predictable way
by adjusting the thickness of the layer. Finally, the range of
thicknesses over which we observe a dependence of dissipation
on h0 corresponds to the typical range of coating thicknesses
in applications.

2. Discussion

The prediction that the dynamic contact angle at a contact
line moving on a soft coating is closer to the value of the static
contact angle as the thickness of the coating decreases may
seem counter-intuitive at first. To gain more insight, we shall
now compare contact line motion for a rivulet on a gel layer
and on a liquid substrate of similar thickness hl. In the latter
case, continuity of stresses and velocities is enforced at all the
interfaces. Momentum diffuses from the droplet to the bulk
of the liquid substrate through the droplet-substrate interface
and stresses and dissipation do not diverge at the contact line.
Energy dissipation occurs in the bulk of both the droplet and
the substrate. In the latter, the dissipation power per unit

length along the contact line between the rivulet and the gel
scales as Pvis ∝ ηV 2 R0(t)

hl
(28), where R0(t) is the radius of

the spreading rivulet; we assume that hl remains constant
over time. Thus, dissipation increases with a decrease of hl
(29, 30). In contrast, at the interface between a gel coating
and a liquid, we enforce the no-slip boundary condition. Thus
velocities are zero everywhere along this interface, and the
contact line is the locus of most dissipation. In this context,
we have shown that dissipation follows Eq. 10. As m < 1,
dissipation decreases with a decrease of the thickness h0 of
the sample.

We also computed the prediction for the dependence of
G(θdyn) using another model proposed recently by Karpitschka
et al.(26). This model captures well the data for ∆θ(V ) at
large thickness provided we adjust the surface tension of the
solid to a value different from the one we obtain in our study
of the statics of wetting. Nonetheless, it does not capture the
decreasing trend of ∆θ at small thicknesses (see Supplementary
Materials). In their model, Karpitschka et al. impose that
capillary forces are at equilibrium at the moving contact line
at all times. The failure of their model to capture our data
suggests that this constraint is not true anymore for droplets
moving on thin coatings. The question of the validity of this
assumption at all thicknesses remains open as its answer lies
in a second-order analysis of the dynamics of elastowetting

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Zhao et al.
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Fig. 4. Drifting of a droplet moving down a vertical glass slide covered with a soft layer
of increasing thickness. (a) a 2-µL droplet moving over a coating with a thickness
gradient ∇h ∼ 70 µm mm−1. Scale bar: 1 mm. (b) Schematic explaining the
mechanism leading to droplet drift during forced motion. Black dashed line is the
trajectory of the droplet, white dashed line is the vertical. The orange arrow represents
the rotation of the droplet as it moves down the coating and experiences differences
in dissipation along its contour, in a fashion analogous to a car experiencing braking
only on one of its sides.

We take advantage of our findings to control the trajectory
of liquids moving at the surface of solid substrates. We coat
a glass slide with a soft elastomeric layer with a thickness
gradient (Fig. 4a). We place a water droplet at one extremity
of the glass slide above the thinnest part of the coating. Then
we incline the glass slide to the vertical, the thickness gradient
being perpendicular to gravity. The droplet slides down and
it drifts from the thinnest regions towards the thickest ones.
Drift results from the dependence of dissipation in the gel on
h0: the droplet experiences a larger braking over the thick
part of the coating than other the thin region (Fig. 4b). Thus,
the droplet is subject to a torque that leads to a global drift
towards the thick region. In our system, drift will be observed
if the gradient starts from h0 < 100 µm. If the thin part of
the thickness gradient is thicker than 100 µm, we expect no
drift, as is observed in the experiments. Finally, we observe no
spontaneous motion of droplets when the glass slide remains
horizontal for a long time. This fact highlights the difference
between our results, whose origin lies in the variation of the
dynamic contact angle around the droplet, and those reported
by Style et al. (31) concerning droplet durotaxis, which occurs
due to changes of the static contact angle along the droplet
perimeter.

Our findings opens the possibility to design soft coatings
whose mechanical dissipation can be adjusted not only by
formulation but also by an appropriate choice of thickness. We
envision improvements in applications such as dew collection,
where the use of soft layers has been shown to improve the
nucleation rate of condensation droplets(5); the use of thin
layers will help increase the up-time of the condensation cell.
We also anticipate the use of our results to control free-surface
flows such as droplet impact or gravity currents passively with
thickness-gradient coatings.

Materials and Methods

Gel preparation and characterization. All the experiments were per-
formed with Millipore-Q purified water (γ = 72 mN/m, ) on poly-
dimethylsiloxane (PDMS) substrates made from the commercial

elastomer Sylgard 527 (Dow Corning, USA). Sylgard 527 is a two-
component elastomer kit composed of a base and a cross-linker. The
two liquids were mixed at a manufacturer-recommended 1:1 ratio,
to respect crosslinking stoichiometry, with a magnetic stirrer for
approximately 30 minutes. The mixture is then let to degas under
vacuum (P ' 50 mbar) for at least one hour. We obtained thin flat
PDMS gel films (thickness h0 < 100µm) by spin-coating directly
the degassed mixture on glass slides. Thickness was controlled by
tuning the spinning speed from 100 to 3400 RPM. For thick flat
films (thickness > 100µm), the thickness was tuned by changing
the elastomer volume poured onto the glass slide mounted with
movable walls.

For the thickness gradient experiment, the Sylgard mixture
was poured into a mold containing a titled glass slide. Next, the
elastomer was cross-linked at 65◦C in an oven for 24 hours. This
protocol produced transparent PDMS films strongly bound to glass
slides. The thickness of the films was measured with a 3D Profiler
(FOCAL 3D Pilot, FOCAL Nanotech, France) operating in white
light scanning mode with a precision of the order of a nanometer.

Figure 5 shows the rheological data obtained for Sylgard 527
and measured with a strain-controlled rheometer (Physica MCR
500, Anton Paar, Austria). The elastomer was cross-linked directly
between the Peltier plate and the plate tool (PP20-MRD, d = 20
mmAnton Paar, Austria) at T = 65◦ C for 4 hours. The sample was
then let to cool down to 25± 0.2◦ C before running the test. The
gap was set at 0.6 mm and the strain was fixed at 1%. A fit of the
Chasset-Thirion model, µ(ω) = G′(ω) + iG′′(ω) = µ0(1 + (iωτ)m),
to the experimental data provides the parameters for the frequency-
dependent mechanical response of the gel. We also characterized

Fig. 5. Small-amplitude oscillatory shear measurement of the mechanical properties
of the Sylgard 527 elastomer with a strain-controlled rheometer (Physica MCR 500,
Anton Paar, Austria). Dashed line: best fit of the Chasset-Thirion model, µ(ω) =
G′(ω)+iG′′(ω) = µ0(1+(iωτ)m), to the experimental data. µ0 = 1085±124
Pa, m = 0.66± 0.04 and τ = 15.4± 0.4 ms

the contact angle hysteresis of water on Sylgard 527 and we found
it to be of the order of 3-4◦.

Quantitative Schlieren optics. We built an observation platform for
the measurements of out-of-plane deformations of the soft film based
on Schlieren optics. A white LED light source (Luxeon, Lumileds,
USA) is focused on a mechanical slit (VA100/M, Thor Labs, USA,
size 1×13.6 mm) by a condenser L1. The light beam from the slit is
then collimated by a lens L2 (diameter dL2 = 25.4 mm; focal length
f = 101.6 mm; MPD 149-P01, Thor Labs, USA). The parallel
light beam goes through the sample between mirror prisms M1 and
M2. It is then collected by a third lens L3 (LB1374-B, Thor Labs,
USA). To obtain a Schlieren set-up, a knife blade is placed at the
focal point of lens L3 and hides part of the focal region. The blade
filters those light beams that have been deviated because of surface
deformations of the gel sample due to the presence of the droplet.
Images of the filtered focal point are captured with a digital camera
(DFK 23UX174, Imaging Source, Germany) equipped with a lens
(Avenir TV Zoom Lens F1.8, JAPAN). The CCD sensor of the
camera has a dimension of 1280× 960 pixel, resulting in a lateral
spatial resolution of 10.2 µm px−1.
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In principle, the slit light source is perfectly refocused on the
knife blade plane as illustrated by the green light beam drawn in
Fig. 2 (a), as long as there is no disturbance on the light path.
However, changes in the surface slope of the gel film deflect the
light beam and the conjugated image is thus shifted by a distance
∆a in the focal plane as illustrated by the red beam shown in Fig.
2 (a). Under the small angle approximation, this distance is related
to the deflection ε of the light beam through the Schlieren object
by the formula ∆a = fε where f is the focal length of L3. For
an accurate quantification of the surface profile, we carried out a
three-step measurement. First, a sequence of pictures was recorded
at different vertical blade positions and a map relating the pixel
grayscale value to the deflection by the knife cut-off is built. During
this step, the Schlieren object is absent. Second, all the camera
parameters are kept identical and pictures are taken 5 mins after the
drop fully relaxes on the soft substrate (for the static deformation
measurement). Then, the grayscale value of the Schlieren picture
is compared to the calibration map and we obtain a deflection
map. Finally, by combining the deflection relation and Snell’s law,
the map of the surface slope is reconstructed. Our system has a
deflection angle sensitivity of 0.0007 rad, and we could measure
angles up to 0.05 rad.

Data acquisition. To study the statics of wetting, we enclosed the
sample in a transparent glass chamber (75× 50× 8mm) to control
humidity and avoid evaporation. Its lid could easily be removed
to place drops. For experiments, a reservoir of water was enclosed
together with the PDMS slides to saturate the atmosphere of the
glass chamber. All the measurements were performed 5 minutes
after deposition. For the spreading dynamic experiments, a side
view camera (DMK 23UV024 Imaging Source, Germany, C1 in
Fig. 2 a) equipped with a lens (TV Lens 50mm, f1:2.8, Ricoh,
Japan) and two tube sets (C Mount TV Lens Extension Tube Set
40 mm, JAPAN), was used. The spatial resolution of C1 was 5.5
µm px−1. Using a Gaussian subpixel detection technique, the error
in the contact line velocity determination is around 10 µm s−1.
All the drops were deposited using a syringe which was connected
to a pump (PUMP 33, HARVARD APPARATUS, USA) at room
temperature. For the sliding and drifting experiments on tilted
slides, droplets were deposited using a micropipette (0.5-10 µL,
FinnPipette) at ambient temperature. A front view camera (DFK
23UX174, Imaging Source, Germany) equipped with a lens (TV
Lens 50mm f1:2.8, Ricoh, Japan) and one tube set (C Mount TV
Lens Extension Tube Set 20 mm, JAPAN), with a spatial resolution
of 15.9 µm px−1 was used to track the sliding droplets.

Model. We use two models, one for the statics and one for the
dynamics. The model describing the statics is built in the framework
of linear elasticity and we account for the surface tension of the
solid. We assume that the system is translation-invariant and we
describe a x-y slice of the substrate subjected to the capillary force
of a liquid. We model the latter as a concentrated load on an elastic
half-space of depth h0. We are interested in two situations, the
single contact line and the rivulet, i.e. a column of liquid that
has two straight contact lines with the substrates. We focus on
the far-field vertical displacement for which possible divergences in
the displacements at the contact line do not matter (25). We use
Fourier transforms to solve the biharmonic equation that describes
the problem, and we compare the data with the outcomes of the
description of the rivulet. The static model also accounts for the
small hysteresis that we measure in experiments in the form of a
force tangential to the surface.

The model for the dynamics is built in the framework of linear
viscoelasticity. We use the surface tension of the solid deduced from
the study of the statics as an input to the model. As experiments
indicate that the properties of the motion of the contact line are
independent of the size of the droplet, we focus on the case of a

single contact line. We compute the dependence of the vertical
displacement on the velocity of the contact line using a similar
procedure to the statics resorting to Fourier transforms. We then
compare the power injected in the system due to capillarity with
the dissipated power in the substrate due to its viscoelasticity.
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