
HAL Id: hal-01836486
https://hal.science/hal-01836486v1

Submitted on 12 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Animating AZee Descriptions Using Off-the-Shelf IK
Solvers

Fabrizio Nunnari, Michael Filhol, Alexis Heloir

To cite this version:
Fabrizio Nunnari, Michael Filhol, Alexis Heloir. Animating AZee Descriptions Using Off-the-Shelf IK
Solvers. Workshop on the Representation and Processing of Sign Languages, May 2018, Miyazaki,
Japan. pp. 155-162. �hal-01836486�

https://hal.science/hal-01836486v1
https://hal.archives-ouvertes.fr


Animating AZee Descriptions Using Off-the-Shelf IK Solvers

Fabrizio Nunnari1, Michael Filhol2, Alexis Heloir1,3
1DFKI/MMCI/SLSI Group, Saarbrücken, Germany,

2LIMSI, CNRS, Université Paris–Saclay, Univ. Paris–sud, bât. 508, 91400 Orsay, France,
3LAMIH UMR CNRS 8201 Université de Valenciennes, 59300 Le Mont Houy, France

fabrizio.nunnari@dfki.de, michael.filhol@limsi.fr, alexis.heloir@dfki.de

Abstract
We propose to implement a bottom-up animation solution for the AZee system. No low-level AZee animation system exists yet,
which hinders its effective implementation as Sign Language avatar input. This bottom-up approach delivers procedurally computed
animations and, because of its procedural nature, it is capable of generating the whole possible range of gestures covered by AZee’s
symbolic description. The goal is not to compete on the ground of naturalness since movements are bound to look robotic like all
bottom-up systems, but its purpose could be to be used as the missing low-level fallback for an existing top-down system. The proposed
animation system is built on the top of a freely available 3D authoring tool and takes advantage of the tool’s default IK solving routines.

Keywords: Sign Language Synthesis, Signing Avatar, AZee.

1. Introduction on Signing Avatars
In signing avatar technology, current approaches for the
creation of sign repositories can be generally described as
pre-animated or synthesised. Solutions embracing the pre-
animated approach start from an analysis of full sentences,
which are then segmented at a coarse, lemma level. Very
large repositories are populated by captured or manually
authored Sign Language (SL) animation clips. SL gener-
ation is then performed by sequentially stitching together
the available segments. In contrast, solutions embracing
the synthesized approach are derived from a linguistic rep-
resentation. This leads to a concise set of atomic animation
elements which are symbolically described in a high level
declarative language. In this case, SL generation consists
of a procedural realization of the symbols composing first
signs and then full sentences.
Because they have been manually authored or captured on
human performers, pre-animated approaches usually de-
liver animations which are perceived by end-users as more
realistic and natural. However, they cannot extrapolate
much beyond the set of low level pre-stored animation
clips. On the contrary, synthesised approaches deliver pro-
cedurally computed animation which are perceived as stiff
and robotic by end-users, but, because of their procedu-
ral nature, they are presumably capable of generating the
whole possible range of gestures covered by their symbolic
description.
In both cases, a clear requirement for any system today is
that it be able to animate various articulators on the body
and face, with flexible timing patterns. By this we mean,
for example, be able to control all communicative channels
simultaneously (hands, eyes, lips, and others), but not all
sharing the same time boundaries.
In this paper, after a survey of the related work (Section 2.),
we present in Section 3. how the AZee system is designed
to: i) realize animations that feature interleaving commu-
nicative channels, and ii) is designed to be part of a genera-
tor interchanging synthesis with pre-animated sequences.
This novel approach has been so far only a design pro-
posal. In Section 4., we describe how we used a popular

open-source 3D editor and its integrated Inverse Kinematic
solver to generate AZee animations. The implementation
is a work-in-progress. Section 5. illustrates preliminary
results in the realization of static poses together with per-
formance tests. Finally, Section 6. concludes the paper.

2. Related Work
Signing avatars have been under development for more than
a decade. One of the first working systems was JASigning1

from the Visicast (Jennings et al., 2010) and the DictaSign
(Efthimiou et al., 2010) projects: it uses only the synthe-
sised approach and is able to produce signing animation
from SiGML (Hanke, 2004) statements as input. SiGML
is a digital representation of the Hamburg Notation System
(HamNoSys) (Prillwitz et al., 1989), which is a graphical
formalism for the description of Sign Language using a set
of pictograms. By design, HamNoSys is an oversimplifica-
tion of sign language, describing sentences as a sequence
of glosses. Only within glosses there is a parallelization
between manual (hands, fingers) and non-manual features
(eyes, lips, nodding, ...). As such, resulting animations are
generally perceived as unnatural.
The following technologies tried to overcome the strong
limitations of approaches based on pure-synthesis (i.e., the
complete lack of recorded data) or pure-pre-animation (i.e.,
the impossibility to parameterized signs) by injecting ele-
ments of one approach into the other.
EMBR (Heloir and Kipp, 2009) was born as a tool for the
synthetic animation of interactive virtual agents and was
later employed in the generation of sign language anima-
tion (Heloir et al., 2011). It has been recently extended
to support the playback of pre-animated facial movement
(Kacorri and Huenerfauth, 2014), thus has become a mix
between the two techniques. Its animation description lan-
guage is not overspecialized for sign language, hence it of-
fers more flexibility in the configuration of body postures.
However, the SL generation is basically still performed

1http://vh.cmp.uea.ac.uk/index.php/
JASigning – 23 Feb 2018

http://vh.cmp.uea.ac.uk/index.php/JASigning
http://vh.cmp.uea.ac.uk/index.php/JASigning


through a concatenation of poses and as such suffers of the
same limitations as JASigning.
The player developed for the project ATLAS (Lombardo et
al., 2010; Lombardo et al., 2011) is based on a repository
of pre-animated clips. It supports sign parameterization in
two ways. First, it allows for the overlapping of different
animation tracks on top of the sign animation clip, allow-
ing, for example, to control the animation of eyebrows and
facial expressions independently from the arms. Second, it
performs on-the-fly editing of the stored animation curves.
For example, a sign can be relocated by applying an offset
to the position of the hands for every frame of the clip. If
the edits are applied on a limited range of deformation, the
resulting motion looks still very natural and pleasant. How-
ever, the system lacks of any pure procedural synthesis of
movement which is not exported from an animation editor.
The Paula system (Wolfe et al., 2011; McDonald et al.,
2016), too, uses a multi-layered animation approach. The
various layers can control the full body, with layers at
higher priority overriding the animation of more basic lay-
ers. Each layer can playback pre-animated data as well as
apply procedural control to body parts with routines tai-
lored to support sign language animation (e.g., eyebrows
adjustment and spine/torso rotation). Again, the range of
possibilities of the player are limited to its database of mo-
tion clips and its hard-coded animation controllers, but can
not be scripted via a high-level language.
These three above mentioned applications present a hy-
brid approach between the synthesis and the pre-animation.
However, rather than deliberate architectural planning, it
appears that one approach has been integrated into the other
as a later attempt to overcome the limitations of an initial
design choice. Additionally, none of those systems gives
the possibility to independently drive different communica-
tive channels on different time boundaries.
The only exeption we are aware of, is the design proposed
by Filhol et al. (Filhol et al., 2017), where they explicitly
designed from the very beginning a generative strategy ac-
commodating both approaches together. A system that: i)
is based on pre-animated signs, but ii) is ready to fall back
on pure synthesis when pre-recording is not possible. Ad-
ditionally, the system iii) do not enforce shared time bound-
aries on all the communicative channels.

3. The missing bottom-up system
Generic Sign synthesis platforms are designed to combine
low-level (roughly, phonetic) features into larger pieces
(lexical signs for the most part), stitched together in se-
quence to build utterances. For example, JASigning takes
a string of units for input, labelled with glosses, each de-
scribed with HamNoSys. In such phonetically inspired de-
scriptions, a “Z” movement drawn in the vertical plane is
composed with two horizontal strokes separated by a down-
ward diagonal stroke. These individual strokes are part of
the relatively small number of primitives of the language,
but highly reusable for all sorts of movement descriptions.
In this paper, we call such approach bottom-up animation,
because it builds from the smallest possible features. Pro-
vided enough of these primitives—though by design, not
necessarily plenty—the advantage is that one can describe

everything by combination of the primary features. The
work we propose here will also fall in this category.
On the other hand, the problem with bottom-up systems
is that they inevitably render robotic animations. It comes
from the fact that while humans may think of and describe
certain movements as circles, straight movements or fixed
orientations, actual human motion never follows its ide-
alised geometric description. Animated as such, they do
not look human, and there is no known generic way of tak-
ing the intended geometry and distorting it to look natu-
ral. The solution to provide naturalness is rather to make
use of larger dedicated procedures or even full play-back
of pre-recorded chunks, already implementing the human
deviation from the idealised forms. This mostly advocates
against bottom-up approaches all together, and for use of
higher-level entries to avoid building complex movements
from scratch.
Filhol et al. (Filhol et al., 2017) have recently reported test-
ing such approach to naturalness for Sign Language with
the Paula animation system. It works from:

• AZee, a language to specify linguistic input without
fixed lexical signs and allowing more than merely list-
ing Stokoe-style parameter values;

• the principle “the coarser the better”, by which the
larger the chunk of pre-animated data is, the better
candidate it is for natural output;

• and the animation system Paula.

3.1. AZee input
AZee is a language to write parameterised signed forms for
semantic functions. This can capture descriptions such as
HamNoSys lexical entries (the fixed Stokoe-style descrip-
tion is the form; the gloss the meaning), but also more re-
lational functions such as “not-but(X , Y )”, meaning “not
X but Y ” and producing the form (say F ) synchronising Y
after X and a headshake and deep gaze in between, over a
manual hold of X .
An AZee input for synthesis is typically a recursive nest-
ing of semantic functions capturing the meaning of the pro-
duction. For instance with the function above, plus “tree”
and “wardrobe”, one can build the following expression to
mean “not a tree but a wardrobe”:

not-but(tree(), wardrobe())

Evaluating this expression with an AZee parser produces
a score, in this case F with blocks X and Y instantiated
with the results of “tree” and “wardrobe” respectively, as
illustrated in Fig. 1. The contents of a block is either:

• itself a score of the same recursive type, thus itself
synchronising blocks on its nested time line (see outer
boxes in the diagram);

• or a set of low-level constraints, which stops the recur-
sion (grey-filled boxes).

The relevant constraints for this work are:

• placements of linguistically relevant body points
(called sites) in target locations;

• bone orientations, e.g. orient normal vector of palm
upright.



Figure 1: Example of AZee score.

For example, T in the diagram, representing the set of nec-
essary and sufficient articulations constraints for the mean-
ing “tree”, is likely to include an orientation of the strong
forearm up, a placement of the strong elbow on the weak
palm, etc.

3.2. A top-down system
The idea Filhol & McDonald (Filhol et al., 2017) follow
is to work with larger blocks rather than low-level features
combined to produce synthesis. But it is not trivial to de-
cide which blocks should be used. While the larger they are
the more natural they look, the less feasible it becomes too
because it is never possible to have everything prerecorded.
Taking advantage of the recursive structure of AZee result-
ing scores, the authors address this problem in the following
fashion.
What they do is start at the top level of the AZee score
and work their way down the nested block structure until
matches are found for blocks they have animations for (they
call this a “short-cut”). At each level, if the full block is not
matched, it is looked into and its constituents (sub-blocks)
are layered on the animation score, each checked individu-
ally for a match, and so on. In contrast to what is done when
building from small features to reach large blocks of ut-
terances (bottom-up), this opposite approach can be called
top-down animation.

3.3. What is missing
A top-down search for the most natural chunks guarantees
that the highest usable blocks is used when appropriate, and
never used when not. However, this system for the moment
assumes a shortcut is possible at some point down the block
structure, and that the bottom (low-level constraints speci-
fied in the non-breakable blocks) will not be met.
The problem is that actual SL generation systems involve
blocks which cannot all be fully listed or recorded before-
hand: infinite variation in continuous spaces, depiction,
etc. AZee captures well these features with arbitrarily com-
plex geometric expressions that are generally impossible to
shortcut.
We propose to implement a bottom-up AZee animation
system. No low-level AZee animation system exists yet,
though it would ensure that anything can be animated from
AZee, regardless of what we are ever able to shortcut. The
goal is not to compete on the ground of naturalness since
movements are bound to look robotic like all bottom-up
systems. But its purpose could be to be used as the miss-
ing low-level fallback for a top-down system like Paula.
This way we would take advantage of top-down shortcut-
ting whenever possible, and still guarantee an output from

AZee input when it is not, using bottom-up generation from
low-level specifications.

4. Synthesising animations from AZee
scores

One part of AZee which was missing so far–and described
in this paper–is the implementation of the code realizing the
skeletal poses for the keyframes delimiting the interpolation
blocks.
The implementation of a high-quality gesture realizer en-
compasses a number of non trivial Computer Graphics
and Animation techniques such as real-time rendering and
shading, direct and inverse kinematics of complex kine-
matic chains, declaration and management of joint bound-
aries, collision detection, keyframe and timeline man-
agement, parameterizable interpolaton between animation
curves, etc. All these features being available in the open
source and liberally licensed Blender 3D editor2, our AZee
realizer is built in Python on top of the Blender API and
could be viewed as an interface between AZee and Blender.

4.1. From AZee scores to an animation timeline
The AZee parser translates an AZee expression into a score,
which is a set of timed intervals (blocks) whose boundaries
are layed out on a timeline and whose contents is either:

• itself a nested score, such as “headshake” inside the
“not-but” box in Fig. 1 (recursive case);

• a set of low-level constraints such as “R” inside the
“headshake” box (base case).

The base case constraints include articulations (bone orien-
tations and site placements) that can be thought as inverse
kinematics (IK) problems in computer animation terms.
Our goal is to translate those IK problems into (forward
kinematics) joint rotations, and to position the full-body
posture correctly on the final animation timeline.
This means create the right keyframes with the right set of
constraints pulled and translated from the AZee resulting
score, then relying on the system’s native interpolation ca-
pability to fill the intermediate frames on the timeline. The
first step to do so is to flatten the score from its nested and
multi-linear structure so that it is projected on a single time
line, as illustrated in Fig. 2.

Figure 2: A flattened AZee score.

For every animation keyframe created on the timeline, we
must copy all constraints that apply at that moment in time.

2https://www.blender.org – 23 Feb 2018

https://www.blender.org


In our example, keyframes 0 and 1 will contain the set of
constraints “T ”. Keyframes 2 and 3 will require not only
a copy of “T ” but also those from “R” since both apply at
those dates on the flattened timeline.
At this point it becomes impossible to determine to prove-
nance of the constraints packed in the keyframes. This is
the step that would involve a crucial loss if we were aiming
at naturalness because we will be relying on simple inter-
polation to fill all blanks. It is the reason for the expected
robotic motion, and why it is not done by the top-down sys-
tem presented above (working with the nested block struc-
ture). On the contrary, we are aiming at enabling synthesis
from native constraints, so we accept this loss of natural-
ness to secure the possibility of an output.

4.2. Definitions: joints, sites, and IK-Problems
AZee defines the skeletal structure of a human signer in
terms of joints and sites.
A joint, as in any 3D skeletal animation system, is a data
structure characterized by:

• a name, unique for each joint of a skeleton;
• a parent joint, possibly null if the join is the root of the

skeletal system;
• an offset from the parent joint. For the root, the offset

represents the joint’s absolute position relatively to the
origin of the axes frame;

• a rotation, expressed by Euler angles for pose editing
and then translated into a quaternion for better auto-
matic interpolation;

• a set of rotation limits

{(Rx
min, R

x
max), (R

y
min, R

y
max), (R

z
min, R

z
max)}

expressed as minimum and maximum rotation angle
along the three Euler axes.

In this structure, a bone is essentially the segment connect-
ing two joints with a parent-child relationship.

In addition to joints and bones, a site is defined as:

• a name, unique for each site;
• a parent joint from which the site depends;
• an offset from the parent joint.

Essentially, a site is a point in space whose absolute
location depends from the global position and rotation of
the parent joint. It is used to identify key points on the skin
of the virtual human (e.g., the tip of a finger, or a corner of
the mouth) that are used as reference for placement tasks.
When a joint rotates, the linked bone, together with all the
children joints and sites, change their absolute position.

The set of available bones and sites is described in two
dedicated maps (bones-map and sites-map) thus separating
the high-level namespace of the entities which can be
addressed by AZee statements from the low-level hierar-
chical skeletal structure. This makes possible to seamlessly
substitute the underlying character if a proper remapping is
performed.

When AZee generates a keyframe on the timeline, the pos-
ture of the signer at that specific keyframe is described by a
set of IK-Problems. An IK-Problem is defined by:

• an IK-chain, which is an ordered list of joints where
the start of the chain, its first joint, is the parent of the
second, the second is parent of the third, and so on.
The last element of the chain can be a site, in which
case it is called the end-effector of the chain;

• one optional place constraint. If present, it requires
the end-effector of the chain (a site) to be positioned
at a specific 3D point in space;

• a set of rotation constraints, possibly empty. Each
rotation constraint requires either the direction or the
normal of a bone to be parallel or perpendicular to
a given 3D vector. The bone must be part of the IK-
chain. Each bone can have at maximum two rotation
constraints, in which case they will constrain indepen-
dently both the direction and the normal of the bone.

AZee instantiates IK-Problems as an ordered list, taking
into account their inter-dependencies. For instance with the
set of constraints T in our previous example of the tree, at
least two IK problems will be built, involving respectively:

• a placement of the weak hand at the target location of
the tree;

• a placement of the strong elbow in contact with the
weak hand palm.

The latter depending on the former, they will appear in
this order in the list so that they can simply be applied in
the given sequence. This way, the target placement of the
strong elbow becomes a mere look-up of the current state
of the avatar.
Determining the final pose of the virtual signer now re-
quires solving, in the given order, all the IK-Problems de-
fined on a given keyframe.

4.3. Solving single constraints
As introduced before, an IK-Problem is composed of
one optional place-constraint and zero or more rotation-
constraints.
The resolution of a place constraint yields to the resolution
of the most classical of the IK problems, similar to robotics,
where the end-effector of the ik-chain must be positioned in
a 3D location. The IK solver calculates the rotation of all
the joints of the chain.
Differently, solving a rotation-constraint for a bone means
setting the absolute rotation in space of the bones’s parent
joint (e.g. to orient the forearm, we need to set the absolute
rotation of the elbow). The IK-solver will determine the
relative rotation of all the joints of the IK-chain up to the
beginning of the chain. There are two cases, the first being
when two rotation constraints are set at the same time on a
bone. Forcing both the direction and the normal of a bone
implies a unique possible absolute rotation for the bone’s
parent joint. In the second case, when only either the direc-
tion or the normal of a bone are set, the constraint is more
relaxed and there are infinite solutions.
The three cases presented above (one for placing and two
for rotation) can be individually solved by existing IK li-
braries. In our case, we use the iTaSC solver integrated in



1 def apply_ik_problem(skeleton, ik_prob):
2
3 # Outer iteration: apply all constraints of an IK-Problem.
4 iter_count = 0
5 while iter_count < MAX_ITER:
6 # Inner iterations: use the Blender IK to satisfy the single constraints.
7 if ik_prob.place_constr != null:
8 ik_prob.place_cstr.apply_to(skeleton)
9 for rot_constr in ik_prob.rot_cstr_list:

10 rot_cstr.apply_to(skeleton)
11
12 # Measure the ‘‘distance’’ between the current skeleton configuration
13 # and the the desired position/orientations
14 place_offset = ik_prob.place_cstr.offset_to_goal(skeleton) if ik_prob.place_cstr

!= null else 0.0
15
16 rot_offsets = [rot_cstr.offset_to_goal(skeleton) for rot_cstr in ik_prob.

rot_cstr_list] if len(ik_prob.rot_cstr_list) > 0 else 0.0
17
18 # If all the distances are below the threshold, break the iteration
19 if place_offset < PLACE_THRSHLD and max(rot_offsets) < ROT_THRSH:
20 break
21
22 iter_count += 1

Listing 1: The algorithm describing the strategy to solve an IK-Problem.

the Blender software in SDLS mode. The iTaSC IK solver
was originally developed by De Shutter et al. (De Schutter
et al., 2007) and its integration in Blender is documented
online3.

4.4. Solving an IK-Problem
While solving the single constraints composing an IK-
Problem is doable with off-the-shelf libraries, fulfilling the
whole set of constraints in a single pose is not supported
by the Blender iTaSC solver. In order to solve a whole IK-
Problem into a final posture, we elaborated an algorithm
whose pseudo code is shown in Listing 1.
The general strategy is to start by sequentially applying
both the placement and all of the rotation constraints on
the target skeleton. Each time a single constraint is applied,
it is likely to break the position achieved by a previous con-
straint. Hence, we re-iterate the application of the single
constraints until the final desired position is achieved.
We call this approach two-level iteration. The first outer
level of the iteration begins at line 5. The second inner lev-
els are immersed in the two invocation of the apply to
function at lines 8 and 10, where the basic (place or rota-
tion) constraints composing an IK-Problem are solved us-
ing the Blender iTaSC solver. The apply to function uses
the Blender API to: i) create a bone IK Constraint on the
Blender skeleton; ii) create a target object to drive the end-
effector position or rotation; iii) trigger the execution of
the iTaSC IK-solver, which solves the problem through a
number of iterations (whose maximum value is set in the
Blender properties); and iv) remove both the target object
and the bone IK constraint.

3https://wiki.blender.org/index.php/Dev:
Source/GameEngine/RobotIKSolver – 23 Feb 2018

The resolution takes automatically into account the joint ro-
tation limits, which are applied as IK rotation limits in each
Blender bone properties during a setup stage.
Line 14 computes the distance between the desired and the
actual position of the site/end-effector.
Line 16 computes, for each joint in the IK-chain, the rota-
tional distance between the current and the desired rotation.
The rotational distance, which is an angle, is computed by
first computing the quaternion needed to shift from the cur-
rent to the desired rotation. The quaternion is then decom-
posed into an axis-angle representation and the angle in de-
grees returned.
Line 19: if all the distances are below the respective thresh-
olds, the current pose is considered to be close enough to
the desired one and the outer iteration breaks.

4.5. Implementation
The AZee animation system presented in this paper is im-
plemented as add-on for Blender (v2.79). Figure 3 shows
the GUI for AZee authors. On the right side, the author can
move a virtual camera and see a 3D preview of the gen-
erated animation. A side panel shows buttons to setup the
system, tune IK convergence parameters, and other debug
flags. On the left, the author can insert AZee statements and
execute them by clicking a button. At the bottom, a timeline
marks where the AZee interpreter creates keyframes.
The current implementation operates on a prototype skele-
ton specifically developed for the AZee development. Fu-
ture versions will address the problem of directly animating
any imported human skeleton.
In our tests, we were able to solve an IK-Problem in a
fraction of a second on an Intel(R) Core(TM) i7-3635QM
CPU@2.40GHz (computation is limited to one core by
the Blender architecture) and DDR3 RAM@1600Mhz

https://wiki.blender.org/index.php/Dev:Source/GameEngine/RobotIKSolver
https://wiki.blender.org/index.php/Dev:Source/GameEngine/RobotIKSolver


Figure 3: The AZee workspace in Blender.

Figure 4: Sign tree applied to a skinned skeleton.

with the following constant values: MAX ITER=35,
PLACE THRSHLD=1cm, ROT THRSHLD=5degs. As re-
ported in detail in the next section, the computation time
raises to several seconds when realizing a full signs or sen-
tences. We are performing further tests in order to deter-
mine a trade-off between high precision (lower thresholds)
and low realization time (lower number of iterations al-
lowed).

5. Examples
In this section we present two working examples of the
AZee animator. The first example is a static pose and aims
at illustrating the mechanism of the IK resolution algo-
rithm. The second example presents a more complex an-
imated sentence and aims at illustrating the capability of
AZee at interleaving communication channels.

5.1. Example1: tree
We report the results for the realization of the sign arbre
(tree) in French Sign Language (see Figure 4). As shown
in Figure 5-top, the sign requires the computation of 11
IK-Problems. The first two contain only a placement con-
straint: IK-Problem #0 asks for the palm of the left hand to

0 1 2 3 4 5 6 7 8 9 10

IK-Problem

0

1

2

3

4

Ex1-Tree: Number of constraints
SingleRotCstrs
DoubleRotCstrs
PlaceCstrs

0 1 2 3 4 5 6 7 8 9 10

IK-Problem

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ex1-Tree: Iteration Count

Iteration

Figure 5: Sign tree. For each IK-Problem: (top) the count
and the type of constraints, and (bottom) the number of it-
erations needed to solve the problem.

be located in front of the signer, while IK-Problem #1 asks
for the tip of the right elbow to touch the palm of the left
hand. IK-Problem #2, the most complex, aligns at the same
time the right forearm, hand, and thumb. The remaining
IK-Problems straighten the four remaining fingers along the
direction of the hand.
Figure 5-bottom reports the number of outer iterations
needed to solve each IK-Problem. Ten out of the 11 IK-
Problems solve with only 1 iteration, while IK-Problem #2
needs 19 iterations. This is expected, because problem #2
has 4 constraints and the application of each constraint is
likely disrupting the orientation of the previous ones. In
detail, IK-Problem #2 operates on an IK-chain going from
the tip of the thumb to the elbow, and its constraints involve:

1. The orientation of the thumb tip, which must point
outwards;

2. The direction of the normal of the thumb middle pha-
lanx, which must face up;

3. The orientation of the hand, which must be aligned
with the forearm;

4. The orientation of the forearm, which must point ver-
tically up.

Figure 6 shows, for the sign tree, the side view of the posi-
tion of the skeleton after a progressive number of iterations.
Figure 7-top shows how the maximum rotational distance
decreases as more iterations are executed. Figure 7-bottom
shows the execution time for each iteration: for IK-Problem



Figure 6: Sign tree: convergence to the final position from the resting pose (left) and after 1, 5, 10, 15, and 19 iterations.

0 5 10 15 20 25 30 35
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex1-Tree: Rotation Distance (rads) Progression

0 5 10 15 20 25 30 35
Iteration

0.04

0.06

0.08

0.10

0.12

Ex1-Tree: Time (secs) to solve each iteration

Figure 7: Test plot sizes.

#2 the execution time is stable at ca. 125ms for each itera-
tion, while for all other IK-Problems the time lies between
25ms and 75ms for their first (and only) iteration. Overall,
the interpretation of the sign pose took 2.76s to execute 29
iterations, with an average of 95ms per iterations (SD=39).

5.2. Example 2: cinema + good
The second example translates the sentence “The cinema
is/was good”:

1 :info-about
2 ’topic
3 :cinema
4 ’info
5 :bien

The top-level rule “info-about” produces a simple sequence
of the two contained items, with a timed transition and an
eye blink towards the end of the second item. IK is not be

invoked for the final blink, and both contained items involve
a classic sequence of manual postures at timed keyframes.
At each keyframe, a number of IK problems is ordered.

0 5 10 15 20 25 30 35
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ex2: Rotation Distance (rads) Progression

0 5 10 15 20 25 30 35
Iteration

0.04

0.06

0.08

0.10

Ex2: Time (secs) to solve each iteration

Figure 8: Test plot sizes.

The sentence required the resolution of 152 IK-Problems,
of which 3 required multiple iterations. Figure 8-top shows
the rotational distance progression, while Figure 8-bottom
shows the execution time for each iteration. The hardest
IK-Problem converged after 35 iterations. In general, all
iterations are executed within ca. 100ms. Overall, the in-
terpretation of the sentence took 9.97s to execute 185 itera-
tions, with an average of 52ms per iteration (SD=26).

6. Conclusion
The work presented in this paper is the latest significant
progress achieved in the implementation of a complete
AZee realizer. This realizer is a step forward towards the
implementation of a new generation of Sing Language
synthesizers, allowing for the animation of different



communicative channels which interleave on the timeline
without the limitation of the hard boundaries dictated by
lemma-based transcriptions.

Thanks to its integration in the Blender software, the
realizer will allow for a streamlined and integrated gen-
eration of high quality rendered animations. Concerning
the performances, from our tests it appears possible, on
modern hardware, to generate the animation curves of
a full sentence with limited delay and export them for
playback on a turn-based interactive system.

The current implementation, still under test and develop-
ment, behaves well in the realization of static poses, but
still presents some glitches during the animation process,
mainly occurring when the joints orientation get close to
the boundaries of the IK rotation limits.

As described before, AZee separates the low-level de-
scription of the skeletal structure from an high-level
namespace of bones and sites. Hence, AZee signs can be
applied to different characters of any size and proportion
without the need of facing retargeting problems. Given
a new virtual interpreter, only the bones and sites name
mapping must be updated. Certainly, the application to
arbitrary avatars will suffer of self-compenetration issues,
which must be addressed, for example, through the use
of collision-prevention systems and the simulation of soft
bodies.

This addresses one of the most frequent limitations of SL
projects, which is the impossibility to interchange data be-
tween different virtual interpreters and database of anima-
tions. It makes AZee a good candidate language to create
a database of animated signs which can be reused by any
research group on SL, to animate their own avatar.
From the point of view of signal processing, AZee can be
considered as a lossy animation compression format. Al-
though focusing on the description and compression of sign
language animations, it is possible to imagine Azee (or a
variant of it) applied in the description of casual gestur-
ing in general-purpose conversational agents. In the future,
it might be possible to work on a system which automat-
ically derives AZee descriptions from existing animation
curves, allowing for the seamless transfer of sign reposito-
ries across different virtual interpreters.

7. Bibliographical References
De Schutter, J., De Laet, T., Rutgeerts, J., Decr, W., Smits,

R., Aertbelin, E., Claes, K., and Bruyninckx, H. (2007).
Constraint-based Task Specification and Estimation for
Sensor-Based Robot Systems in the Presence of Geomet-
ric Uncertainty. The International Journal of Robotics
Research, 26(5):433–455, May.

Efthimiou, E., Fontinea, S., Hanke, T., Glauert, J., Bow-
den, R., Braffort, A., Collet, C., Maragos, P., and Goude-
nove, F. (2010). Dicta-sign–sign language recognition,
generation and modelling: a research effort with applica-
tions in deaf communication. In Proceedings of the 4th
Workshop on the Representation and Processing of Sign

Languages: Corpora and Sign Language Technologies,
pages 80–83.

Filhol, M., McDonald, J., and Wolfe, R., (2017). Synthesiz-
ing Sign Language by Connecting Linguistically Struc-
tured Descriptions to a Multi-track Animation System,
pages 27–40. Springer International Publishing, Cham.

Hanke, T. (2004). HamNoSys-representing sign language
data in language resources and language processing con-
texts. In LREC, volume 4.

Heloir, A. and Kipp, M. (2009). EMBR - A Realtime Ani-
mation Engine for Interactive Embodied Agents. In Pro-
ceedings of the 9th International Conference on Intelli-
gent Virtual Agents (IVA-09).

Heloir, A., Nguyen, Q., and Kipp, M. (2011). Sign-
ing avatars: A feasibility study. In The Second Inter-
national Workshop on Sign Language Translation and
Avatar Technology (SLTAT), Dundee, Scotland, United
Kingdom.

Jennings, V., Elliott, R., Kennaway, R., and Glauert, J.
(2010). Requirements for a signing avatar. In Proceed-
ings of the 4th LREC Workshop on the Representation
and Processing of Sign Languages, pages 133–136.

Kacorri, H. and Huenerfauth, M. (2014). Implementa-
tion and Evaluation of Animation Controls Sufficient for
Conveying ASL Facial Expressions. In Proceedings of
the 16th International ACM SIGACCESS Conference on
Computers & Accessibility, ASSETS ’14, pages 261–
262, New York, NY, USA. ACM.

Lombardo, V., Nunnari, F., and Damiano, R. (2010). A vir-
tual interpreter for the Italian sign language. In Proceed-
ings of the 10th international conference on Intelligent
virtual agents, IVA’10, pages 201–207, Berlin, Heidel-
berg. Springer-Verlag.

Lombardo, V., Battaglino, C., Damiano, R., and Nunnari,
F. (2011). An Avatar-based Interface for the Italian
Sign Language. In Proceedings of the 2011 Interna-
tional Conference on Complex, Intelligent, and Software
Intensive Systems, CISIS ’11, pages 589–594, Washing-
ton, DC, USA, June. IEEE Computer Society.

McDonald, J., Wolfe, R., Schnepp, J., Hochgesang, J., Jam-
rozik, D. G., Stumbo, M., Berke, L., Bialek, M., and
Thomas, F. (2016). An automated technique for real-
time production of lifelike animations of american sign
language. Universal Access in the Information Society,
15(4):551–566, Nov.

Prillwitz, S. L., Leven, R., Zienert, H., Zienert, R.,
T.Hanke, and Henning, J. (1989). HamNoSys Version
2.0. International Studies on Sign Language and Com-
munication of the Deaf.

Wolfe, R., McDonald, J., and Schnepp, J. C. (2011).
Avatar to depict sign language: Building from reusable
hand animation. January.


	Introduction on Signing Avatars
	Related Work
	The missing bottom-up system
	AZee input
	A top-down system
	What is missing

	Synthesising animations from AZee scores
	From AZee scores to an animation timeline
	Definitions: joints, sites, and IK-Problems
	Solving single constraints
	Solving an IK-Problem
	Implementation

	Examples
	Example1: tree
	Example 2: cinema + good

	Conclusion
	Bibliographical References

