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A B S T R A C T 

Existent process models can hardly cope with the emerging issue of modelling exponential variable data 

volumes in systems’ workflow, from specifications to operation. Given the strong relation between data 

context and data variability, this paper considers the automated integration of contextual models for 

processes with data variability. The proposed approach extends methodologically a platform independent 

model process, using a contextual data model, to obtain automatically the corresponding platform specific 

model. Contextual data are thus integrated to a process as a model, within a process. Two particular cases 

of contextual data models are studied in detail: substitution, when the contextual data model defines 

generated code, and enhancement, when learned data descriptions constitute the contextual data model. 

The feasibility and value of integrating a contextual model into a process to handle data variability are 

shown in detail describing these two use cases. Contextual model integration by substitution to include 

automatically variable ready to use application services to generate code, and contextual model integration 

by enhancement applied to supervised image classification based on variable descriptors. Results show 

that relating data variability and its context by means of automated integration of a designed system 

component model, simplifies variable data processing of system process models. 

   

 

1. Introduction 

Modelling of variable data – documents, software modules, images, 

signals, videos, multimedia content, etc. – for system processes, is an 

emerging issue in model-based system design. The exponential and 

permanent generation of variable data makes unfeasible to extend or adapt 

existent system process models to cope with the variability of data 

production. Moreover, this variability often relates to a data context [1], 

which is either ignored [2] or partially modelled with multiple constraints 

[3] because of the complexity to represent it. 

Usually, context awareness is defined through included conditional 

relations of a process model.  In that case, only if a context parameter has 

a predefined value, then a specific operation can be triggered. 

Nevertheless, whenever data production variability is addressed, context 

awareness has to be defined through integration, by means of substitution 

or enhancement of a process model. The interest of a contextual model 

can be illustrated by three examples – that could be modelled – of data 

context strongly related to production variability as article writing 

support, application development, and pattern recognition: 

- Article writing support: The context is defined by thousands of 

previously published articles, from which, the notion of cited 

articles (variable generated data) characterizes part of the 

article’s content, written with a text editing process (integration 

with substitution). 

- Application development: The context is composed by thousands 

of available enterprise services, related to a process to identify 

and instantiate adapted application services (variable produced 

data) in the development of an information system software 

(integration with substitution).  

- Pattern recognition: The context is represented by thousands of 

content description values, associated to statistical 

representations of numerous classes (variable defined data), 

through a process of supervised classification (integration with 

enhancement). 

In the aforementioned examples the processing of data created in 

various manners could be simplified, if a ready to use context data model 

is applied. By analogy with off-the-shelf software components [4], such 

context data model is understood as an optimized guideline of related 

published articles, available developed services, or performant calculated 

content descriptors, respectively, in the form of a system component 
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model. Several categories are associated to contextual data [5]. Among 

those, the use of contextual data done by a process is part of the relations 

category and its sub-category of functional relations – between contextual 

data and the process. To develop modeling suitably aimed at considerable 

volumes of data, we consider the automated integration of contextual 

models for processes with variable produced data. It is consequently a 

problem of defining the transformation of available data, into data that 

influence a process, i.e. knowledge. For this specific problem, data 

variability stems particularly from the different modes of data production. 

In the previous introductory examples, a quoted article can be produced 

by queries to different publishers and comply with one of various specific 

standards (APA, Harvard, ISO, MLA, etc.). On the other hand, the 

variability of a reusable application service, results from the development 

of an information system application or library linked to multiple 

programming languages (C++, Java, C, etc.). As for the statistical 

representation of a class in pattern recognition, variability results from the 

use of different descriptors and the choice of one or several out of 

multiple mathematical distances between the class components, to identify 

that class.  

Different data production modes constitute a factor of variability not 

previously taken into account for modeling purposes. Hence, we address 

the question of how to define a contextual model for data produced not in 

just one but variable manners, generate automatically platform specific 

programs from that contextual model, and integrate it in a process. Our 

main assumption is that modelling a variable data context is independent 

of modelling a process. Furthermore, a meta-model can be defined if it is 

known which task generated data and in what manner. So, besides 

handling different modes to generate data, the resulting contextual model 

provides knowledge with direct impact on the given process. The main 

contribution of this work is allowing the architect to specify appropriate 

rules to integrate data into the process, according to variable production 

modes.   

To facilitate the integration of variable contextual data into a process, 

the essential modelling hypothesis is that a MDA-conform approach 

produces the data, and thus defines a particular production mode. This 

implies that the concepts at the input and output of models 

transformations, as well as relationships describing this mode of 

contextual data production, are modeled in a meta-model. Therefore, the 

input concepts of a contextual data production transformation are defined 

first, instead of adapting a model separately to a process for each 

production mode. Our approach extends weaving as a result, which is 

restricted to data generated by a unique production mode. 

Among known model-driven system architecture approaches, context 

data modeling appear to be feasible applying Model Driven Engineering – 

MDE [6]. The main reasons are because the Object Management Group 

supports it, generated models are platform independent, MDE is 

compatible with some modeling standards, it has a largely generic design 

spectrum, and it is widely used [7]. Additionally, a possibility in the MDE 

framework could be to apply directly a relational transformation specified 

as [8]: “an association between the elements or parameters of two models 

of a system that induces a further mapping between the relationships in 

the models”. However, there are not MDE context data models compliant 

with variability of data production, designed specifically to be seamlessly 

integrated in a process, but with conditional filtering [9]. Moreover, the 

automatic generation of platform specific programs obtained from those 

models applying Model Driven Architecture – MDA [10], has not been 

defined either, for context integrations related to data variability. 

 This paper reports on an original approach to generate context data 

models, integrated to MDA compatible processes, within a MDE 

framework. The proposed approach extends methodologically a platform 

independent model (PIM) design process, making use of a contextual data 

model, before the corresponding platform specific model (PSM) is 

automatically obtained. In this manner contextual data are integrated to a 

process as a model, reinforcing complementary knowledge. Two 

particular cases of contextual data models are studied in detail, 

substitution – when the contextual data model defines generated code – 

and enhancement – when learnt data descriptions constitute the contextual 

data model. The feasibility and practical value of integrating a contextual 

model into a process for variable data production are shown in this paper 

through a step-by-step demonstration of both cases. The first case 

illustrates the feasibility of reusing an information system element to 

develop an application of that system, while the second case illustrates the 

suitability for pattern recognition, a process in which the application of 

model engineering is unconventional. 

 The paper is organized as follows. Background and related work 

regarding variable data and context modeling, as well as systems 

engineering based on models and MDA are described in Section 2. The 

proposed approach is defined in Section 3, considering how to integrate a 

contextual model to treat variable generated data by substitution or 

enhancement. A use case of contextual model integration by substitution 

is presented in Section 4, developing the automatic integration of ready to 

use application services to generate code. A use case of contextual model 

integration by enhancement is presented in Section 5, applied to 

supervised image classification. In Section 6 findings, lessons learned 

from both examples, as well as risks for validation are discussed. 

Conclusions and perspectives are summarized in Section 7.  

2. Related work 

This section examines previous works on modeling of data variability 

and context. It then summarizes research initiatives associated to model-

based engineering that have made use of these elements. 

2.1. Data variability and context modeling 

With the extensive complexity of systems, a significant problem in 

model-based techniques is data consistency, i.e. to seamlessly include 

variable ways of data production in system architecture modeling, for both 

system architect and system user. Data production variability in system 

modeling is challenging because it is complex to represent, constraint, 

integrate, and trace in the workflow, from specifications to operation. 

Moreover, there are multiple definitions, sources, and viewpoints, which 

make very difficult to model and integrate data production variability. 

Few works have studied variability in systems architecture, although 

out of the modeling scope, to comply with fixed or changing 

requirements. Variability in systems architecture has been analyzed in 

software product families [11], to manage the complexity introduced in 

UML models [12], to define features or decision models [13], to be 

described and shared by groups of systems [14], as data-centric to 

improve model consistency [15], or model transformation rules [16]. 

Otherwise, few works have examined the problem of variability in context 

modeling. An ontology-based model was proposed to pilot electricity 

generation using wind turbines depending on the operational context [17]. 

Also, it was determined that even if contextual data constrain a process, 
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context representation is essential to dynamically adapt a system before 

process execution conditions are taken into account [18]. 

2.2. Contextual model and model-driven engineering 

The application of constraints to define models is well known in the 

literature. Such approach can be for instance context-related to design 

user-centered models of web services [19]. A language like ContextUML 

[20] and recent multi-agent models [21] on which user behavior is crucial, 

are based on the same principle. Nevertheless, the approach to define 

contextual models must be extended when a process, not user behavior, 

defines the constraints. MDE is appropriate to implement such extension, 

given its generalization possibilities [22]. Besides, it is a prevailing 

solution to define system architecture applying gradual constraints, by 

refining the initial system specifications [23]. Since a model oriented 

system architecture definition can be based on refinement in accordance to 

MDA [24], MDE includes an architecture activity considered as 

specifications refinement, applied up to code generation [25]. Refinement 

is basically applied to produce sets of structured and connected modules 

or applications. These represent coherent and stable decision rules, to 

achieve a given data or information processing task [6]. Refinement is 

fundamental to define multi-model-driven [26] and single-model-driven 

[27] system architectures. 

MDE has been applied in industry to improve the costly automation of 

code generation [28], linked to software development traceability. For 

example, use cases were transformed by refinement into system design 

model [29] and specifications development [30]. MDE has also been 

extended to a contextual model for multi-agent system design [31]. It has 

remained close to code service architectures generation from business 

processes [32], aligning business processes and a component 

infrastructure based on service-oriented architecture. Yet, MDE 

automation has been only applied to software development of detailed 

architecture and the corresponding code generation, using a restrictive 

framework associated to an applicative layer of the system [33]. 

Otherwise, system architecture can be generated using pre-designed 

solutions, defining a contextual model consistent with the system 

specifications. A contextual model could contain the basic functions of an 

information system. These pre-designed system functions have been 

defined by enterprise architects viewpoint design, to compose a 

company’s system architecture [34]. Alternatively, other process 

modelling techniques use so-called contextual data that add properties 

(tagged values) of a model element to model languages [35]. Moreover, 

some models integrate available data before process execution, like the 

definition in advance of specific services matching constraints and run 

upon request [36]. Alternatives using MDA have been developed to adapt 

system architectures to a mobile network [37] and a ubiquitous system 

[38]. Nevertheless, proposed approaches are neither associated to a 

methodology enabling software development automation, nor developed 

and documented in detail [19]. Besides, when a process is executed in 

MDE a model for contextual data differs significantly from a model to 

integrate available data before the process execution. 

Our contribution is the definition of a methodology to integrate 

automatically a contextual model into processes with data production 

variability. Particularly, this paper illustrates with a proof of concept, how 

defined contextual data models are integrated to a process and 

automatically transformed in platform specific programs applying a MDA 

implementation within a MDE framework. Consequently, code generation 

results from an input contextual model, instead of an adaptation at the 

code generation level. 

3. Integration of a contextual model into a process with 
data production variability 

This section recalls first the prevailing application of MDA along with 

known practices to integrate models. The proposed approach is then 

defined in detail. 

3.1. Data variability and MDA  

Conventionally, MDA (Fig. 1) permits to obtain a PSM (Platform 

Specific Model), resulting from the application of a transformation T to a 

PIM (Platform Independent Model), under the technical constraint of a 

PDM (Platform Description Model) [39]. MDA is mainly used to generate 

code according to functional specifications of a system. Typically, a 

stipulated functional scenario description – PIM – is transformed into an 

applied coded service – PSM – for instance, by means of a Java execution 

environment model – PDM – and a set of rules defined to fix the 

environment constraints of the transformation. 

 

 

 

 

 

 

Fig. 1 - Model Driven Architecture for model transformation. 

One solution to integrate a contextual model is to chain the 

transformations, using modeling languages to input models for business 

process [40], or adopting several transformation languages [41]. Such 

chaining takes sequentially into account the technical environments as a 

progression of constraints, but cannot be applied to insert contextual data 

in a transformation. Since constraints defined in the PDM are a generic 

solution implemented later by the PIM instances, it is not feasible to 

integrate and apply contextual data directly in the transformation if a 

chain of transformations is applied. 

A second common model integration solution is composition [42], 

which can be automatic or manually defined by an expert who determines 

the mapping of elements to integrate [43]. Therefore, in the composition 

of two PIMs (PIM1 and PIM2) the respective PSMs are modified directly 

and the code is produced again. Otherwise, the original PSMs can be 

integrated using glue code (Fig. 2). This avoids the individual 

modification of PSMs and code regeneration, while defining the 

integration rules according to a composition circumscribed between the 

PIMs. 
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Fig. 2 - Model Driven Architecture for model integration (adapted 
from [42]) including PDMs. 

The example of Fig. 2 corresponds to code integration to implement a 

service (PSM2) with an Enterprise JavaBeans (EJB) execution 

environment (PDM1), in the code of another service (PSM1) that has the 

same execution environment (PDM2 = PDM1). This integration specified 

in the composition of PIM1 and PIM2, includes the scenario description 

of PIM2 in the scenario description of PIM1. Making thus use of glue 

code, PSM1 resulting from T1 is added to PSM2 obtained from T2. Glue 

code represents the technical constraint of PSM2 to identify its EJB via 

the respective Java Naming and Directory Interface (JNDI). This model 

integration approach is nevertheless inappropriate, due to the cost of 

implementing two parallel processes with one that precedes the other. 

Production variability, already considerable during an information system 

development [44], is increased by the Software as a Service distribution 

paradigm [45]. A large number of ready-to-use services may be available 

– several thousands in certain companies. Suppose that T1 is the main 

transformation and T2 is the transformation that produces a context for 

T1. To integrate those services, a very significant number (n) of 

transformations like T2 along with the required glue code between PSM1 

and the resulting n PSM2, imply proportional higher development 

complexity and costs. 

 Multiple n transformations of type T2 and the respective glue code 

could be avoided, improving development significantly. Instead, n 

contextual PSM2 models that precede T1 could be integrated. These n 

PSM2 models are grouped in a global model, identified hereafter as 

Transformation Contextual Model (TCM), given its contextual role with 

respect to T1. Such required enrichment of a process using a contextual 

model (Fig. 3), has not been previously defined in the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – Problem to be solved regarding Model Driven Architecture 
and integration of the Transformation Context Model (TCM) in the 

global process. 

3.2. Integration of a contextual model into a process 

While the TCM represents available data that an expert exploits to 

influence a process, meta-modelling of the TCM must take into account 

the production method of the corresponding data. The extension to the 

MDA approach mechanisms that we propose is therefore a meta-

modelling of the context, including useful concepts for the production of 

contextual data, in order to automate the implementation of context in a 

transformation. The TCM meta-model describes the production mode 

selected for the contextual data. As hypothesized in the research question, 

the data production mode is consistent with an MDA approach, on which 

platform-independent elements are transformed into platform-specific 

elements through the description of the platform.  This allows integrating 

the data production method adequately into the process as knowledge. A 

contextual model must thus be studied at the early stages of system 

analysis before system architecture activities, to be integrated in a MDA-

compliant process. Corresponding knowledge of the transformation input 

elements permits an expert to formulate rules associating a context with a 

process. The Contextual Transformation (CT) of data into knowledge 

consists on this set of rules, specified by a process expert, permitting to 

integrate contextual data in the process.The proposed integration of a 

contextual TCM results from enriching the PIM – by means of CT – 

before the MDA-compliant transformation T. This transformation T is 

applied to the enriched PIM (Fig. 4). A PIM enriched by a contextual 

model is denoted henceforth PICM (Platform Independent Contextual 

Model). The two use cases described in sections 4 and 5 show the 

feasibility of CT design making use of a TCM representing a MDA 

approach of the selected contextual data production. 

It is important to note that the TCM specificity is to include the 

production mode of contextual data, without using MDA marks, enabling 

to associate an element of the PIM with contextual data. Additionally, 

marks defined in the PDM -independently from the PIM- are not a part of 

the PICM model, while the TCM is a part of the PICM model and 

associates contextual elements to the PIM. The proposed approach is 

structured according to systemic modelling [46] by transformations 

depicted in Fig. 4. Defined rules rely on knowledge about the result of 

transforming any relationship between two units. Every model is hence 

defined by a set of units (denoted *_unit) and a set of relationships 

(denoted *_relationship). Rules are identified with the type of 

transformation (CT or T), while specific rules about a unit are denoted RU 

and rules about relationships between units RR. 

PIM1 

PSM1 

PIM2 

PSM2 Glue 

Composition 

PDM1 PDM2 T1 T2 

PIM 

PSM 

TCM PDM 
 ? 
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Fig. 4 - Model driven integration of a contextual model into a 
MDA-compliant process. 

 

Three successive stages constitute the proposed approach: 

• Contextual CT-Transformation design, on which mapping between 

the contextual model and the input of the model transformation are 

defined. The PICM results from the contextual transform CT that 

maps the PIM with the TCM. A rule defines this mapping to indicate 

under which criterion a PIM element can be associated to a TCM 

element (represented by “→”). The transformation of PICM units is 

defined by: 

PICM_unit = CT(PIM_unit, TCM_unit) 

where CT connects PICM_unit and PIM_unit with a mapping link 

between one PIM_unit and one TCM_unit. Such CT-RU rule 

implemented through CT means that if a pim_unit and a contextual 

model unit tcm_unit can be mapped, then the resulting picm_unit is: 

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit), 

if not, 

picm_unit = CT(pim_unit,{Ø}) = pim_unit. 

Regarding relationships between units (represented by “–”), CT 

defines a PICM_relationship from a PIM_relationship that takes into 

account a TCM_relationship: 

PICM_relationship = CT(PIM_relationship, TCM_relationship) 

This CT-RR rule implemented by CT for the relationships between 

units, illustrates in a similar manner as for units that, if relationships 

exist between a pim1_unit and a pim2_unit, and a contextual model 

relationship tcm1_unit – tcm2_unit between a tcm1_unit mapped with 

pim1_unit and a tcm2_unit mapped with pim2_unit, then the resulting 

picm_relationship is: 

picm_relationship =  

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit) 

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit), 

if not, 

picm_relationship = CT(pim1_unit – pim2_unit, {Ø}) 

= pim1_unit – pim2_unit. 

• T-Transformation design, on which a MDA-compliant technical 

constraint and the result model of CT are defined. Model 

transformation T provides a PSM that results from a PICM and a 

technical constraint specified in the PDM. Transformation T for units 

is defined by:   

PSM_unit = T(PICM_unit, PDM) 

where T applies constraints defined in the PDM to a PICM_unit 

giving as result a PSM_unit. The same applies to a relation between 

PSM units and is defined as: 

PSM_relationship = T(PICM_relationship, PDM) 

where T applies constraints defined in the PDM to a 

PICM_relationship giving as result a PSM_relationship. 

Rules implemented in model transformation T for integration by 

substitution are different than rules for integration by enhancement. 

Therefore, specializations ST (Substitution Transformation) and ET 

(Enhancement Transformation) of T are necessary. 

For units, the ST-RU rule implemented by ST distinguishes among 

PICM_unit transformations with and without substitution (pim_unit by 

tcm_unit) as follows (using the same CT-RU notation): 

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit) 

⇒ psm_unit = ST(tcm_unit, pdm) 

and, 

picm_unit = CT(pim_unit, {Ø}) = pim_unit  

⇒ psm_unit = ST(pim_unit, pdm) 

In the case of ET the ET-RU rule changes because the process is 

enhanced (pim_unit with tcm_unit represented with the sign ⊕) by the 

contextual model as (using the same CT-RU notation): 

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit) 

⇒ psm_unit = ET(pim_unit ⊕ tcm_unit, pdm), 

and, 

picm_unit = CT(pim_unit,{Ø}) = pim_unit 

⇒ psm_unit = ET(pim_unit, pdm). 

Concerning relationships between units, the ST-RR rule implemented 

by ST discriminates PICM transformations with and without 

substitution as follows (using the same CT-RR notation). 

picm_relationship =  

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit) 

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit) 

⇒ psm_relationship = ST(tcm1_unit – tcm2_unit, pdm), 

and, 

picm_relationship = CT(pim1_unit – pim2_unit, {Ø}) 

= pim1_unit – pim2_unit 

⇒ psm_relationship = ST(pim1_unit – pim2_unit, pdm). 

For ET the ET-RR rule applies specifically to process enhancement 

using a contextual model as (using the same CT-RR notation): 

picm_relationship =  

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit) 

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit) 

⇒ psm_relationship = 

ET(pim1_unit – pim2_unit ⊕ tcm1_unit – tcm2_unit, pdm), 

and, 

picm_relationship = CT(pim1_unit – pim2_unit, {Ø}) 

= pim1_unit – pim2_unit 

⇒ psm_relationship = ET(pim1_unit – pim2_unit, pdm). 

These four rules – ST-RU, ET-RU, ST-RR, and ET-RR – emphasize 

the need to apply constraints defined in the PDM to a unit or a 

relationship of the PICM, specified in the process as substitution or 

enhancement. 

• CT and T Transformations running to validate the proposed 

approach’s feasibility. The next two sections describe in detail how 

PICM 

PSM 

PDM 

PIM 

CT 

T 

TCM 
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transformation CT, and the specializations of T, ST and ET, implement 

the described approach when applied to a code generation process and 

to an image classification process. 

 

Table 1 summarizes the previously defined notations for the 

implemented transformations and rules. 

Table 1 - Meaning of the Acronyms for Transformations and Rules 

Transformation Transformation  
Meaning 

Implemented 
Rule 

Rule  
Meaning 

CT 
Contextual 

transformation 

CT-RU Rule for unit 

CT-RR 
Rule for 

relationship 

T 

ST 
Substitution 

transformation 

ST-RU Rule for unit 

ST-RR 
Rule for 

relationship 

ET 
Enhancement 

transformation 

ET-RU Rule for unit 

ET-RR 
Rule for 

relationship 

The next two sections present two use cases on which the pertinence 

of the proposed approach is examined. In each case we consider, the 

feasibility of defining a suitable contextual model, how can automatic 

platform specific programs be generated, and how to integrate these 

programs to the respective process.  

4. Integration of a contextual model into a process with 
substitution: the case of code generation 

This section illustrates the integration of a contextual model into a 

business process of code generation, formed by a large variety of activity 

sequences in a company. According to the proposed approach in section 3, 

ready-to-use services available in a company’s information system are the 

contextual data of the code generation process. Moreover, the link 

between business activities and these ready-to-use services by means of 

mapping permits to associate contextual data, i.e. an applied service, to 

one activity. Every business activity associated or not to contextual data, 

is then implement by code representing calls to specified applied services. 

These calls are integrated when mapping is required or programmed if 

that is not the case. Generated code is constrained by a technical 

environment like Java Enterprise Edition (JEE). Table 2 summarizes the 

code generation process models that are modified when a contextual 

model with substitution is integrated. 

Table 2 – Process models modified by a contextual model with 
substitution. 

Model Integration of a contextual model into a code generation 
process 

PIM Model of activities 

TCM 
Model of existing applicative services of the information 
system 

PICM Model of activities enhanced by existing services 

PDM Model of JEE environment for an applicative service 

Model 
Integration of a contextual model into a code generation 

process 

PSM Model of generated code 

 

The CT transformation permits to associate a contextual applied 

services model – ready to be substituted through the TCM modelling – to 

a PIM activities model. This association forms pairs of one activity and 

one existing applied service (PICM). Coupling is conditioned by a 

mapping, implemented in CT, between the PIM activity name and the 

name of the activity supported by the ready-to-use service. Additionally, 

ST transforms an activities model in a code of applied services (PSM), 

enabling the substitution of available application services of the 

information system (PICM). Such coding is constrained by a technical 

environment (PDM).      

4.1. Contextual CT-Transformation design 

The CT transform allows to associate external services modelled in a 

TCM to a PIM business process, composed by progressive sequences of 

business activities.   

4.1.1. Unit CT-Transformation 
Mapping between one PIM unit and one TCM unit is defined by the 

name of the PIM’s business activity and the name of the activity carried 

out by the TCM’s application ready-to-use service, which must be 

identical. To illustrate the contextual model of a code generation process 

two applied services are defined: “cASReadAProduct” to implement the 

“Read a product” activity; and “cASCreateAnOrderOfAProduct” to 

implement the “Create an order of a product” activity. The relation 

between business activities and ready-to-use application services defined 

by the CT-RU rule (see section 3.2) is underlined in Fig. 5. Applied 

services and their respective interface are represented here by operations 

in UML classes (considering a business activity like a use case 

analogously as in a context UML diagram).        

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 - Illustration of the unit contextual CT-Transformation for the 
code generation process. 

CT 
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Variable data production is reflected in this first illustration of 

feasibility by the development method with which the external services 

are produced (function implementation, business activity production, 

programming language, etc.). Moreover, variable data production is 

represented by the fact that these services could be replaced in the TCM 

by application data provided by these services (the physical data Product 

and Order in this case). These application data are characterized by the 

generated logical data and the selected technical environment (for 

example, relational database management system or object oriented). For 

the TCM illustrating context by replacement, the service production mode 

is a conventional service-oriented architecture framework. In this case, the 

service encapsulated in an interface, carries out a business activity and is 

deployed on a technical environment. 

Note that the PICM's independence property with respect to the 

platform defined by the PDM is maintained, since the mapping is 

independent of the technical environment used for the deployment of 

these two external services (a JEE development in this case). 

The PIM meta-model concept for a unit and its attribute (described by 

one instance excerpted from Fig. 5) are defined as: 

• “BusinessActivity”:  
o “name” (Read a product). 

The TCM meta-model contains a description of an external service 

interface that encapsulates a ready-to-use application service (instances 

are extracted from Fig. 5): 

• “ExternalApplicativeService” describes an external available service: 
o “name” represents the name of the external available service 

(cASReadAProduct). 
o “externalServiceInterface” describes the interface that 

encapsulates the application service (CASIProductManage). 
o “supportedActivityName” refers to the name of the business 

activity supported by the external service (Read a product).  
o “deploymentEnvironment”  specifies the technical environment 

on which the service is deployed (JEE). 

The resulting PICM meta-model of CT for a unit is outlined in Fig. 6. 

 

 

Fig. 6 - PICM meta-model (enclosed) of the code generation case 
including the mapping between PIM (BusinessActivity) and TCM 

(ExternalApplicativeService) meta-models applied to a unit. 

The PICM and its attributes are instantiated from the example in Fig. 

5: 

• “ContextualizedActivity” describes an activity enriched by the 

contextual model of existing application services: 
o “mapsWithActivity” indicates the enriched business activity 

(Read a product) 

o “mapsWithExternalService” indicates the external service 
mapped with the activity from the business activity name and the 
business activity name supported by the external application 
service (cASReadAProduct). This link does not exist when 
external services can’t be mapped to the business activity (cf. 
rule CT-RU in 3.2)  

4.1.2. Unit Relationship CT-Transformation 
Concerning relations between units, a PIM relationship is a temporal 

sequence of business activities. The rule CT-RR (see 3.2) becomes thus 

for the code generation process: if an activity A1 precedes an activity A2 

and if the service cAS1 mapped with A1 precedes in an external 

orchestration the service cAS2 mapped with A2, then this orchestration 

enriches the sequence. 

CT({A1 – A2}, {caS1 – cAS2}) = {A1 – A2} → {cAS1 – cAS2}. 

The PIM is represented by a control process consisting of an ordered 

sequence of activities “Read a product” and “Create an order of a 

product”. On the other hand, the TCM is represented by an ordered 

sequence, or orchestration, of the “cASReadAProduct”  and 

“cASCreateAnOrderOfAProduct” services. The instantiation of the CT-

RR rule is such that:  

{Read a product → cASReadAProduct =  

CT(Read a product, cASReadAProduct)} ∧ 

{Create an order of a product → cASCreateAnOrderOfAProduct =  

CT(Create an order of a product, cASCreateAnOrderOfAProduct)} 

⇒ CT({Read a product – Create an order of a product}, 

{cASReadAProduct – cASCreateAnOrderOfAProduct}) =  

{Read a product – Create an order of a product} → 

{cASReadAProduct – cASCreateAnOrderOfAProduct} 

The result is therefore an integration of the application services 

orchestration resulting from business activity mapping. A simplified 

implementation of the transformation is illustrated in Fig. 7.   

 

 
 
 
 

 

 

Fig. 7 - Illustration of the contextual CT-Transformation (enclosed) of 
a relationship for the code generation process. 

The PICM meta-model for a relationship between units is outlined in 
Fig. 8 (instances are extracted from Fig. 7). Mapping between external 
orchestration of services and sequence of business activities is based on 
the CT-RU rule. 

CT 
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Fig. 8 - PICM meta-model (enclosed) of the code generation case 
including the mapping between PIM and TCM meta-models applied 

to a unit relationship. 

Consequently, the PIM meta-model concepts in Fig. 8, represented as 

relationships between units and attributes (described with instances from 

Fig. 7) are defined as: 

• “BusinessProcess” characterizes a response of a company to a 

customer’s request:  
o “name” (Order process). 

• “BusinessActivitySequence” represents a time sequence of two 

business activities that make up a process (Read a product → Create 

an order of a product): 
o “composes” identifies the process to which the sequence belongs 

(Order process). 
o “source” designates the business activity that initiates the 

sequence (Read a product). 
o “target” specifies the business activity completing the sequence 

(Create an order of a product). This link to the target activity is 
null when the process consists of only one business activity. 

o “ranking” specifies the number of the sequence in the process  
(1: the 1st sequence of the process).  

The TCM of Fig. 8 describes an orchestration of services based on the 

following concept (instances are from Fig. 7): 

• “ExternalServiceOrchestration” describes an external sequence of 

calls to external services: 
o “description” designates the sequence of external services 

(cASReadAProduct – cASCreateAnOrderOfAProduct” ;). 
o “before” refers to the first service of the sequence  

(cASReadAProduct). 
o “after” refers to the second service of the sequence 

(cASCreateAnOrderOfAProduct). 

For relations between units, the PICM concept (outlined in Fig.8) and 

its attributes (with instances extracted from Fig. 7) are: 

• “ContextualizedActivitySequence” describes a sequence of activities 

enriched by the contextual model of existing orchestrations of 

services: 
o “mapsWithSequence” designates the business activity sequence 

(Read a product – Create an order of a product). 
o “mapsWithExternalOrchestration” identifies the sequence of two 

calls to external application services (cASReadAProduct – 
cASCreateAnOrderOfAProduct). This link does not exist when 
there isn’t a sequence of external services to be mapped with the 
sequence of business activities. 

o “composes” provides the link of the business process that 
contains the sequences of activities (Order process). 

4.2. ST- Transformation design  

When a contextual model is integrated with substitution, the ST MDA-

compliant transformation is no longer applied to the PIM, but to the 

PICM. The PDM specifies the rules to be technically implemented to 

integrate services developed with a Java runtime environment or to 

program new services. These rules complete the definition of a three-layer 

application architecture synchronized by an application server: 

• The “data access” layer which allows manipulating data with SCRUD-

type operations (Search, Create, Read, Update, Delete). 

• The “service” layer where each service supports a business activity in 

this particular case and uses components of the “data access” layer. 

• The “presentation” layer that represents the Human Machine Interface 

(HMI) and uses components of the “service” layer depending on the 

user’s activity. 

4.2.1. Unit ST-Transformation 
For units, ST implements the rules to transform a business activity into 

an application service (to be developed or ready to be substituted by code 

generation of a service). Application services are declared in a Java 

interface and coded (if development is necessary) in a Java class with the 

appropriate formalism. While the PSM resulting from ST is associated 

with the “service” layer of the system (Fig. 9), the ST-RU rule (see 

section 3.2) is applied to units individually substituted by a TCM unit 

(resulting code is represented by a code function): 

ST(cASReadAProduct, {JavaInterface,JavaCode}) = 

{ code(cASReadAProduct)} 

ST(cASCreateAnOrderOfAProduct, {JavaInterface,JavaCode}) = 

{ code(cASCreateAnOrderOfAProduct)} 

 Additionally, the PSM is only composed by Java interfaces code 

obtained from the PICM transformation (code of the Java classes 

implementing the interfaces in an external system). A rule implemented in 

ST checks the consistency between the external service deployment 

environment and the execution environment of the system to be coded. In 

the examined case, the hypothesis of a JEE environment for external 

services allows to integrate them into the generated code. 
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// service interfaces (used existing interfaces) 

public interface CASIProductManage 

{ 

public Product cASReadAProduct  

   (String productName); 

} 

public interface CASIOrderManage 

{ 

public Order cASCreateAnOrderOfAProduct 

   (Date dateOrderProduct,Product product); 

} 

Fig. 9 - Example of the ST-Transformation of a unit for the code 
generation process, including the PSM and the PICM. 

PICM and PSM meta-models defined for the units and relations 

between units resulting from ST (Fig. 10) are explained below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 - PSM meta-model (enclosed) of the code generation case, associated to the PICM meta-models (unit and relationship), satisfying the PDM 
meta-model. 
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The PDM meta-model specifying the technical constraints of an ST 

transformation, as described for the units, is outlined in Fig. 11. Concepts 

specific to the definition of architecture proposed in the introduction to 

section 4.2 – “ApplicationServer”, “ServiceLayer”, and 

“DataAccessLayer” –, are useful for units and complete the meta-model.                                                       

 

Fig. 11 - PDM meta-model (enclosed) of the code generation 
illustration with a MDA approach applied to a unit. 

Consequently, the PDM meta-model concepts and attributes are 

defined as: 

• “JavaCode” represents Java code associated with code generation. 

• “JavaInterface” represents a Java interface of the service layer (the 

"ServiceLayer" concept complements the PDM meta-model): 
o “isCoded” associates the interface with its  Java code. 

• “JavaClass” represents a Java class of the service layer 

("ServiceLayer" concept): 
o “isCoded” associates the interface to its Java code. 
o “implements” refers to the Java interface implemented in the 

class. 

• “DAO” represents a Data Access Object of the “data access” layer 

(concept “DataAccessLayer” that completes the PDM meta-model): 
o “isUsed” refers to the Java class that makes use of this DAO. 

PSM meta-model is completed for service coding (not instantiated in 

Fig. 9, but this case is rather common in today’s information technology) 

using the MDA approach for code generation): 

• “ApplicativeService” represents the signature of the application 

service, defined as an operation of the Java interface encapsulating the 

signature of the service, as recommended in the PDM: 
o “supports” designates the business activity of the PIM 

transformed by this service. 
o “name” provides the name of the application service. 
o “serviceInterface” is the name of the interface containing the 

service signature. 
o “deploymentEnvironment” specifies the technical constraint of 

the PDM. 

• “ApplicativeServiceImplementation” represents the service 

implementation in a PDM-compliant manner: 
o “implements” refers to the implemented Java interface as 

specified in the PDM. 
o “code” represents the code of the interface operation. 

• “DAOOperation” represents the operations for accessing PDM-

compliant data: 
o “isUsed” refers to the code of the service using a call to the DAO 

operation. 
o “name” indicates the name of the operation. 
o “DAO” is the name of the data access object that encapsulates 

the data access operation. 

4.2.2. Unit Relationship ST-Transformation 
For relations between units, the ST transformation targets the 

"presentation" layer. Each sequence of two business activities is 

transformed by ST into a coded sequence of calls to application services 

(external or internal). Furthermore, ST satisfies a technical constraint to 

execute a Java program. The Java program is designed on the 

“presentation” layer, which communicates with the “service” layer 

previously generated from units of the PICM.  

The ST-RR rule (see section 3.2) is applied to a single relationship 

that is mapped with a TCM orchestration. Consequently, the ST-RR rule 

becomes: if an activity A1 precedes an activity A2, then the service cAS1 

mapped with A1 precedes, with an external service orchestration defines 

in the PDM, the service cAS2 mapped with A2: 

if  (CT({A1 – A2}, {cAS1 – cAS2}) = {A1 – A2} → {cAS1 – cAS2}) 

then  

ST({cAS1 – cAS2}, ExternalServiceOrchestration) = 

{cAS1;cAS2;} 

else  

checking of input and output parameters of cAS1 and cAS2 

services to design their orchestration 

endif 

The ST-RR rule is instantiated for the sequence transformation, from 

the consultation activity of a product to the order creation activity, 

constrained by a Java service orchestration (resulting code is represented 

by a code function as previously for ST illustration for units): 

ST({cASReadAProduct –  cASCreateAnOrderOfAProduct}, 

Java:ExternalServiceOrchestration) = 

{ code(cASReadAProduct;cASCreateAnOrderOfAProduct;)} 

 

An implementation of the ST transformation is illustrated in Fig. 12. 

The sequence of activities with the orchestration of services (outlined on 

the top) mapped to it, “{Read a product – Create an order of a product} 

→ “{ cASReadAProduct;cASCreateAnOrderOfAProduct}”, is the input of 

the ST transformation. At the output of ST, the coded sequence is modeled 

by calling these two services in the main, as well as the methods 

“presentation_readProduct()” and “presentation_orderProduct()”. 

 

 

 

 

 

 
 
 

// get existing service interfaces 

public static CASIProductManage 

getManageProduct() 

{ 

InitialContext ctx; 

CASIProductManage manageProduct = null; 

ctx = new InitialContext(); 

manageProduct = (CASIProductManage) 

   ctx.lookup(CASIProductManage.JNDI_NAME); 

ST 
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return manageProduct; 

} 

public static CASIOrderManage getManageOrder () 

{ 

InitialContext ctx; 

ASIOrderManage manageOrder = null; 

ctx = new InitialContext(); 

manageOrder = (CASIOrderManage) 

   ctx.lookup(CASIOrderManage.JNDI_NAME); 

return manageOrder; 

} 

// methods associated to services 

public static Product presentation_readProduct() 

{ 

return getManageProduct(). 

   cASReadAProduct (“product_name”); 

} 

public static void presentation_orderProduct 

   (product : Product) 

{ 

Date date = new Date(System.currentTimeMillis()); 

getManageOrder().cASCreateAnOrderOfAProduct  

   (date, product); 

} 

//Java program 

public static void main(String[] args) 

{ 

Product product = presentation_readProduct(); 

presentation_orderProduct (product); 

}  

Fig. 12 - Illustration of the ST-Transformation of relationship for the 
code generation process. 

 

The PDM meta-model specifying technical constraints of the ST 

transformation as described above for the relations between units, is 

outlined in Fig. 13. Concepts of the three-layer architecture – 

“ApplicationServer”, “PresentationLayer”, and “ServiceLayer” – 

complete the PDM meta-model.   

 

 

Fig. 13 - PDM meta-model (enclosed) of the code generation 
illustration with a MDA approach applied to a unit relationship. 

The PDM meta-model is complemented by a concept for relations 

between units: 

• “JavaProgram” represents the Java program on the “presentation” 

layer (being "PresentationLayer" a concept that completes the PDM 

meta-model) to which the system user has access: 
o “isCoded” associates the program to its Java code. 
o “uses” indicates the Java interfaces used by the program.  

The resulting PSM meta-model (Fig. 10) concepts (from the MDA-

compliant ST transformation) and attributes (described by one instance of 

Fig. 12) stipulated for these unit relationships are: 

• “ApplicationServiceOrderedCall”  designates two successive calls to 

application service interfaces: 
o “description” (aSReadAProduct; 

asCreateAnOrderOfAProduct;); 
o “before” specifies the first called applicative service 

(aSReadAProduct). 
o “after” specifies the second called applicative service 

(asCreateAnOrderOfAProduct). When the second service is null 
then the process is composed of only one business activity and 
therefore supported by a single application service. 

• “MainProgram” characterizes the support of a business process in 

accordance with the PDM:  
o “code” (public static void main (String[] args) {Product product 

= presentation_readProduct(); presentation_orderProduct 
(product);}). 

o “supports” refers to a supported business process (Order 
process). 

o “isComposed” refers to sequences of calls to application services 
(aSReadAProduct; aSCreateAnOrderOfAProduct;) 

The ST transformation implements rules for assembling call sequences 

to application services that support a business process. Such assembling 

follows the previous consistency rule between the service call structure 

and the activity structure in a particular sequence. Also, generation of 

code linked to an external service call or the orchestration of external 

services, are taken into account by the ST transformation. 

The specific addition to the PICM at the input of the ST 

transformation is the use of JNDIs of external service interfaces, namely 

“CASIProductManage” and “CASIOrderManage” (cf. enclosed parts of 

Fig. 12) instead of using service interfaces developed in the system. 

4.3. CT- and ST-Transformations Execution 

The execution of these transformations is linked to the adaptation of 

meta-models to a development process within the framework of a real 

enterprise. Generating code from the analysis of a system is split in two 

sub-processes. For instance, in the Enterprise Architecture for Unified 

Process approach, each sub-process integrates a specific contextual model 

[47]: 

• Functional architectural model of a system according to a functional 

analysis of the system and a contextual model representing the 

functional EA of the information system. 

• Application architecture and code model based on the functional 

architecture of the system previously modeled with a ready for use 

contextual model of services (external or internal to the system). 

The ST transformation for the code generation process can be 

implemented. One application is, for example, a rule generating a 

component of the service layer. Rules specific to the information system 

in which the system is developed are satisfied by the creation of a service 
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layer component. One of the rules for creating such a component is for 

instance: 
ServiceLayerComponentDesignRule. One applicative service (AS) results 
from the transformation of one business activity (BA). An applicative 
service interface providing AS results from the transformation of the 
business process that contains BA. 

 This rule is implemented by the operational-QVT (Query / View / 

Transformation) [48] code in Fig. 14, which is compliant with the PSM 

meta-modeling in Fig. 13. 

 
//creation of a service of a component of the service layer 

mapping BusinessActivity::createApplicativeService() : 

ApplicativeService 

{ 

 name := "aS" + self.name.replace(" ",""); 

 serviceInterface := "ASI" + self.mappedWith.composes.name. 

     replace(" ",""); 

deploymentEnvironment := "JEE"; 

 result.supports := self; 

} 

Fig. 14 - Illustration of the ST-transformation coding of the 
ServiceLayerComponentDesignRule for the code generation process. 

Coding of the rule ServiceLayerComponentDesignRule is completed 

by coding of rules deferring JEE technical constraints. The contextual 

model linked to this code generation process allows capturing the 

variability related to the model of application services. It can replace code 

generation of a service to be developed. This integration is shown in the 

following section with the application of a contextual model to the image 

classification process. 

5. Integration of a contextual model into a process with 
enhancement: the case of supervised classification 

Image classification is another case on which context variability 

occurs [49]. In image classification it is assumed that visual image 

features can be uniquely associated to statistically learned and 

semantically meaningful classes. Context variability is produced by the 

multiple possible image content descriptors. An image assigned to a visual 

class is quantitatively represented by numerous descriptors composed of 

several hundred elements. These are basically low (contours and texture), 

medium (regions), and high (values analysis) level image features 

automatically calculated.  

Besides the need to handle millions of images and thousands of 

classes, process complexity arises from the fact that image features differ 

in size, classification performance, and reliability. As a consequence, 

different performance results are obtained depending on the corpus. Image 

features also relate differently to supervised (learnt examples) and 

unsupervised (grouping criteria) classification. For these reasons, 

numerous approaches have been implemented for image classification in 

large databases, with variable sets of descriptors and classes [50] [51] [52] 

[53]. 

Image classification is particularly difficult given that knowledge 

owned by experts of the application domain is required. Data production 

variability increases in this case because experts need to combine 

optimally different image descriptors to improve classification results 

[54]. A descriptor is a low level mathematical characterization of visual 

image content, for example a geometrical moment of a set of pixels [55]. 

Applied image content low and medium descriptors to illustrate the 

classification process in this paper are: 

• Zernike descriptor (49 elements from ℂ, i.e. a vector in ℂ49), 

composed by orthogonal complex moments of an image that are 

invariant to rotation and robust to noise [56]. 

• Angular partition descriptor (32 elements from ℕ, i.e. a vector in 

ℕ
32), formed by 32 elements that represent the distribution of 

segmented edges in a symmetric angular partition of the image [57].  

• Angular radial transform descriptor (25 elements from ℂ, i.e. a vector 

in ℂ25), calculated applying an angular radial transformation that 

projects image gray levels on an orthogonal radial space [58].  

 

Although descriptors have different representations and 

complementary information, a ranking of descriptors is necessary before 

classification. Then, a classification process could be learnt based on 

selected descriptor elements, instead of the whole descriptors set. 

Consequently, evaluating the quality of descriptors’ elements extends the 

classification process from a predefined amount of descriptor elements, to 

a reduced and selected set of descriptor elements. 

To examine the pertinence of MDE, the contextual model integration 

approach presented in section III is applied to the process of image 

classification. It is assumed that previously learnt image classes, 

independently of the learning algorithm, are available for image 

classification. These learnt image classes enrich the process. Without such 

enrichment, a MDA-compliant transformation would just provide the 

closest images to a given query image, as post-classification result. 

Otherwise, the design of transforms CT and ET only targets units, without 

defining relationships between images. Since the integration of a 

contextual model outputs a classified image, a model including image 

content descriptors’ elements is transformed into a model of a classified 

image. Several process models are modified by the integration of a 

contextual model into a process with enhancement in the case of image 

classification (Table 3).  

Table 3 – Process models modified by a contextual model with 
enhancement. 

Model 
Integration of a contextual model into an image 

classification process 

PIM Model of image 

TCM Model of characteristic image class 

PICM Model of image enhanced by characteristic image class 

PDM Model of Euclidean distance 

PSM Model of a classified image 

The CT transformation allows associating a contextual model of image 

class to an image (PIM), making use of characteristic images of a class 

(TCM). Pairs defined in this manner relate a query image to an image 

class (PICM). 

The design condition of these pairs is a mapping between the name of 

the image collection to which the image to be classified belongs and the 

name of the image collection to which the classes are associated. This 

condition is implemented in CT. Alternatively, the ET transformation 
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targets an image enriched by mapped image classes (PICM) and results 

into a classified image (PSM). Classification is the assessment of the 

closest class in the sense of a Euclidean distance (PDM), between certain 

elements of the descriptors quantifying the image and the same elements 

quantifying the characteristic image of each class. Selected descriptor 

elements and calculation of the smallest distance between the image and 

all the characteristic images, are coded in the ET transformation. 

5.1. Contextual CT-Transformation Design  

To demonstrate the feasibility of the proposed approach, exhaustive 

testing was conducted using the ALOI (Amsterdam Library of Object 

Images) collection [59]. For instance, using a schematic representation of 

the CT transformation (Fig. 15), query image “_C36_l6c2” is associated 

to classes “C36” and “C461” according to a subset of learnt images: 

CT(_C36_l6c2,C36) = _C36_l6c2 → C36 

CT(_C36_l6c2,C461) = _C36_l6c2 → C461 

With respect to the code generation case, the input image 

“_C36_l6c2” is equivalent to a business activity. The contextual model, 

which in the previous case consisted on existing application services for 

code generation, is represented here by classes illustrated with a picture of 

a characteristic image: a cup (C36) and a roll of paper (C461). The two 

image-class oriented associations indicate that these classes constitute the 

contextual image data because they belong to the same corpus. Such 

association to the same corpus specifies the mapping between an element 

of the PIM and one or more elements of the TCM. Although for simplicity 

reasons the mapping implemented in CT permits to select image classes 

from ALOI, TCM can also include other image databases. 

 

 
 
 
 
 
 
 
 

 
 

 

Fig. 15 - Illustration of the contextual CT-Transformation for the 
image classification process. 

A description of an image is provided by the PIM meta-model. It is 

defined based on the content of image descriptors (Fig. 16). As indicated 

in the introduction of section 5, quantitative image content description is 

defined by vectors in ℕn, ℝm, or ℂp. 

 

Fig. 16 - PIM meta-model of the image classification illustration. 

Consequently, the PIM meta-model concepts and attributes (described 

by the example of one instance) are defined as: 

• “Image”:  
o “name” (_C36_l6c2). 
o “collection” (ALOI). 

• “Descriptor”: 
o “name” (Zernike). 

• “DescriptorElement”, consisting of: 
o “order” of the descriptor element (10th). 
o “value” of the element (-5656.085-1218.4637i). 
o “isContained”, by the given descriptor (Zernike). 
o “characterizes”, denoting the image represented by the element 

of the descriptor (_C36_l6c2). 

• “Class” 
o “name” (C36) 
o “isAPrioriComposed” (_C36_l6c2). 

Alternatively, an a priori classification done by the expert is extended 

via the “aPrioriComposes”. It refers to the class that a priori includes 

content of images described in the classification corpus. Although the 

“aPrioriComposes” association permits to calculate a classification error 

rate, it is not computed during image classification that results in a 

posteriori composition. 

Data production variability is illustrated in this second feasibility 

example by the static evaluation method of the selected classes for pattern 

recognition. Furthermore, data production variability could be extended 

whenever the previous evaluation is completed by the assessment of 

conditional probability of a class knowing another class (for example, a 

class representing a particular shape in an image, knowing the class 

representing another shape that appears associated to the previous one in 

some sets of images). For the TCM exemplifying context by enrichment, 

the class production mode is characterized by minimum and maximum 

values, as well as the mathematical expectation of each descriptor’s 

elements. Previous statistical scores are then completed by the rank of 

each element and descriptor in the classification result, corresponding to 

their intrinsic quality (defined to be better if the minimum and maximum 

are comparatively closer). 

_C36_l6c2 

CT 
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Available classes are described by the TCM meta-model (see Fig. 17). 

For the image classification illustration, a set of ranked descriptors as well 

as a set of ranked descriptors’ elements complete the TCM. A training 

phase allows exhaustive search for the best descriptors and for the best 

descriptors’ elements, with respect to classification performance. 

Boundary conditions to delimitate image classes of similar data are 

applied [60]. Different data are generated whenever classes’ definition 

and/or training are modified to suit other classification requirements.  

 

Fig. 17 - TCM meta-model of the image classification process. 

The TCM meta-model concepts and attributes (each described by one 

instance example) are defined as:  

• “LearntClass” representing a class identified according to statistical 

learning: 
o “name” (C36).  
o “collection” (ALOI). 

• “LearntClassSetDescriptor” representing a descriptor, associated to 

the learnt class set, identified according to statistical learning: 
o “name” (Zernike). 
o “ranking” of the descriptor (1st). 

• “LearntClassSetDescriptorElement”, representing a descriptor 

element, associated to the learnt class set, identified according to 

statistical learning: 
o “name”, representing the descriptor associated to the element 

(Zernike).  
o “order” of the descriptor element having a value between 1 and 

n, when the amount of descriptor elements is n (10th). 
o “ranking”, a descriptor element rank of descriptor (64th). 

• “DescriptorElementStatisticalDescription”, designating the statistical 

description of a descriptor element, associated to one class and 

characterizing an element of a descriptor: 
o “order” of the descriptor element having a value between 1 and 

n, when the amount of descriptor elements is n (10th).  
o “maxValue” is the maximum value of an element of a descriptor 

for a set of images belonging to the same class (8511.2867 + 
2374.859i). 

o “minValue” is the minimum value of an element of a descriptor 
for a set of images belonging to the same class (-6017.3437 - 
1097.7585i). 

o “expectedValue” is the average of the values of an element of a 
descriptor for a set of images belonging to the same class 
(1497.495359 + 396.052725i). 

o “estimates” refers to the learnt class (C36). 
o “characterizes” indicates the descriptor associated to the learning 

result (Zernike). 
o “characterizesElement” indicates the descriptor element 

associated to the learning result (10th). 

The PICM resulting from the CT transformation is based on mapping 

between an image and an image class (see CT-RU), respectively 

excerpted and learnt from the same collection of images (mapping is 

outlined Fig. 18). 

The new concept resulting from the mapping is: 

• “ContextualizedImage” representing an association class between  the 

image to classify and one class learnt with an excerpt of the same 

image collection: 
o “mapsWithImage” refers to the mapped image (_C36_l6c2).  
o “mapsWithClasss” refers to the mapped learnt class (C36). 

CT implements the creation of the “ContextualizedImage” based on 

the mapping between the collections of the image and of one class, if 

exists, and the associated concepts of the PIM and of the TCM. 

 

 

Fig. 18 - PICM meta-model (enclosed) of the image classification 
process, including the mapping between PIM and TCM meta-models. 

5.2. ET-Transformation Design 

The ET transformation containing the application of the ET-RU rule 

with the previous input PICM and a PDM constraint defined by a 

Euclidean distance is illustrated in Fig. 19. Each line shows the result of 

one classification process step. 
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Fig. 19 - Three possible results – impossible, failed, and successful – of the proposed ET-Transformation example for the image classification 
process. 

The first line of Fig. 19 indicates that the _C36_l6c2 image was not 

classified by any of the three defined descriptors. An unattainable 

classification like this one means that the decidability threshold is too 

high. This line represents an instance of the PSM on which “Distance” 

“evaluates” a pair composed only by an “Image” and no “LearntClass” 

(_C36_l6c2, null) with a true “classification”. ET does not return any 

“LearntClass” for this “Image”:  

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = null 

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = null 

The second line shows a classification error, because the _C36_l6c3 

image was incorrectly classified in the C461 class by the ART_5x5_gray 

(angular radial transform) descriptor. This classification error means that 

the classification is only decidable for the ART_5x5_gray descriptor (the 

lowest quality descriptor), although the obtained result is wrong. This line 

represents an instance of the PSM on which “Distance” “evaluates” a pair 

composed by an “Image” and a “LearntClass” (_C36_l6c3, C461) with a 

true “classification”. Failing is deduced from the comparison, 

implemented in T, between the C461 “LearntClass” and the C36 

“aPrioriComposes” “Class” of the _C36_l6c3 “Image”. ET returns an 

error for this “LearntClass” when comparing it with the “Class” that 

“aPrioriComposes” the “Image”: 

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = null 

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = false 

The third line represents also an instance of the PSM where 

“Distance” “evaluates” a pair composed by an “Image” and a 

“LearntClass” (_C36_l7c1, C36) applying the AP_8x3_gray (angular 

partition) descriptor with a true “classification”. Success is deduced from 

the comparison between the C36 “LearntClass” and the C36 

“aPrioriComposes” “Class” of the _C36_l7c1 “Image”. ET returns success 

for this “LearntClass”, which is the same “Class” that “aPrioriComposes” 

the “Image”: 

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = true 

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = null 

An equivalent result is obtained for image _C36_l7c2 in the fourth 

line. In these two cases, although the classification is not decidable with 

the Zernike descriptor, it is not necessary to test the ART_5x5_gray 

descriptor. The other lines of the running logs represent additional 

successful classifications. As indicated, _C36_l7c3, _C36_l8c1, and 

_C36_l8c2 images were properly classified by the Zernike descriptor. 

These results indicate that classification is decidable according to the best 

quality descriptor. 

To calculate a Euclidean distance between two vectors of ℕn, ℝm, ou 

ℂ
p formed by descriptor elements, the PDM (Fig. 20) is designed to 

represent required useful concepts. 

 

Fig. 20 - PDM meta-model of the image classification process. 

The PDM meta-model is therefore composed by the following 

concepts to compute a Euclidean distance: 

• “Value” is a value of ℕ, ℝ, or ℂ. 

• “ElementSet” represents a set of elements or a vector. 

• “Element” is an element or a coordinate of a vector: 
o “composes” refers to the set containing the element. 
o “equalsTo” refers to the value of the element. 

• “EuclideanDistance” is the Euclidean distance between two vectors: 
o “between” refers to the two vectors representing two sets of 

elements taken to calculate the distance. 
o “equalsTo” refers to the real value of the Euclidean distance. 

ET 
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Additionally, the ET transformation contains the implementation of 

Euclidean distance calculation rules in ℕ
n, ℝm, or ℂp.     

The implementation of PDM constraints on the PICM targets a 

distance between the selected descriptor elements, defines quantitatively 

the image to classify, and a class of images mapped with it. The PSM 

(Fig. 21) results from the implementation of this constraint.  

 

 

Fig. 21 - PSM meta-model (enclosed) of the image classification 
process associated to the PICM meta-model and satisfying the PDM 

meta-model. 

The concept of distance (Fig. 21) between descriptor elements can 

thus be added to the PICM to define the PSM: 

• “Distance” representing a distance characterizing an element of a 

descriptor defining quantitatively the image to classify and a class: 
o “value” is the float value of the Euclidian distance (73.71026). 
o “classification” is a Boolean that indicates if the pair, composed 

by the image and the mapped class, is, or is not, the result of the 
classification (true).  

o “evaluates” refers to a pair composed by an image and a class 
(_C36_l6c2, C36).  

5.3. CT- and ET-Transformations Execution 

Taking as input query images to be classified, the ET transformation is 

constrained by the description of each image class, resulting from the 

preceding CT transformation. An a posteriori classification is obtained 

and compared to the a priori classification. This comparison provides an 

error rate and a non-classification rate (when an a posteriori class does not 

result from the ET transformation). 

Because of its originality for the MDA approach, the algorithm 

implemented in the ET transformation is detailed below. Decidability of a 

classification is the ET transformation basis, i.e. an image can be 

classified by means of a descriptor or not. Thereafter, an axiom of 

decidability to classify an image in a class C according to a descriptor D, 

is: classification of an image in C is decidable if the distance between the 

image and the minimum value, the maximum value, and the expected 

value of C, is significantly greater than the distance between the image 

and the minimum value, the maximum value and the expected value of the 

other classes for descriptor D. A “τ decidability threshold” determines 

quantitatively how significant are compared distances in the 

transformation. This decidability axiom conforms to the previous one, 

regarding the quality indicator.  

Fig. 22 represents an extract of the proposed algorithm based on the 

image classification illustration, and implemented in operational-QVT. 

The algorithm is applied to the η best descriptors’ elements. An 

operational-QVT helper dedicated to image classification and an 

operational-QVT mapping for creating the PSM concept “Distance” 

composing the ET transformation, fulfill the image classification 

algorithm and comply with meta-modeling (Fig. 21). 

 

//Mapping of distance calculation associated to a pair composed by an 

//image and a mapped class 

mapping ContextualizedImage::createDistance (dist : Real) : Distance 

{ 

           result.value := dist; 

           result.classification := false; 

           result.evaluates := self; 

} 

//Helper for image classification 

helper Image::classifyImage (η : Integer) : ContextualizedImage 

{ 

           var i := 1; 

           //image to classify 

           var image : Image := self; 

           //class resulting from the a priori classification 

           var classImage : Class := image.aprioriComposes; 

           //class resulting from the a posteriori classification  

           var classTest : ContextualizedImage := null;  

           while (i<=number of ranked descriptors)  

           { 

                      var descript : Descriptor := the ith descriptor;  

                      var j := 1; 

                      var seqCI : Sequence(ContextualizedImage)  

                                 := image.mappedWith-> 

                                 select(e : ContextualizedImage |  

                                 e.mapsWithClass<>null)->asSequence(); 

                      while (j<= seqCI->size()) 

                      { 

                                 seqCI->at(j).map createDistance  

                                             (dist(D(descript , I, η), D(descript, Cj, η)); 

                                 j := j + 1; 

                      }; 

                      var bestIndex := 0; 

                      if (seqCI->size()>1) 

                      then 

                      { 

                                 var k := 1; 

                                 while (k<=seqCI->size() and bestIndex=0) 

                                 { 
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                                            var testIndex := true; 

                                            var m := 1; 

                                            while (m<=seqCI->size() and testIndex) 

                                            { 

                                                       // τ decidability threshold 

                                                       if (k<>m and  

                                                         ((seqCI->at(k).isEvaluated.value / 

                                                    seqCI->at(m). isEvaluated.value) > τ)) 

                                                       then 

                                                                  testIndex := false 

                                                       endif; 

                                                       m := m + 1; 

                                            }; 

                                            if testIndex 

                                            then 

                                                       bestIndex := k 

                                            endif; 

                                            k := k + 1; 

                                 }; 

                      } 

                      endif; 

                      classTest := 

                                 if seqCI->size()=1 

                                 then 

                                            seqCI->at(1) 

                                 else 

                                            if (seqCI->size()>1 and bestIndex<>0) 

                                            then 

                                                       seqCI->at(bestIndex) 

                                            else 

                                                       null 

                                            endif 

                                 endif; 

                      i := i + 1;  

           }; 

           if (classTest<>null) 

           then 

           { 

                      if (classImage.name=classTest.mapsWithClass.name) 

                      then 

                                 log (“image correctly classified”) 

                      else 

                                 log (“image not correctly classified”) 

                      endif; 

                      classTest.isEvaluated.classification := true; 

           } 

           else 

                      log (“image not classified”)  

           endif; 

           //return represents the result of the classification 

           return (classTest); 

} 

Fig. 22 - Example of the ET transformation coding with operational-
QVT for the image classification process. 

Mathematical functions (PDM for the image classification process) 

constraining the ET transformation, represent various operations: 

• D(descript, I, η) defines the value of the elements of the descript 

descriptor, selected from the η best elements of the set of descriptors, 

applied to image I. 

• D(descript, Cj, η) is the value of the descript descriptor, selected from 

the η best elements of the set of descriptors, applied to the Cj class 

depending on the minimum value, on the maximum value, and on the 

expected value for Cj. 

• “Dist” is the Euclidean distance on the space ℕ
m, ℝn or ℂp, 

corresponding to the space on which are defined the values of the 

selected elements of the descript descriptor.  

Integration of a contextual model is therefore feasible for the proposed 

image classification process, since it takes into account the variability of 

data associated to image content descriptors and their elements. 

6. Discussion 

Heterogeneous data produced in variable manners are complex to 

model. Such complexity is significantly increased when the model is 

intended to have a direct impact on the associated process. The proposed 

approach and its first experimental results indicate that contextual models 

of variable produced data can be automatically generated and integrated 

into a corresponding process. To handle variable means to generate data, 

it is required to know the task that generates data and how such data 

generation is carried out. Additionally, modelling the data context should 

be independent of modelling the process. On the other hand, the resulting 

contextual model provides knowledge with direct impact on the concerned 

process. This is made possible by analyzing the selected data production 

mode and its representation by model transformation, considering that 

input parameters are the fundamental integration keys. In the two 

described use cases these input parameters are, respectively: activity 

supported by the external service to integrate external services and image 

class to integrate patterns to be recognized. The whole approach relies on 

three successive stages, on which an expert defines:  

- The mapping between the contextual model and the input of the 

model transformation.    

- A transformation based on a technical constraint and the contextual 

transformation model. 

- The transformations running. 

Meta-models parametrized using the concepts of the proposed 

approach were developed for an information system and an image 

classification system, to which a suitable contextual model was integrated. 

Although there is a difference at a conceptual level between these two 

processes, both are structured according to the three stages of the 

approach. Code generated for a feature is instantiated during its execution 

by a user. For instance, code generated from a functional requirement is 

instantiated to order an instance of a commercial product during its 

execution by a vendor. Classification grounded on enhancement, is at the 

instance level of code generation constructed on substitution. Otherwise, 

pattern recognition targets directly image instances, like the recognition of 

a commercial product in an image, for example. These two example cases 

make it possible to underline the difference between mapping with a 

contextual model using CT and a technical constraint with transformations 

such as ST or ET. Meta-models associated to transformations define a 

model fusion role for the first constraint and a constraint pattern role 

applied to a model for the second constraint. CT makes it possible to 
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produce a PICM from a mapping between the PIM and the TCM, whereas 

ST or ET allow, in a classical way for the MDA, to deduce a PSM from a 

PIM with a technical constraint described in the PDM. 

It is relevant to consider that whereas the TCM makes possible to 

associate an element of the PIM with contextual data, the PDM only 

describes how the PSM transforms this association. Therefore, a mark 

defined in the PDM represents a concept in the PSM, and is applied to an 

element of the PICM, indicating how that element is transformed. 

Marking is replaced in the PDM, indicating by means of rules how a 

PICM concept should be transformed, depending on whether it is 

associated with an element of the TCM or not. Furthermore, instead of a 

marked PIM, the proposed model uses the PICM constrained by the PDM 

rules to make the PSM transformation. Since the PIM marked by the TCM 

cannot generate the PSM, this task is done by the PDM. Correspondingly, 

the TCM does not require structured marks to define mutually exclusive 

alternative mappings, permitting to include the contextual data production 

mode. Likewise, only the context data instances of the TCM that perform 

certain functions of the PIM are automatically selected. Therefore, several 

instances of contextual TCM data can be seamlessly associated to the 

same element, while the PDM filters technically compatible elements, 

according to a chosen transformation. 

The example cases show two data production variability frameworks 

for which our approach is relevant. The first framework relates to a 

dataset that can be integrated as a part into the process by substitution. An 

application service to be reused, replaces the transformation of an activity 

into an interface and a Java class encoding an application service, during 

code generation. The second framework concerns a dataset that can be 

integrated into the process by aggregation. A class of images is aggregated 

during the classification to search the closest images in the sense of a 

Euclidean distance. As a result, our work contribution is to relate variable 

generated data and its context by means of automated integration of a 

designed system component model, in order to improve the processing of 

data generated in variable manners. Described results show the proposed 

approach feasibility in two specific cases and also provide some helpful 

insights on implementation aspects.  

The PDM generates marks applied to the corresponding elements of 

the PICM. In this way, the PIM is associated with the contextual data of 

the TCM. However, this marking model cannot take into account the 

reuse of already produced contextual data and the corresponding modes of 

production. To this end, knowledge represented in the TCM refines the 

PIM by associating contextual data to be reused in different manners, 

without adapting the underlying process. It is the PDM that defines how to 

process and reuse contextual data, refraining from process adaptation to 

each data set, as a conventional MDA approach. The extension of 

weaving to the complete examination of a given contextual data 

production mode, provides the variability related to the production modes 

of these contextual data. It does not imply in any way however, that such 

integration is optimal by definition or design. This could be considered as 

an aspect to improve in the proposed approach. Still, it is useful to 

remember how the approach should be applied. Integration rules should 

be set by the process expert and this work should be facilitated by taking 

into full account the concepts manipulated by the production method. 

From a practical point of view, the proposed contextual model 

integration approach may be conditioned by the fact that it is designed 

closely associated to the process development. This aspect is penalizing 

when the processing of ST or ET related to process transformations is 

significant, due to large data variability. Nevertheless, these 

transformations could be adapted to take into account context changes. 

The integration of a new information system application service or a new 

image class could be equivalent to services reuse or image classifications 

already performed.   

Another restriction is the quality of process characterization, on which 

meta-model concepts related to the MDA approach depend. To properly 

take context into account requires adding a link between a meta-model 

describing the context (TCM) and a meta-model describing the input 

element of the MDA transformation (PIM), in order to design the meta-

model of the PICM. The accuracy of the PIM relation with the process 

characterization should therefore be verified. Similarly, the PDM 

consistency, as designed for the PIM transformation with the PICM, 

should be confirmed and, if necessary completed. 

7. Conclusion 

Modelling of data production variability in systems architecture and 

engineering is a complex and rarely addressed task. Taking into account 

the data production context, our work proposes a model to integrate 

variable generated data as a system component. Context data models are 

generated within a MDA compatible process in a MDE framework. These 

models permit to conceive automatically platform specific programs, 

integrated thereafter in a process. The TCM model extends the MDA 

approach, by representing the models involved in the production of 

contextual data, both at the input and output. This TCM model makes 

possible therefore to automate context integration into a process, 

independently of the data source and without using MDA marks at that 

level. 

The proposed approach based on contextual data mapping, was tested 

on two example MDA compliant processes to investigate its applicability. 

Data production variability that characterizes these two processes was 

addressed through the generic level offered by the MDE. Such strategy 

permits automatization applying meta-modelling of the PIM, TCM, 

PICM, PDM and PSM, along with the CT, ST, and ET transformations 

coded with operational-QVT, parametrized using the concepts of these 

meta-models. Consequently, the development of an information system 

and an image classification system is enriched by the integration of a 

contextual model, in the form of a ready-to-use services model and a 

model of image classes, respectively. 

Meta-models supporting integration of a contextual model into a 

process enable useful transformations to automate rules specifying a 

process solution. Interestingly, model mapping for a real case of data 

variability is added to MDA and illustrates the various potential 

application domains of integration of a contextual model into a process. 

Future works encompass the approach optimization for considerably 

variable contextual datasets, the dynamic adaptation to context changes, 

and the extension to new use cases. 
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