
HAL Id: hal-01836388
https://hal.science/hal-01836388

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatized integration of a contextual model into a
process with data variability

Jacques Simonin, John Puentes

To cite this version:
Jacques Simonin, John Puentes. Automatized integration of a contextual model into a process
with data variability. Computer Languages, Systems and Structures, 2018, 54, pp.156 - 182.
�10.1016/j.cl.2018.06.002�. �hal-01836388�

https://hal.science/hal-01836388
https://hal.archives-ouvertes.fr

* Corresponding author. Tel.: +33 (0)229001428
E-mail address: jacques.simonin@imt-atlantique.fr

Automatized Integration of a Contextual Model into a Process with Data
Variability

Jacques Simonin*, John Puentes

IMT Atlantique, Lab-STICC, UBL - CS 83818 F29238, Brest Cedex 3, France

A R T I C L E I N F O

Article history:

Keywords:

Data variability

Contextual data

Model transformation

Substitution transformation

Enhancement transformation

A B S T R A C T

Existent process models can hardly cope with the emerging issue of modelling exponential variable data

volumes in systems’ workflow, from specifications to operation. Given the strong relation between data

context and data variability, this paper considers the automated integration of contextual models for

processes with data variability. The proposed approach extends methodologically a platform independent

model process, using a contextual data model, to obtain automatically the corresponding platform specific

model. Contextual data are thus integrated to a process as a model, within a process. Two particular cases

of contextual data models are studied in detail: substitution, when the contextual data model defines

generated code, and enhancement, when learned data descriptions constitute the contextual data model.

The feasibility and value of integrating a contextual model into a process to handle data variability are

shown in detail describing these two use cases. Contextual model integration by substitution to include

automatically variable ready to use application services to generate code, and contextual model integration

by enhancement applied to supervised image classification based on variable descriptors. Results show

that relating data variability and its context by means of automated integration of a designed system

component model, simplifies variable data processing of system process models.

1. Introduction

Modelling of variable data – documents, software modules, images,

signals, videos, multimedia content, etc. – for system processes, is an

emerging issue in model-based system design. The exponential and

permanent generation of variable data makes unfeasible to extend or adapt

existent system process models to cope with the variability of data

production. Moreover, this variability often relates to a data context [1],

which is either ignored [2] or partially modelled with multiple constraints

[3] because of the complexity to represent it.

Usually, context awareness is defined through included conditional

relations of a process model. In that case, only if a context parameter has

a predefined value, then a specific operation can be triggered.

Nevertheless, whenever data production variability is addressed, context

awareness has to be defined through integration, by means of substitution

or enhancement of a process model. The interest of a contextual model

can be illustrated by three examples – that could be modelled – of data

context strongly related to production variability as article writing

support, application development, and pattern recognition:

- Article writing support: The context is defined by thousands of

previously published articles, from which, the notion of cited

articles (variable generated data) characterizes part of the

article’s content, written with a text editing process (integration

with substitution).

- Application development: The context is composed by thousands

of available enterprise services, related to a process to identify

and instantiate adapted application services (variable produced

data) in the development of an information system software

(integration with substitution).

- Pattern recognition: The context is represented by thousands of

content description values, associated to statistical

representations of numerous classes (variable defined data),

through a process of supervised classification (integration with

enhancement).

In the aforementioned examples the processing of data created in

various manners could be simplified, if a ready to use context data model

is applied. By analogy with off-the-shelf software components [4], such

context data model is understood as an optimized guideline of related

published articles, available developed services, or performant calculated

content descriptors, respectively, in the form of a system component

2

model. Several categories are associated to contextual data [5]. Among

those, the use of contextual data done by a process is part of the relations

category and its sub-category of functional relations – between contextual

data and the process. To develop modeling suitably aimed at considerable

volumes of data, we consider the automated integration of contextual

models for processes with variable produced data. It is consequently a

problem of defining the transformation of available data, into data that

influence a process, i.e. knowledge. For this specific problem, data

variability stems particularly from the different modes of data production.

In the previous introductory examples, a quoted article can be produced

by queries to different publishers and comply with one of various specific

standards (APA, Harvard, ISO, MLA, etc.). On the other hand, the

variability of a reusable application service, results from the development

of an information system application or library linked to multiple

programming languages (C++, Java, C, etc.). As for the statistical

representation of a class in pattern recognition, variability results from the

use of different descriptors and the choice of one or several out of

multiple mathematical distances between the class components, to identify

that class.

Different data production modes constitute a factor of variability not

previously taken into account for modeling purposes. Hence, we address

the question of how to define a contextual model for data produced not in

just one but variable manners, generate automatically platform specific

programs from that contextual model, and integrate it in a process. Our

main assumption is that modelling a variable data context is independent

of modelling a process. Furthermore, a meta-model can be defined if it is

known which task generated data and in what manner. So, besides

handling different modes to generate data, the resulting contextual model

provides knowledge with direct impact on the given process. The main

contribution of this work is allowing the architect to specify appropriate

rules to integrate data into the process, according to variable production

modes.

To facilitate the integration of variable contextual data into a process,

the essential modelling hypothesis is that a MDA-conform approach

produces the data, and thus defines a particular production mode. This

implies that the concepts at the input and output of models

transformations, as well as relationships describing this mode of

contextual data production, are modeled in a meta-model. Therefore, the

input concepts of a contextual data production transformation are defined

first, instead of adapting a model separately to a process for each

production mode. Our approach extends weaving as a result, which is

restricted to data generated by a unique production mode.

Among known model-driven system architecture approaches, context

data modeling appear to be feasible applying Model Driven Engineering –

MDE [6]. The main reasons are because the Object Management Group

supports it, generated models are platform independent, MDE is

compatible with some modeling standards, it has a largely generic design

spectrum, and it is widely used [7]. Additionally, a possibility in the MDE

framework could be to apply directly a relational transformation specified

as [8]: “an association between the elements or parameters of two models

of a system that induces a further mapping between the relationships in

the models”. However, there are not MDE context data models compliant

with variability of data production, designed specifically to be seamlessly

integrated in a process, but with conditional filtering [9]. Moreover, the

automatic generation of platform specific programs obtained from those

models applying Model Driven Architecture – MDA [10], has not been

defined either, for context integrations related to data variability.

 This paper reports on an original approach to generate context data

models, integrated to MDA compatible processes, within a MDE

framework. The proposed approach extends methodologically a platform

independent model (PIM) design process, making use of a contextual data

model, before the corresponding platform specific model (PSM) is

automatically obtained. In this manner contextual data are integrated to a

process as a model, reinforcing complementary knowledge. Two

particular cases of contextual data models are studied in detail,

substitution – when the contextual data model defines generated code –

and enhancement – when learnt data descriptions constitute the contextual

data model. The feasibility and practical value of integrating a contextual

model into a process for variable data production are shown in this paper

through a step-by-step demonstration of both cases. The first case

illustrates the feasibility of reusing an information system element to

develop an application of that system, while the second case illustrates the

suitability for pattern recognition, a process in which the application of

model engineering is unconventional.

 The paper is organized as follows. Background and related work

regarding variable data and context modeling, as well as systems

engineering based on models and MDA are described in Section 2. The

proposed approach is defined in Section 3, considering how to integrate a

contextual model to treat variable generated data by substitution or

enhancement. A use case of contextual model integration by substitution

is presented in Section 4, developing the automatic integration of ready to

use application services to generate code. A use case of contextual model

integration by enhancement is presented in Section 5, applied to

supervised image classification. In Section 6 findings, lessons learned

from both examples, as well as risks for validation are discussed.

Conclusions and perspectives are summarized in Section 7.

2. Related work

This section examines previous works on modeling of data variability

and context. It then summarizes research initiatives associated to model-

based engineering that have made use of these elements.

2.1. Data variability and context modeling

With the extensive complexity of systems, a significant problem in

model-based techniques is data consistency, i.e. to seamlessly include

variable ways of data production in system architecture modeling, for both

system architect and system user. Data production variability in system

modeling is challenging because it is complex to represent, constraint,

integrate, and trace in the workflow, from specifications to operation.

Moreover, there are multiple definitions, sources, and viewpoints, which

make very difficult to model and integrate data production variability.

Few works have studied variability in systems architecture, although

out of the modeling scope, to comply with fixed or changing

requirements. Variability in systems architecture has been analyzed in

software product families [11], to manage the complexity introduced in

UML models [12], to define features or decision models [13], to be

described and shared by groups of systems [14], as data-centric to

improve model consistency [15], or model transformation rules [16].

Otherwise, few works have examined the problem of variability in context

modeling. An ontology-based model was proposed to pilot electricity

generation using wind turbines depending on the operational context [17].

Also, it was determined that even if contextual data constrain a process,

 3

context representation is essential to dynamically adapt a system before

process execution conditions are taken into account [18].

2.2. Contextual model and model-driven engineering

The application of constraints to define models is well known in the

literature. Such approach can be for instance context-related to design

user-centered models of web services [19]. A language like ContextUML

[20] and recent multi-agent models [21] on which user behavior is crucial,

are based on the same principle. Nevertheless, the approach to define

contextual models must be extended when a process, not user behavior,

defines the constraints. MDE is appropriate to implement such extension,

given its generalization possibilities [22]. Besides, it is a prevailing

solution to define system architecture applying gradual constraints, by

refining the initial system specifications [23]. Since a model oriented

system architecture definition can be based on refinement in accordance to

MDA [24], MDE includes an architecture activity considered as

specifications refinement, applied up to code generation [25]. Refinement

is basically applied to produce sets of structured and connected modules

or applications. These represent coherent and stable decision rules, to

achieve a given data or information processing task [6]. Refinement is

fundamental to define multi-model-driven [26] and single-model-driven

[27] system architectures.

MDE has been applied in industry to improve the costly automation of

code generation [28], linked to software development traceability. For

example, use cases were transformed by refinement into system design

model [29] and specifications development [30]. MDE has also been

extended to a contextual model for multi-agent system design [31]. It has

remained close to code service architectures generation from business

processes [32], aligning business processes and a component

infrastructure based on service-oriented architecture. Yet, MDE

automation has been only applied to software development of detailed

architecture and the corresponding code generation, using a restrictive

framework associated to an applicative layer of the system [33].

Otherwise, system architecture can be generated using pre-designed

solutions, defining a contextual model consistent with the system

specifications. A contextual model could contain the basic functions of an

information system. These pre-designed system functions have been

defined by enterprise architects viewpoint design, to compose a

company’s system architecture [34]. Alternatively, other process

modelling techniques use so-called contextual data that add properties

(tagged values) of a model element to model languages [35]. Moreover,

some models integrate available data before process execution, like the

definition in advance of specific services matching constraints and run

upon request [36]. Alternatives using MDA have been developed to adapt

system architectures to a mobile network [37] and a ubiquitous system

[38]. Nevertheless, proposed approaches are neither associated to a

methodology enabling software development automation, nor developed

and documented in detail [19]. Besides, when a process is executed in

MDE a model for contextual data differs significantly from a model to

integrate available data before the process execution.

Our contribution is the definition of a methodology to integrate

automatically a contextual model into processes with data production

variability. Particularly, this paper illustrates with a proof of concept, how

defined contextual data models are integrated to a process and

automatically transformed in platform specific programs applying a MDA

implementation within a MDE framework. Consequently, code generation

results from an input contextual model, instead of an adaptation at the

code generation level.

3. Integration of a contextual model into a process with
data production variability

This section recalls first the prevailing application of MDA along with

known practices to integrate models. The proposed approach is then

defined in detail.

3.1. Data variability and MDA

Conventionally, MDA (Fig. 1) permits to obtain a PSM (Platform

Specific Model), resulting from the application of a transformation T to a

PIM (Platform Independent Model), under the technical constraint of a

PDM (Platform Description Model) [39]. MDA is mainly used to generate

code according to functional specifications of a system. Typically, a

stipulated functional scenario description – PIM – is transformed into an

applied coded service – PSM – for instance, by means of a Java execution

environment model – PDM – and a set of rules defined to fix the

environment constraints of the transformation.

Fig. 1 - Model Driven Architecture for model transformation.

One solution to integrate a contextual model is to chain the

transformations, using modeling languages to input models for business

process [40], or adopting several transformation languages [41]. Such

chaining takes sequentially into account the technical environments as a

progression of constraints, but cannot be applied to insert contextual data

in a transformation. Since constraints defined in the PDM are a generic

solution implemented later by the PIM instances, it is not feasible to

integrate and apply contextual data directly in the transformation if a

chain of transformations is applied.

A second common model integration solution is composition [42],

which can be automatic or manually defined by an expert who determines

the mapping of elements to integrate [43]. Therefore, in the composition

of two PIMs (PIM1 and PIM2) the respective PSMs are modified directly

and the code is produced again. Otherwise, the original PSMs can be

integrated using glue code (Fig. 2). This avoids the individual

modification of PSMs and code regeneration, while defining the

integration rules according to a composition circumscribed between the

PIMs.

PIM

PSM

PDM
T

4

Fig. 2 - Model Driven Architecture for model integration (adapted
from [42]) including PDMs.

The example of Fig. 2 corresponds to code integration to implement a

service (PSM2) with an Enterprise JavaBeans (EJB) execution

environment (PDM1), in the code of another service (PSM1) that has the

same execution environment (PDM2 = PDM1). This integration specified

in the composition of PIM1 and PIM2, includes the scenario description

of PIM2 in the scenario description of PIM1. Making thus use of glue

code, PSM1 resulting from T1 is added to PSM2 obtained from T2. Glue

code represents the technical constraint of PSM2 to identify its EJB via

the respective Java Naming and Directory Interface (JNDI). This model

integration approach is nevertheless inappropriate, due to the cost of

implementing two parallel processes with one that precedes the other.

Production variability, already considerable during an information system

development [44], is increased by the Software as a Service distribution

paradigm [45]. A large number of ready-to-use services may be available

– several thousands in certain companies. Suppose that T1 is the main

transformation and T2 is the transformation that produces a context for

T1. To integrate those services, a very significant number (n) of

transformations like T2 along with the required glue code between PSM1

and the resulting n PSM2, imply proportional higher development

complexity and costs.

 Multiple n transformations of type T2 and the respective glue code

could be avoided, improving development significantly. Instead, n

contextual PSM2 models that precede T1 could be integrated. These n

PSM2 models are grouped in a global model, identified hereafter as

Transformation Contextual Model (TCM), given its contextual role with

respect to T1. Such required enrichment of a process using a contextual

model (Fig. 3), has not been previously defined in the literature.

Fig. 3 – Problem to be solved regarding Model Driven Architecture
and integration of the Transformation Context Model (TCM) in the

global process.

3.2. Integration of a contextual model into a process

While the TCM represents available data that an expert exploits to

influence a process, meta-modelling of the TCM must take into account

the production method of the corresponding data. The extension to the

MDA approach mechanisms that we propose is therefore a meta-

modelling of the context, including useful concepts for the production of

contextual data, in order to automate the implementation of context in a

transformation. The TCM meta-model describes the production mode

selected for the contextual data. As hypothesized in the research question,

the data production mode is consistent with an MDA approach, on which

platform-independent elements are transformed into platform-specific

elements through the description of the platform. This allows integrating

the data production method adequately into the process as knowledge. A

contextual model must thus be studied at the early stages of system

analysis before system architecture activities, to be integrated in a MDA-

compliant process. Corresponding knowledge of the transformation input

elements permits an expert to formulate rules associating a context with a

process. The Contextual Transformation (CT) of data into knowledge

consists on this set of rules, specified by a process expert, permitting to

integrate contextual data in the process.The proposed integration of a

contextual TCM results from enriching the PIM – by means of CT –

before the MDA-compliant transformation T. This transformation T is

applied to the enriched PIM (Fig. 4). A PIM enriched by a contextual

model is denoted henceforth PICM (Platform Independent Contextual

Model). The two use cases described in sections 4 and 5 show the

feasibility of CT design making use of a TCM representing a MDA

approach of the selected contextual data production.

It is important to note that the TCM specificity is to include the

production mode of contextual data, without using MDA marks, enabling

to associate an element of the PIM with contextual data. Additionally,

marks defined in the PDM -independently from the PIM- are not a part of

the PICM model, while the TCM is a part of the PICM model and

associates contextual elements to the PIM. The proposed approach is

structured according to systemic modelling [46] by transformations

depicted in Fig. 4. Defined rules rely on knowledge about the result of

transforming any relationship between two units. Every model is hence

defined by a set of units (denoted *_unit) and a set of relationships

(denoted *_relationship). Rules are identified with the type of

transformation (CT or T), while specific rules about a unit are denoted RU

and rules about relationships between units RR.

PIM1

PSM1

PIM2

PSM2 Glue

Composition

PDM1 PDM2 T1 T2

PIM

PSM

TCM PDM
 ?

 5

Fig. 4 - Model driven integration of a contextual model into a
MDA-compliant process.

Three successive stages constitute the proposed approach:

• Contextual CT-Transformation design, on which mapping between

the contextual model and the input of the model transformation are

defined. The PICM results from the contextual transform CT that

maps the PIM with the TCM. A rule defines this mapping to indicate

under which criterion a PIM element can be associated to a TCM

element (represented by “→”). The transformation of PICM units is

defined by:

PICM_unit = CT(PIM_unit, TCM_unit)

where CT connects PICM_unit and PIM_unit with a mapping link

between one PIM_unit and one TCM_unit. Such CT-RU rule

implemented through CT means that if a pim_unit and a contextual

model unit tcm_unit can be mapped, then the resulting picm_unit is:

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit),

if not,

picm_unit = CT(pim_unit,{Ø}) = pim_unit.

Regarding relationships between units (represented by “–”), CT

defines a PICM_relationship from a PIM_relationship that takes into

account a TCM_relationship:

PICM_relationship = CT(PIM_relationship, TCM_relationship)

This CT-RR rule implemented by CT for the relationships between

units, illustrates in a similar manner as for units that, if relationships

exist between a pim1_unit and a pim2_unit, and a contextual model

relationship tcm1_unit – tcm2_unit between a tcm1_unit mapped with

pim1_unit and a tcm2_unit mapped with pim2_unit, then the resulting

picm_relationship is:

picm_relationship =

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit)

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit),

if not,

picm_relationship = CT(pim1_unit – pim2_unit, {Ø})

= pim1_unit – pim2_unit.

• T-Transformation design, on which a MDA-compliant technical

constraint and the result model of CT are defined. Model

transformation T provides a PSM that results from a PICM and a

technical constraint specified in the PDM. Transformation T for units

is defined by:

PSM_unit = T(PICM_unit, PDM)

where T applies constraints defined in the PDM to a PICM_unit

giving as result a PSM_unit. The same applies to a relation between

PSM units and is defined as:

PSM_relationship = T(PICM_relationship, PDM)

where T applies constraints defined in the PDM to a

PICM_relationship giving as result a PSM_relationship.

Rules implemented in model transformation T for integration by

substitution are different than rules for integration by enhancement.

Therefore, specializations ST (Substitution Transformation) and ET

(Enhancement Transformation) of T are necessary.

For units, the ST-RU rule implemented by ST distinguishes among

PICM_unit transformations with and without substitution (pim_unit by

tcm_unit) as follows (using the same CT-RU notation):

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit)

⇒ psm_unit = ST(tcm_unit, pdm)

and,

picm_unit = CT(pim_unit, {Ø}) = pim_unit

⇒ psm_unit = ST(pim_unit, pdm)

In the case of ET the ET-RU rule changes because the process is

enhanced (pim_unit with tcm_unit represented with the sign ⊕) by the

contextual model as (using the same CT-RU notation):

picm_unit = CT(pim_unit, tcm_unit) = (pim_unit → tcm_unit)

⇒ psm_unit = ET(pim_unit ⊕ tcm_unit, pdm),

and,

picm_unit = CT(pim_unit,{Ø}) = pim_unit

⇒ psm_unit = ET(pim_unit, pdm).

Concerning relationships between units, the ST-RR rule implemented

by ST discriminates PICM transformations with and without

substitution as follows (using the same CT-RR notation).

picm_relationship =

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit)

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit)

⇒ psm_relationship = ST(tcm1_unit – tcm2_unit, pdm),

and,

picm_relationship = CT(pim1_unit – pim2_unit, {Ø})

= pim1_unit – pim2_unit

⇒ psm_relationship = ST(pim1_unit – pim2_unit, pdm).

For ET the ET-RR rule applies specifically to process enhancement

using a contextual model as (using the same CT-RR notation):

picm_relationship =

CT(pim1_unit – pim2_unit, tcm1_unit – tcm2_unit)

= (pim1_unit – pim2_unit → tcm1_unit – tcm2_unit)

⇒ psm_relationship =

ET(pim1_unit – pim2_unit ⊕ tcm1_unit – tcm2_unit, pdm),

and,

picm_relationship = CT(pim1_unit – pim2_unit, {Ø})

= pim1_unit – pim2_unit

⇒ psm_relationship = ET(pim1_unit – pim2_unit, pdm).

These four rules – ST-RU, ET-RU, ST-RR, and ET-RR – emphasize

the need to apply constraints defined in the PDM to a unit or a

relationship of the PICM, specified in the process as substitution or

enhancement.

• CT and T Transformations running to validate the proposed

approach’s feasibility. The next two sections describe in detail how

PICM

PSM

PDM

PIM

CT

T

TCM

6

transformation CT, and the specializations of T, ST and ET, implement

the described approach when applied to a code generation process and

to an image classification process.

Table 1 summarizes the previously defined notations for the

implemented transformations and rules.

Table 1 - Meaning of the Acronyms for Transformations and Rules

Transformation Transformation
Meaning

Implemented
Rule

Rule
Meaning

CT
Contextual

transformation

CT-RU Rule for unit

CT-RR
Rule for

relationship

T

ST
Substitution

transformation

ST-RU Rule for unit

ST-RR
Rule for

relationship

ET
Enhancement

transformation

ET-RU Rule for unit

ET-RR
Rule for

relationship

The next two sections present two use cases on which the pertinence

of the proposed approach is examined. In each case we consider, the

feasibility of defining a suitable contextual model, how can automatic

platform specific programs be generated, and how to integrate these

programs to the respective process.

4. Integration of a contextual model into a process with
substitution: the case of code generation

This section illustrates the integration of a contextual model into a

business process of code generation, formed by a large variety of activity

sequences in a company. According to the proposed approach in section 3,

ready-to-use services available in a company’s information system are the

contextual data of the code generation process. Moreover, the link

between business activities and these ready-to-use services by means of

mapping permits to associate contextual data, i.e. an applied service, to

one activity. Every business activity associated or not to contextual data,

is then implement by code representing calls to specified applied services.

These calls are integrated when mapping is required or programmed if

that is not the case. Generated code is constrained by a technical

environment like Java Enterprise Edition (JEE). Table 2 summarizes the

code generation process models that are modified when a contextual

model with substitution is integrated.

Table 2 – Process models modified by a contextual model with
substitution.

Model Integration of a contextual model into a code generation
process

PIM Model of activities

TCM
Model of existing applicative services of the information
system

PICM Model of activities enhanced by existing services

PDM Model of JEE environment for an applicative service

Model
Integration of a contextual model into a code generation

process

PSM Model of generated code

The CT transformation permits to associate a contextual applied

services model – ready to be substituted through the TCM modelling – to

a PIM activities model. This association forms pairs of one activity and

one existing applied service (PICM). Coupling is conditioned by a

mapping, implemented in CT, between the PIM activity name and the

name of the activity supported by the ready-to-use service. Additionally,

ST transforms an activities model in a code of applied services (PSM),

enabling the substitution of available application services of the

information system (PICM). Such coding is constrained by a technical

environment (PDM).

4.1. Contextual CT-Transformation design

The CT transform allows to associate external services modelled in a

TCM to a PIM business process, composed by progressive sequences of

business activities.

4.1.1. Unit CT-Transformation
Mapping between one PIM unit and one TCM unit is defined by the

name of the PIM’s business activity and the name of the activity carried

out by the TCM’s application ready-to-use service, which must be

identical. To illustrate the contextual model of a code generation process

two applied services are defined: “cASReadAProduct” to implement the

“Read a product” activity; and “cASCreateAnOrderOfAProduct” to

implement the “Create an order of a product” activity. The relation

between business activities and ready-to-use application services defined

by the CT-RU rule (see section 3.2) is underlined in Fig. 5. Applied

services and their respective interface are represented here by operations

in UML classes (considering a business activity like a use case

analogously as in a context UML diagram).

Fig. 5 - Illustration of the unit contextual CT-Transformation for the
code generation process.

CT

 7

Variable data production is reflected in this first illustration of

feasibility by the development method with which the external services

are produced (function implementation, business activity production,

programming language, etc.). Moreover, variable data production is

represented by the fact that these services could be replaced in the TCM

by application data provided by these services (the physical data Product

and Order in this case). These application data are characterized by the

generated logical data and the selected technical environment (for

example, relational database management system or object oriented). For

the TCM illustrating context by replacement, the service production mode

is a conventional service-oriented architecture framework. In this case, the

service encapsulated in an interface, carries out a business activity and is

deployed on a technical environment.

Note that the PICM's independence property with respect to the

platform defined by the PDM is maintained, since the mapping is

independent of the technical environment used for the deployment of

these two external services (a JEE development in this case).

The PIM meta-model concept for a unit and its attribute (described by

one instance excerpted from Fig. 5) are defined as:

• “BusinessActivity”:
o “name” (Read a product).

The TCM meta-model contains a description of an external service

interface that encapsulates a ready-to-use application service (instances

are extracted from Fig. 5):

• “ExternalApplicativeService” describes an external available service:
o “name” represents the name of the external available service

(cASReadAProduct).
o “externalServiceInterface” describes the interface that

encapsulates the application service (CASIProductManage).
o “supportedActivityName” refers to the name of the business

activity supported by the external service (Read a product).
o “deploymentEnvironment” specifies the technical environment

on which the service is deployed (JEE).

The resulting PICM meta-model of CT for a unit is outlined in Fig. 6.

Fig. 6 - PICM meta-model (enclosed) of the code generation case
including the mapping between PIM (BusinessActivity) and TCM

(ExternalApplicativeService) meta-models applied to a unit.

The PICM and its attributes are instantiated from the example in Fig.

5:

• “ContextualizedActivity” describes an activity enriched by the

contextual model of existing application services:
o “mapsWithActivity” indicates the enriched business activity

(Read a product)

o “mapsWithExternalService” indicates the external service
mapped with the activity from the business activity name and the
business activity name supported by the external application
service (cASReadAProduct). This link does not exist when
external services can’t be mapped to the business activity (cf.
rule CT-RU in 3.2)

4.1.2. Unit Relationship CT-Transformation
Concerning relations between units, a PIM relationship is a temporal

sequence of business activities. The rule CT-RR (see 3.2) becomes thus

for the code generation process: if an activity A1 precedes an activity A2

and if the service cAS1 mapped with A1 precedes in an external

orchestration the service cAS2 mapped with A2, then this orchestration

enriches the sequence.

CT({A1 – A2}, {caS1 – cAS2}) = {A1 – A2} → {cAS1 – cAS2}.

The PIM is represented by a control process consisting of an ordered

sequence of activities “Read a product” and “Create an order of a

product”. On the other hand, the TCM is represented by an ordered

sequence, or orchestration, of the “cASReadAProduct” and

“cASCreateAnOrderOfAProduct” services. The instantiation of the CT-

RR rule is such that:

{Read a product → cASReadAProduct =

CT(Read a product, cASReadAProduct)} ∧

{Create an order of a product → cASCreateAnOrderOfAProduct =

CT(Create an order of a product, cASCreateAnOrderOfAProduct)}

⇒ CT({Read a product – Create an order of a product},

{cASReadAProduct – cASCreateAnOrderOfAProduct}) =

{Read a product – Create an order of a product} →

{cASReadAProduct – cASCreateAnOrderOfAProduct}

The result is therefore an integration of the application services

orchestration resulting from business activity mapping. A simplified

implementation of the transformation is illustrated in Fig. 7.

Fig. 7 - Illustration of the contextual CT-Transformation (enclosed) of
a relationship for the code generation process.

The PICM meta-model for a relationship between units is outlined in
Fig. 8 (instances are extracted from Fig. 7). Mapping between external
orchestration of services and sequence of business activities is based on
the CT-RU rule.

CT

8

Fig. 8 - PICM meta-model (enclosed) of the code generation case
including the mapping between PIM and TCM meta-models applied

to a unit relationship.

Consequently, the PIM meta-model concepts in Fig. 8, represented as

relationships between units and attributes (described with instances from

Fig. 7) are defined as:

• “BusinessProcess” characterizes a response of a company to a

customer’s request:
o “name” (Order process).

• “BusinessActivitySequence” represents a time sequence of two

business activities that make up a process (Read a product → Create

an order of a product):
o “composes” identifies the process to which the sequence belongs

(Order process).
o “source” designates the business activity that initiates the

sequence (Read a product).
o “target” specifies the business activity completing the sequence

(Create an order of a product). This link to the target activity is
null when the process consists of only one business activity.

o “ranking” specifies the number of the sequence in the process
(1: the 1st sequence of the process).

The TCM of Fig. 8 describes an orchestration of services based on the

following concept (instances are from Fig. 7):

• “ExternalServiceOrchestration” describes an external sequence of

calls to external services:
o “description” designates the sequence of external services

(cASReadAProduct – cASCreateAnOrderOfAProduct” ;).
o “before” refers to the first service of the sequence

(cASReadAProduct).
o “after” refers to the second service of the sequence

(cASCreateAnOrderOfAProduct).

For relations between units, the PICM concept (outlined in Fig.8) and

its attributes (with instances extracted from Fig. 7) are:

• “ContextualizedActivitySequence” describes a sequence of activities

enriched by the contextual model of existing orchestrations of

services:
o “mapsWithSequence” designates the business activity sequence

(Read a product – Create an order of a product).
o “mapsWithExternalOrchestration” identifies the sequence of two

calls to external application services (cASReadAProduct –
cASCreateAnOrderOfAProduct). This link does not exist when
there isn’t a sequence of external services to be mapped with the
sequence of business activities.

o “composes” provides the link of the business process that
contains the sequences of activities (Order process).

4.2. ST- Transformation design

When a contextual model is integrated with substitution, the ST MDA-

compliant transformation is no longer applied to the PIM, but to the

PICM. The PDM specifies the rules to be technically implemented to

integrate services developed with a Java runtime environment or to

program new services. These rules complete the definition of a three-layer

application architecture synchronized by an application server:

• The “data access” layer which allows manipulating data with SCRUD-

type operations (Search, Create, Read, Update, Delete).

• The “service” layer where each service supports a business activity in

this particular case and uses components of the “data access” layer.

• The “presentation” layer that represents the Human Machine Interface

(HMI) and uses components of the “service” layer depending on the

user’s activity.

4.2.1. Unit ST-Transformation
For units, ST implements the rules to transform a business activity into

an application service (to be developed or ready to be substituted by code

generation of a service). Application services are declared in a Java

interface and coded (if development is necessary) in a Java class with the

appropriate formalism. While the PSM resulting from ST is associated

with the “service” layer of the system (Fig. 9), the ST-RU rule (see

section 3.2) is applied to units individually substituted by a TCM unit

(resulting code is represented by a code function):

ST(cASReadAProduct, {JavaInterface,JavaCode}) =

{ code(cASReadAProduct)}

ST(cASCreateAnOrderOfAProduct, {JavaInterface,JavaCode}) =

{ code(cASCreateAnOrderOfAProduct)}

 Additionally, the PSM is only composed by Java interfaces code

obtained from the PICM transformation (code of the Java classes

implementing the interfaces in an external system). A rule implemented in

ST checks the consistency between the external service deployment

environment and the execution environment of the system to be coded. In

the examined case, the hypothesis of a JEE environment for external

services allows to integrate them into the generated code.

 9

// service interfaces (used existing interfaces)

public interface CASIProductManage

{

public Product cASReadAProduct

 (String productName);

}

public interface CASIOrderManage

{

public Order cASCreateAnOrderOfAProduct

 (Date dateOrderProduct,Product product);

}

Fig. 9 - Example of the ST-Transformation of a unit for the code
generation process, including the PSM and the PICM.

PICM and PSM meta-models defined for the units and relations

between units resulting from ST (Fig. 10) are explained below.

Fig. 10 - PSM meta-model (enclosed) of the code generation case, associated to the PICM meta-models (unit and relationship), satisfying the PDM
meta-model.

ST

10

The PDM meta-model specifying the technical constraints of an ST

transformation, as described for the units, is outlined in Fig. 11. Concepts

specific to the definition of architecture proposed in the introduction to

section 4.2 – “ApplicationServer”, “ServiceLayer”, and

“DataAccessLayer” –, are useful for units and complete the meta-model.

Fig. 11 - PDM meta-model (enclosed) of the code generation
illustration with a MDA approach applied to a unit.

Consequently, the PDM meta-model concepts and attributes are

defined as:

• “JavaCode” represents Java code associated with code generation.

• “JavaInterface” represents a Java interface of the service layer (the

"ServiceLayer" concept complements the PDM meta-model):
o “isCoded” associates the interface with its Java code.

• “JavaClass” represents a Java class of the service layer

("ServiceLayer" concept):
o “isCoded” associates the interface to its Java code.
o “implements” refers to the Java interface implemented in the

class.

• “DAO” represents a Data Access Object of the “data access” layer

(concept “DataAccessLayer” that completes the PDM meta-model):
o “isUsed” refers to the Java class that makes use of this DAO.

PSM meta-model is completed for service coding (not instantiated in

Fig. 9, but this case is rather common in today’s information technology)

using the MDA approach for code generation):

• “ApplicativeService” represents the signature of the application

service, defined as an operation of the Java interface encapsulating the

signature of the service, as recommended in the PDM:
o “supports” designates the business activity of the PIM

transformed by this service.
o “name” provides the name of the application service.
o “serviceInterface” is the name of the interface containing the

service signature.
o “deploymentEnvironment” specifies the technical constraint of

the PDM.

• “ApplicativeServiceImplementation” represents the service

implementation in a PDM-compliant manner:
o “implements” refers to the implemented Java interface as

specified in the PDM.
o “code” represents the code of the interface operation.

• “DAOOperation” represents the operations for accessing PDM-

compliant data:
o “isUsed” refers to the code of the service using a call to the DAO

operation.
o “name” indicates the name of the operation.
o “DAO” is the name of the data access object that encapsulates

the data access operation.

4.2.2. Unit Relationship ST-Transformation
For relations between units, the ST transformation targets the

"presentation" layer. Each sequence of two business activities is

transformed by ST into a coded sequence of calls to application services

(external or internal). Furthermore, ST satisfies a technical constraint to

execute a Java program. The Java program is designed on the

“presentation” layer, which communicates with the “service” layer

previously generated from units of the PICM.

The ST-RR rule (see section 3.2) is applied to a single relationship

that is mapped with a TCM orchestration. Consequently, the ST-RR rule

becomes: if an activity A1 precedes an activity A2, then the service cAS1

mapped with A1 precedes, with an external service orchestration defines

in the PDM, the service cAS2 mapped with A2:

if (CT({A1 – A2}, {cAS1 – cAS2}) = {A1 – A2} → {cAS1 – cAS2})

then

ST({cAS1 – cAS2}, ExternalServiceOrchestration) =

{cAS1;cAS2;}

else

checking of input and output parameters of cAS1 and cAS2

services to design their orchestration

endif

The ST-RR rule is instantiated for the sequence transformation, from

the consultation activity of a product to the order creation activity,

constrained by a Java service orchestration (resulting code is represented

by a code function as previously for ST illustration for units):

ST({cASReadAProduct – cASCreateAnOrderOfAProduct},

Java:ExternalServiceOrchestration) =

{ code(cASReadAProduct;cASCreateAnOrderOfAProduct;)}

An implementation of the ST transformation is illustrated in Fig. 12.

The sequence of activities with the orchestration of services (outlined on

the top) mapped to it, “{Read a product – Create an order of a product}

→ “{ cASReadAProduct;cASCreateAnOrderOfAProduct}”, is the input of

the ST transformation. At the output of ST, the coded sequence is modeled

by calling these two services in the main, as well as the methods

“presentation_readProduct()” and “presentation_orderProduct()”.

// get existing service interfaces

public static CASIProductManage

getManageProduct()

{

InitialContext ctx;

CASIProductManage manageProduct = null;

ctx = new InitialContext();

manageProduct = (CASIProductManage)

 ctx.lookup(CASIProductManage.JNDI_NAME);

ST

 11

return manageProduct;

}

public static CASIOrderManage getManageOrder ()

{

InitialContext ctx;

ASIOrderManage manageOrder = null;

ctx = new InitialContext();

manageOrder = (CASIOrderManage)

 ctx.lookup(CASIOrderManage.JNDI_NAME);

return manageOrder;

}

// methods associated to services

public static Product presentation_readProduct()

{

return getManageProduct().

 cASReadAProduct (“product_name”);

}

public static void presentation_orderProduct

 (product : Product)

{

Date date = new Date(System.currentTimeMillis());

getManageOrder().cASCreateAnOrderOfAProduct

 (date, product);

}

//Java program

public static void main(String[] args)

{

Product product = presentation_readProduct();

presentation_orderProduct (product);

}

Fig. 12 - Illustration of the ST-Transformation of relationship for the
code generation process.

The PDM meta-model specifying technical constraints of the ST

transformation as described above for the relations between units, is

outlined in Fig. 13. Concepts of the three-layer architecture –

“ApplicationServer”, “PresentationLayer”, and “ServiceLayer” –

complete the PDM meta-model.

Fig. 13 - PDM meta-model (enclosed) of the code generation
illustration with a MDA approach applied to a unit relationship.

The PDM meta-model is complemented by a concept for relations

between units:

• “JavaProgram” represents the Java program on the “presentation”

layer (being "PresentationLayer" a concept that completes the PDM

meta-model) to which the system user has access:
o “isCoded” associates the program to its Java code.
o “uses” indicates the Java interfaces used by the program.

The resulting PSM meta-model (Fig. 10) concepts (from the MDA-

compliant ST transformation) and attributes (described by one instance of

Fig. 12) stipulated for these unit relationships are:

• “ApplicationServiceOrderedCall” designates two successive calls to

application service interfaces:
o “description” (aSReadAProduct;

asCreateAnOrderOfAProduct;);
o “before” specifies the first called applicative service

(aSReadAProduct).
o “after” specifies the second called applicative service

(asCreateAnOrderOfAProduct). When the second service is null
then the process is composed of only one business activity and
therefore supported by a single application service.

• “MainProgram” characterizes the support of a business process in

accordance with the PDM:
o “code” (public static void main (String[] args) {Product product

= presentation_readProduct(); presentation_orderProduct
(product);}).

o “supports” refers to a supported business process (Order
process).

o “isComposed” refers to sequences of calls to application services
(aSReadAProduct; aSCreateAnOrderOfAProduct;)

The ST transformation implements rules for assembling call sequences

to application services that support a business process. Such assembling

follows the previous consistency rule between the service call structure

and the activity structure in a particular sequence. Also, generation of

code linked to an external service call or the orchestration of external

services, are taken into account by the ST transformation.

The specific addition to the PICM at the input of the ST

transformation is the use of JNDIs of external service interfaces, namely

“CASIProductManage” and “CASIOrderManage” (cf. enclosed parts of

Fig. 12) instead of using service interfaces developed in the system.

4.3. CT- and ST-Transformations Execution

The execution of these transformations is linked to the adaptation of

meta-models to a development process within the framework of a real

enterprise. Generating code from the analysis of a system is split in two

sub-processes. For instance, in the Enterprise Architecture for Unified

Process approach, each sub-process integrates a specific contextual model

[47]:

• Functional architectural model of a system according to a functional

analysis of the system and a contextual model representing the

functional EA of the information system.

• Application architecture and code model based on the functional

architecture of the system previously modeled with a ready for use

contextual model of services (external or internal to the system).

The ST transformation for the code generation process can be

implemented. One application is, for example, a rule generating a

component of the service layer. Rules specific to the information system

in which the system is developed are satisfied by the creation of a service

12

layer component. One of the rules for creating such a component is for

instance:
ServiceLayerComponentDesignRule. One applicative service (AS) results
from the transformation of one business activity (BA). An applicative
service interface providing AS results from the transformation of the
business process that contains BA.

 This rule is implemented by the operational-QVT (Query / View /

Transformation) [48] code in Fig. 14, which is compliant with the PSM

meta-modeling in Fig. 13.

//creation of a service of a component of the service layer

mapping BusinessActivity::createApplicativeService() :

ApplicativeService

{

 name := "aS" + self.name.replace(" ","");

 serviceInterface := "ASI" + self.mappedWith.composes.name.

 replace(" ","");

deploymentEnvironment := "JEE";

 result.supports := self;

}

Fig. 14 - Illustration of the ST-transformation coding of the
ServiceLayerComponentDesignRule for the code generation process.

Coding of the rule ServiceLayerComponentDesignRule is completed

by coding of rules deferring JEE technical constraints. The contextual

model linked to this code generation process allows capturing the

variability related to the model of application services. It can replace code

generation of a service to be developed. This integration is shown in the

following section with the application of a contextual model to the image

classification process.

5. Integration of a contextual model into a process with
enhancement: the case of supervised classification

Image classification is another case on which context variability

occurs [49]. In image classification it is assumed that visual image

features can be uniquely associated to statistically learned and

semantically meaningful classes. Context variability is produced by the

multiple possible image content descriptors. An image assigned to a visual

class is quantitatively represented by numerous descriptors composed of

several hundred elements. These are basically low (contours and texture),

medium (regions), and high (values analysis) level image features

automatically calculated.

Besides the need to handle millions of images and thousands of

classes, process complexity arises from the fact that image features differ

in size, classification performance, and reliability. As a consequence,

different performance results are obtained depending on the corpus. Image

features also relate differently to supervised (learnt examples) and

unsupervised (grouping criteria) classification. For these reasons,

numerous approaches have been implemented for image classification in

large databases, with variable sets of descriptors and classes [50] [51] [52]

[53].

Image classification is particularly difficult given that knowledge

owned by experts of the application domain is required. Data production

variability increases in this case because experts need to combine

optimally different image descriptors to improve classification results

[54]. A descriptor is a low level mathematical characterization of visual

image content, for example a geometrical moment of a set of pixels [55].

Applied image content low and medium descriptors to illustrate the

classification process in this paper are:

• Zernike descriptor (49 elements from ℂ, i.e. a vector in ℂ49),

composed by orthogonal complex moments of an image that are

invariant to rotation and robust to noise [56].

• Angular partition descriptor (32 elements from ℕ, i.e. a vector in

ℕ
32), formed by 32 elements that represent the distribution of

segmented edges in a symmetric angular partition of the image [57].

• Angular radial transform descriptor (25 elements from ℂ, i.e. a vector

in ℂ25), calculated applying an angular radial transformation that

projects image gray levels on an orthogonal radial space [58].

Although descriptors have different representations and

complementary information, a ranking of descriptors is necessary before

classification. Then, a classification process could be learnt based on

selected descriptor elements, instead of the whole descriptors set.

Consequently, evaluating the quality of descriptors’ elements extends the

classification process from a predefined amount of descriptor elements, to

a reduced and selected set of descriptor elements.

To examine the pertinence of MDE, the contextual model integration

approach presented in section III is applied to the process of image

classification. It is assumed that previously learnt image classes,

independently of the learning algorithm, are available for image

classification. These learnt image classes enrich the process. Without such

enrichment, a MDA-compliant transformation would just provide the

closest images to a given query image, as post-classification result.

Otherwise, the design of transforms CT and ET only targets units, without

defining relationships between images. Since the integration of a

contextual model outputs a classified image, a model including image

content descriptors’ elements is transformed into a model of a classified

image. Several process models are modified by the integration of a

contextual model into a process with enhancement in the case of image

classification (Table 3).

Table 3 – Process models modified by a contextual model with
enhancement.

Model
Integration of a contextual model into an image

classification process

PIM Model of image

TCM Model of characteristic image class

PICM Model of image enhanced by characteristic image class

PDM Model of Euclidean distance

PSM Model of a classified image

The CT transformation allows associating a contextual model of image

class to an image (PIM), making use of characteristic images of a class

(TCM). Pairs defined in this manner relate a query image to an image

class (PICM).

The design condition of these pairs is a mapping between the name of

the image collection to which the image to be classified belongs and the

name of the image collection to which the classes are associated. This

condition is implemented in CT. Alternatively, the ET transformation

 13

targets an image enriched by mapped image classes (PICM) and results

into a classified image (PSM). Classification is the assessment of the

closest class in the sense of a Euclidean distance (PDM), between certain

elements of the descriptors quantifying the image and the same elements

quantifying the characteristic image of each class. Selected descriptor

elements and calculation of the smallest distance between the image and

all the characteristic images, are coded in the ET transformation.

5.1. Contextual CT-Transformation Design

To demonstrate the feasibility of the proposed approach, exhaustive

testing was conducted using the ALOI (Amsterdam Library of Object

Images) collection [59]. For instance, using a schematic representation of

the CT transformation (Fig. 15), query image “_C36_l6c2” is associated

to classes “C36” and “C461” according to a subset of learnt images:

CT(_C36_l6c2,C36) = _C36_l6c2 → C36

CT(_C36_l6c2,C461) = _C36_l6c2 → C461

With respect to the code generation case, the input image

“_C36_l6c2” is equivalent to a business activity. The contextual model,

which in the previous case consisted on existing application services for

code generation, is represented here by classes illustrated with a picture of

a characteristic image: a cup (C36) and a roll of paper (C461). The two

image-class oriented associations indicate that these classes constitute the

contextual image data because they belong to the same corpus. Such

association to the same corpus specifies the mapping between an element

of the PIM and one or more elements of the TCM. Although for simplicity

reasons the mapping implemented in CT permits to select image classes

from ALOI, TCM can also include other image databases.

Fig. 15 - Illustration of the contextual CT-Transformation for the
image classification process.

A description of an image is provided by the PIM meta-model. It is

defined based on the content of image descriptors (Fig. 16). As indicated

in the introduction of section 5, quantitative image content description is

defined by vectors in ℕn, ℝm, or ℂp.

Fig. 16 - PIM meta-model of the image classification illustration.

Consequently, the PIM meta-model concepts and attributes (described

by the example of one instance) are defined as:

• “Image”:
o “name” (_C36_l6c2).
o “collection” (ALOI).

• “Descriptor”:
o “name” (Zernike).

• “DescriptorElement”, consisting of:
o “order” of the descriptor element (10th).
o “value” of the element (-5656.085-1218.4637i).
o “isContained”, by the given descriptor (Zernike).
o “characterizes”, denoting the image represented by the element

of the descriptor (_C36_l6c2).

• “Class”
o “name” (C36)
o “isAPrioriComposed” (_C36_l6c2).

Alternatively, an a priori classification done by the expert is extended

via the “aPrioriComposes”. It refers to the class that a priori includes

content of images described in the classification corpus. Although the

“aPrioriComposes” association permits to calculate a classification error

rate, it is not computed during image classification that results in a

posteriori composition.

Data production variability is illustrated in this second feasibility

example by the static evaluation method of the selected classes for pattern

recognition. Furthermore, data production variability could be extended

whenever the previous evaluation is completed by the assessment of

conditional probability of a class knowing another class (for example, a

class representing a particular shape in an image, knowing the class

representing another shape that appears associated to the previous one in

some sets of images). For the TCM exemplifying context by enrichment,

the class production mode is characterized by minimum and maximum

values, as well as the mathematical expectation of each descriptor’s

elements. Previous statistical scores are then completed by the rank of

each element and descriptor in the classification result, corresponding to

their intrinsic quality (defined to be better if the minimum and maximum

are comparatively closer).

_C36_l6c2

CT

14

Available classes are described by the TCM meta-model (see Fig. 17).

For the image classification illustration, a set of ranked descriptors as well

as a set of ranked descriptors’ elements complete the TCM. A training

phase allows exhaustive search for the best descriptors and for the best

descriptors’ elements, with respect to classification performance.

Boundary conditions to delimitate image classes of similar data are

applied [60]. Different data are generated whenever classes’ definition

and/or training are modified to suit other classification requirements.

Fig. 17 - TCM meta-model of the image classification process.

The TCM meta-model concepts and attributes (each described by one

instance example) are defined as:

• “LearntClass” representing a class identified according to statistical

learning:
o “name” (C36).
o “collection” (ALOI).

• “LearntClassSetDescriptor” representing a descriptor, associated to

the learnt class set, identified according to statistical learning:
o “name” (Zernike).
o “ranking” of the descriptor (1st).

• “LearntClassSetDescriptorElement”, representing a descriptor

element, associated to the learnt class set, identified according to

statistical learning:
o “name”, representing the descriptor associated to the element

(Zernike).
o “order” of the descriptor element having a value between 1 and

n, when the amount of descriptor elements is n (10th).
o “ranking”, a descriptor element rank of descriptor (64th).

• “DescriptorElementStatisticalDescription”, designating the statistical

description of a descriptor element, associated to one class and

characterizing an element of a descriptor:
o “order” of the descriptor element having a value between 1 and

n, when the amount of descriptor elements is n (10th).
o “maxValue” is the maximum value of an element of a descriptor

for a set of images belonging to the same class (8511.2867 +
2374.859i).

o “minValue” is the minimum value of an element of a descriptor
for a set of images belonging to the same class (-6017.3437 -
1097.7585i).

o “expectedValue” is the average of the values of an element of a
descriptor for a set of images belonging to the same class
(1497.495359 + 396.052725i).

o “estimates” refers to the learnt class (C36).
o “characterizes” indicates the descriptor associated to the learning

result (Zernike).
o “characterizesElement” indicates the descriptor element

associated to the learning result (10th).

The PICM resulting from the CT transformation is based on mapping

between an image and an image class (see CT-RU), respectively

excerpted and learnt from the same collection of images (mapping is

outlined Fig. 18).

The new concept resulting from the mapping is:

• “ContextualizedImage” representing an association class between the

image to classify and one class learnt with an excerpt of the same

image collection:
o “mapsWithImage” refers to the mapped image (_C36_l6c2).
o “mapsWithClasss” refers to the mapped learnt class (C36).

CT implements the creation of the “ContextualizedImage” based on

the mapping between the collections of the image and of one class, if

exists, and the associated concepts of the PIM and of the TCM.

Fig. 18 - PICM meta-model (enclosed) of the image classification
process, including the mapping between PIM and TCM meta-models.

5.2. ET-Transformation Design

The ET transformation containing the application of the ET-RU rule

with the previous input PICM and a PDM constraint defined by a

Euclidean distance is illustrated in Fig. 19. Each line shows the result of

one classification process step.

 15

Fig. 19 - Three possible results – impossible, failed, and successful – of the proposed ET-Transformation example for the image classification
process.

The first line of Fig. 19 indicates that the _C36_l6c2 image was not

classified by any of the three defined descriptors. An unattainable

classification like this one means that the decidability threshold is too

high. This line represents an instance of the PSM on which “Distance”

“evaluates” a pair composed only by an “Image” and no “LearntClass”

(_C36_l6c2, null) with a true “classification”. ET does not return any

“LearntClass” for this “Image”:

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = null

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = null

The second line shows a classification error, because the _C36_l6c3

image was incorrectly classified in the C461 class by the ART_5x5_gray

(angular radial transform) descriptor. This classification error means that

the classification is only decidable for the ART_5x5_gray descriptor (the

lowest quality descriptor), although the obtained result is wrong. This line

represents an instance of the PSM on which “Distance” “evaluates” a pair

composed by an “Image” and a “LearntClass” (_C36_l6c3, C461) with a

true “classification”. Failing is deduced from the comparison,

implemented in T, between the C461 “LearntClass” and the C36

“aPrioriComposes” “Class” of the _C36_l6c3 “Image”. ET returns an

error for this “LearntClass” when comparing it with the “Class” that

“aPrioriComposes” the “Image”:

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = null

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = false

The third line represents also an instance of the PSM where

“Distance” “evaluates” a pair composed by an “Image” and a

“LearntClass” (_C36_l7c1, C36) applying the AP_8x3_gray (angular

partition) descriptor with a true “classification”. Success is deduced from

the comparison between the C36 “LearntClass” and the C36

“aPrioriComposes” “Class” of the _C36_l7c1 “Image”. ET returns success

for this “LearntClass”, which is the same “Class” that “aPrioriComposes”

the “Image”:

ET(_C36_l6c2 ⊕ C36, EuclideanDistance) = true

ET(_C36_l6c2 ⊕ C461, EuclideanDistance) = null

An equivalent result is obtained for image _C36_l7c2 in the fourth

line. In these two cases, although the classification is not decidable with

the Zernike descriptor, it is not necessary to test the ART_5x5_gray

descriptor. The other lines of the running logs represent additional

successful classifications. As indicated, _C36_l7c3, _C36_l8c1, and

_C36_l8c2 images were properly classified by the Zernike descriptor.

These results indicate that classification is decidable according to the best

quality descriptor.

To calculate a Euclidean distance between two vectors of ℕn, ℝm, ou

ℂ
p formed by descriptor elements, the PDM (Fig. 20) is designed to

represent required useful concepts.

Fig. 20 - PDM meta-model of the image classification process.

The PDM meta-model is therefore composed by the following

concepts to compute a Euclidean distance:

• “Value” is a value of ℕ, ℝ, or ℂ.

• “ElementSet” represents a set of elements or a vector.

• “Element” is an element or a coordinate of a vector:
o “composes” refers to the set containing the element.
o “equalsTo” refers to the value of the element.

• “EuclideanDistance” is the Euclidean distance between two vectors:
o “between” refers to the two vectors representing two sets of

elements taken to calculate the distance.
o “equalsTo” refers to the real value of the Euclidean distance.

ET

16

Additionally, the ET transformation contains the implementation of

Euclidean distance calculation rules in ℕ
n, ℝm, or ℂp.

The implementation of PDM constraints on the PICM targets a

distance between the selected descriptor elements, defines quantitatively

the image to classify, and a class of images mapped with it. The PSM

(Fig. 21) results from the implementation of this constraint.

Fig. 21 - PSM meta-model (enclosed) of the image classification
process associated to the PICM meta-model and satisfying the PDM

meta-model.

The concept of distance (Fig. 21) between descriptor elements can

thus be added to the PICM to define the PSM:

• “Distance” representing a distance characterizing an element of a

descriptor defining quantitatively the image to classify and a class:
o “value” is the float value of the Euclidian distance (73.71026).
o “classification” is a Boolean that indicates if the pair, composed

by the image and the mapped class, is, or is not, the result of the
classification (true).

o “evaluates” refers to a pair composed by an image and a class
(_C36_l6c2, C36).

5.3. CT- and ET-Transformations Execution

Taking as input query images to be classified, the ET transformation is

constrained by the description of each image class, resulting from the

preceding CT transformation. An a posteriori classification is obtained

and compared to the a priori classification. This comparison provides an

error rate and a non-classification rate (when an a posteriori class does not

result from the ET transformation).

Because of its originality for the MDA approach, the algorithm

implemented in the ET transformation is detailed below. Decidability of a

classification is the ET transformation basis, i.e. an image can be

classified by means of a descriptor or not. Thereafter, an axiom of

decidability to classify an image in a class C according to a descriptor D,

is: classification of an image in C is decidable if the distance between the

image and the minimum value, the maximum value, and the expected

value of C, is significantly greater than the distance between the image

and the minimum value, the maximum value and the expected value of the

other classes for descriptor D. A “τ decidability threshold” determines

quantitatively how significant are compared distances in the

transformation. This decidability axiom conforms to the previous one,

regarding the quality indicator.

Fig. 22 represents an extract of the proposed algorithm based on the

image classification illustration, and implemented in operational-QVT.

The algorithm is applied to the η best descriptors’ elements. An

operational-QVT helper dedicated to image classification and an

operational-QVT mapping for creating the PSM concept “Distance”

composing the ET transformation, fulfill the image classification

algorithm and comply with meta-modeling (Fig. 21).

//Mapping of distance calculation associated to a pair composed by an

//image and a mapped class

mapping ContextualizedImage::createDistance (dist : Real) : Distance

{

 result.value := dist;

 result.classification := false;

 result.evaluates := self;

}

//Helper for image classification

helper Image::classifyImage (η : Integer) : ContextualizedImage

{

 var i := 1;

 //image to classify

 var image : Image := self;

 //class resulting from the a priori classification

 var classImage : Class := image.aprioriComposes;

 //class resulting from the a posteriori classification

 var classTest : ContextualizedImage := null;

 while (i<=number of ranked descriptors)

 {

 var descript : Descriptor := the ith descriptor;

 var j := 1;

 var seqCI : Sequence(ContextualizedImage)

 := image.mappedWith->

 select(e : ContextualizedImage |

 e.mapsWithClass<>null)->asSequence();

 while (j<= seqCI->size())

 {

 seqCI->at(j).map createDistance

 (dist(D(descript , I, η), D(descript, Cj, η));

 j := j + 1;

 };

 var bestIndex := 0;

 if (seqCI->size()>1)

 then

 {

 var k := 1;

 while (k<=seqCI->size() and bestIndex=0)

 {

 17

 var testIndex := true;

 var m := 1;

 while (m<=seqCI->size() and testIndex)

 {

 // τ decidability threshold

 if (k<>m and

 ((seqCI->at(k).isEvaluated.value /

 seqCI->at(m). isEvaluated.value) > τ))

 then

 testIndex := false

 endif;

 m := m + 1;

 };

 if testIndex

 then

 bestIndex := k

 endif;

 k := k + 1;

 };

 }

 endif;

 classTest :=

 if seqCI->size()=1

 then

 seqCI->at(1)

 else

 if (seqCI->size()>1 and bestIndex<>0)

 then

 seqCI->at(bestIndex)

 else

 null

 endif

 endif;

 i := i + 1;

 };

 if (classTest<>null)

 then

 {

 if (classImage.name=classTest.mapsWithClass.name)

 then

 log (“image correctly classified”)

 else

 log (“image not correctly classified”)

 endif;

 classTest.isEvaluated.classification := true;

 }

 else

 log (“image not classified”)

 endif;

 //return represents the result of the classification

 return (classTest);

}

Fig. 22 - Example of the ET transformation coding with operational-
QVT for the image classification process.

Mathematical functions (PDM for the image classification process)

constraining the ET transformation, represent various operations:

• D(descript, I, η) defines the value of the elements of the descript

descriptor, selected from the η best elements of the set of descriptors,

applied to image I.

• D(descript, Cj, η) is the value of the descript descriptor, selected from

the η best elements of the set of descriptors, applied to the Cj class

depending on the minimum value, on the maximum value, and on the

expected value for Cj.

• “Dist” is the Euclidean distance on the space ℕ
m, ℝn or ℂp,

corresponding to the space on which are defined the values of the

selected elements of the descript descriptor.

Integration of a contextual model is therefore feasible for the proposed

image classification process, since it takes into account the variability of

data associated to image content descriptors and their elements.

6. Discussion

Heterogeneous data produced in variable manners are complex to

model. Such complexity is significantly increased when the model is

intended to have a direct impact on the associated process. The proposed

approach and its first experimental results indicate that contextual models

of variable produced data can be automatically generated and integrated

into a corresponding process. To handle variable means to generate data,

it is required to know the task that generates data and how such data

generation is carried out. Additionally, modelling the data context should

be independent of modelling the process. On the other hand, the resulting

contextual model provides knowledge with direct impact on the concerned

process. This is made possible by analyzing the selected data production

mode and its representation by model transformation, considering that

input parameters are the fundamental integration keys. In the two

described use cases these input parameters are, respectively: activity

supported by the external service to integrate external services and image

class to integrate patterns to be recognized. The whole approach relies on

three successive stages, on which an expert defines:

- The mapping between the contextual model and the input of the

model transformation.

- A transformation based on a technical constraint and the contextual

transformation model.

- The transformations running.

Meta-models parametrized using the concepts of the proposed

approach were developed for an information system and an image

classification system, to which a suitable contextual model was integrated.

Although there is a difference at a conceptual level between these two

processes, both are structured according to the three stages of the

approach. Code generated for a feature is instantiated during its execution

by a user. For instance, code generated from a functional requirement is

instantiated to order an instance of a commercial product during its

execution by a vendor. Classification grounded on enhancement, is at the

instance level of code generation constructed on substitution. Otherwise,

pattern recognition targets directly image instances, like the recognition of

a commercial product in an image, for example. These two example cases

make it possible to underline the difference between mapping with a

contextual model using CT and a technical constraint with transformations

such as ST or ET. Meta-models associated to transformations define a

model fusion role for the first constraint and a constraint pattern role

applied to a model for the second constraint. CT makes it possible to

18

produce a PICM from a mapping between the PIM and the TCM, whereas

ST or ET allow, in a classical way for the MDA, to deduce a PSM from a

PIM with a technical constraint described in the PDM.

It is relevant to consider that whereas the TCM makes possible to

associate an element of the PIM with contextual data, the PDM only

describes how the PSM transforms this association. Therefore, a mark

defined in the PDM represents a concept in the PSM, and is applied to an

element of the PICM, indicating how that element is transformed.

Marking is replaced in the PDM, indicating by means of rules how a

PICM concept should be transformed, depending on whether it is

associated with an element of the TCM or not. Furthermore, instead of a

marked PIM, the proposed model uses the PICM constrained by the PDM

rules to make the PSM transformation. Since the PIM marked by the TCM

cannot generate the PSM, this task is done by the PDM. Correspondingly,

the TCM does not require structured marks to define mutually exclusive

alternative mappings, permitting to include the contextual data production

mode. Likewise, only the context data instances of the TCM that perform

certain functions of the PIM are automatically selected. Therefore, several

instances of contextual TCM data can be seamlessly associated to the

same element, while the PDM filters technically compatible elements,

according to a chosen transformation.

The example cases show two data production variability frameworks

for which our approach is relevant. The first framework relates to a

dataset that can be integrated as a part into the process by substitution. An

application service to be reused, replaces the transformation of an activity

into an interface and a Java class encoding an application service, during

code generation. The second framework concerns a dataset that can be

integrated into the process by aggregation. A class of images is aggregated

during the classification to search the closest images in the sense of a

Euclidean distance. As a result, our work contribution is to relate variable

generated data and its context by means of automated integration of a

designed system component model, in order to improve the processing of

data generated in variable manners. Described results show the proposed

approach feasibility in two specific cases and also provide some helpful

insights on implementation aspects.

The PDM generates marks applied to the corresponding elements of

the PICM. In this way, the PIM is associated with the contextual data of

the TCM. However, this marking model cannot take into account the

reuse of already produced contextual data and the corresponding modes of

production. To this end, knowledge represented in the TCM refines the

PIM by associating contextual data to be reused in different manners,

without adapting the underlying process. It is the PDM that defines how to

process and reuse contextual data, refraining from process adaptation to

each data set, as a conventional MDA approach. The extension of

weaving to the complete examination of a given contextual data

production mode, provides the variability related to the production modes

of these contextual data. It does not imply in any way however, that such

integration is optimal by definition or design. This could be considered as

an aspect to improve in the proposed approach. Still, it is useful to

remember how the approach should be applied. Integration rules should

be set by the process expert and this work should be facilitated by taking

into full account the concepts manipulated by the production method.

From a practical point of view, the proposed contextual model

integration approach may be conditioned by the fact that it is designed

closely associated to the process development. This aspect is penalizing

when the processing of ST or ET related to process transformations is

significant, due to large data variability. Nevertheless, these

transformations could be adapted to take into account context changes.

The integration of a new information system application service or a new

image class could be equivalent to services reuse or image classifications

already performed.

Another restriction is the quality of process characterization, on which

meta-model concepts related to the MDA approach depend. To properly

take context into account requires adding a link between a meta-model

describing the context (TCM) and a meta-model describing the input

element of the MDA transformation (PIM), in order to design the meta-

model of the PICM. The accuracy of the PIM relation with the process

characterization should therefore be verified. Similarly, the PDM

consistency, as designed for the PIM transformation with the PICM,

should be confirmed and, if necessary completed.

7. Conclusion

Modelling of data production variability in systems architecture and

engineering is a complex and rarely addressed task. Taking into account

the data production context, our work proposes a model to integrate

variable generated data as a system component. Context data models are

generated within a MDA compatible process in a MDE framework. These

models permit to conceive automatically platform specific programs,

integrated thereafter in a process. The TCM model extends the MDA

approach, by representing the models involved in the production of

contextual data, both at the input and output. This TCM model makes

possible therefore to automate context integration into a process,

independently of the data source and without using MDA marks at that

level.

The proposed approach based on contextual data mapping, was tested

on two example MDA compliant processes to investigate its applicability.

Data production variability that characterizes these two processes was

addressed through the generic level offered by the MDE. Such strategy

permits automatization applying meta-modelling of the PIM, TCM,

PICM, PDM and PSM, along with the CT, ST, and ET transformations

coded with operational-QVT, parametrized using the concepts of these

meta-models. Consequently, the development of an information system

and an image classification system is enriched by the integration of a

contextual model, in the form of a ready-to-use services model and a

model of image classes, respectively.

Meta-models supporting integration of a contextual model into a

process enable useful transformations to automate rules specifying a

process solution. Interestingly, model mapping for a real case of data

variability is added to MDA and illustrates the various potential

application domains of integration of a contextual model into a process.

Future works encompass the approach optimization for considerably

variable contextual datasets, the dynamic adaptation to context changes,

and the extension to new use cases.

References

[1] Dey, A. K. (2001). Understanding and using context. Personal and
ubiquitous computing, vol. 5, no. 1, pp. 4-7.

[2] Yeo, G. (2013). Trust and context in cyberspace. Archives and Records, vol.
34, no. 2, pp. 214-234.

[3] Snidaro, L., García, J., & Llinas, J. (2015). Context-based information
fusion: a survey and discussion. Information Fusion, vol. 25, pp. 16-31.

 19

[4] Majchrowski, A., & Deprez, J. C. (2008). An operational approach for
selecting open source components in a software development project.
European Conference on Software Process Improvement, Springer Berlin
Heidelberg, pp. 176-188.

[5] Zimmermann, A., Lorenz, A., & Oppermann, R. (2007). An operational
definition of context. in Proceedings of the 6th International and
Interdisciplinary Conference on Modeling and using Context (CONTEXT),
Springer Press, pp. 558-571.

[6] Kent, S. (2002). Model Driven Engineering. In Proceedings 3rd
international conference on Integrated Formal Methods. LNCS vol. 2335,
pp 286-298.

[7] Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The state of practice
in model-driven engineering. IEEE Software, vol. 31, no. 3, pp. 79-85.

[8] Schmidt, D. C. (2006). Model-Driven Engineering," IEEE Computer, vol.
39, no. 2, pp. 25-31.

[9] Vale, S., & Hammoudi, S. (2008). Context-aware model driven
development by parameterized transformation. Proceedings of the 1st
International Workshop on Model Driven Interoperability for Sustainable
Information Systems, pp. 167-180.

[10] Frankel, D. S. (2003). Model Driven Architecture – Applying MDA to
Enterprise Computing. Wiley Publishing Inc.

[11] Sinnema, M., & Deelstra, S. (2007). Classifying variability modeling
techniques. Information and Software Technology, vol. 49, no. 7, pp. 717–
739.

[12] Tessier, P., Servat, D., & Gérard, S. (2008). Variability Management on
Behavioral Models. In Proceedings 2nd ACM International VaMos
Workshop, pp. 121-130.

[13] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A.
(2012). Cool features and tough decisions: a comparison of variability
modeling approaches. In Proceedings 6th ACM International VaMos
Workshop, pp. 173-182.

[14] Dumitrescu, C., Tessier, P., Salinesi, C., Gérard, S., Dauron, A., & Mazo,
R. (2013). Capturing variability in model based systems engineering. In
Proceedings Complex Systems Design & Management (CSD&M)
Conference, pp. 100-115.

[15] Zhan, G., Ge, B., Li, M., & Yang, K. (2015). A data-centric approach for
model-based systems engineering. Journal of Systems Science and
Information, vol. 3, no. 6, p. 549–560.

[16] Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G. & Plöger, J.
(2016). RuleMerger: automatic construction of variability-based model
transformation rules. In Proceedings International Conference on
Fundamental Approaches to Software Engineering, pp. 122-140.

[17] Murguzur, A., Capilla, R., Trujillo, S., Ortiz, Ó., & Lopez-Herrejon, R. E.
(2014). Context variability modeling for runtime configuration of service-
based dynamic software product lines. In Proceedings of the 18th
International Software Product Line Conference Workshops, vol. 2, pp. 2-9.

[18] Jaouadi, I., Djemaa, R. B., & Ben-Abdallah, H. (2016). A model-driven
development approach for context-aware systems," Software & Systems
Modeling, pp. 1-27.

[19] Alegre, U., Augusto, J. C., & Clark, T. (2016). Engineering context-aware
systems and applications: A survey. Journal of Systems and Software, vol.
117, pp. 55-83.

[20] Sheng, Q. Z., & Benatallah, B. (2005). ContextUML: a UML-based
modeling language for model-driven development of context-aware web
services. IEEE International Conference on Mobile Business (ICMB), pp.
206-212.

[21] Ashamalla, A., Beydoun, G., & Low, G. (2017). Model Driven Approach
for Real-time Requirement Analysis of Multi-Agent Systems. Computer
Languages, Systems & Structures, vol. 50, pp. 127-139.

[22] Szvetits, M., & Zdun, U. (2016). Systematic literature review of the
objectives, techniques, kinds, and architectures of models at runtime,
Software and Systems Modeling, vol. 15, no. 1, pp. 31-69.

[23] Davies, J., Gibbons, J., Milward, D., & Welch, J. (2012).
Compositionality and Refinement in Model-Driven Engineering. In
Proceedings 15th Brazilian Symposium on Formal Methods: Foundations
and Applications, LNCS 7498, pp. 99-114.

[24] Wymore, A. W. (1993). Model-based systems engineering: An
introduction to the mathematical theory of discrete systems and to the
tricotyledon theory of system design. CRC Press, 1993.

[25] France, R., & Rumpe, B. (2007). Model-driven development of complex
software: A research roadmap," in Proceedings IEEE Future of Software
Engineering (FOSE), pp. 37-54.

[26] Perovich, D., Bastarrica, M., & Rojas, C. (2009). Model-driven approach
to software architecture design," in Proceedings of the IEEE ICSE
Workshop on Sharing and Reusing Architectural Knowledge, pp. 1-8.

[27] Davies, J., Gibbons, J., Welch, J., & Crichton, E. (2014). Model-driven
engineering of information systems: 10 years and 1000 versions. Science of
Computer Programming, vol. 89, p. 88–104.

[28] Hutchinson, J., Rouncefield, M., & Whittle, J. (2011). Model-driven
engineering practices in industry. In Proceedings 33rd IEEE International
Conference on Software Engineering (ICSE), pp. 633-642.

[29] Aizenbud-Reshef, N., Nolan, B. T, Rubin, J., & Shaham-Gafni, Y. (2006).
Model traceability. IBM Systems Journal, vol. 45, no. 3, pp. 515-526.

[30] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., & Aho, P. (2010).
Knowledge based quality-driven architecture design and evaluation.
Information and Software Technology, vol. 52, no. 6, pp. 577-601.

[31] Gascueña, J. M., Navarro, E., & Fernández-Cabal, A. (2012). Model-
driven engineering techniques for the development of multi-agent systems.
Engineering Applications of Artificial Intelligence, vol. 25, no. 1, pp. 159-
173.

[32] Dahman, K., Charoy, F., & Godart, C. (2010). Generation of component
based architecture from business processes: model driven engineering for
SOA," in Proceedings 8th IEEE European Conference on Web Services
(ECOWS), pp. 155-162.

[33] Mattsson, A., Fitzgerald, B., Lundell, B., & Lings, B. (2012). An approach
for modeling architectural design rules in UML and its application to
embedded software. ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 21, no. 2, p. 10.

[34] Buckl, S., Matthes, F., & Schweda, C. M. (2009). A viable system
perspective on enterprise architecture management. In Proceedings IEEE
International Conference on Systems, Man and Cybernetics, pp. 1483-1488.

[35] Weilkiens, T., Lamm, J. G, Roth, S., & Walker, M. (2015). Model-based
process. John Wiley & Sons.

[36] Kallel, S., Tramoni, B., Tibermacine, C., Dony, C., &. Kacem, A. H.
(2017). Generating reusable, searchable and executable “architecture
constraints as services”. Journal of Systems and Software, vol. 127, pp. 91-
108.

[37] Zachariadis, S., Mascolo, C., & Emmerich, W. (2006). The SATIN
component system-a metamodel for engineering adaptable mobile systems.
IEEE Transactions on Software Engineering, vol. 32, no. 11.

[38] Guinea, A. S., Nain, G., & Le Traon, Y. (2016). A systematic review on
the engineering of software for ubiquitous systems. Journal of Systems and
Software, vol. 118, pp. 251-276.

[39] Gervais, M.-P. (2002). Towards an MDA-oriented methodology. In
Proceedings IEEE International Computer Software and Applications
Conference (COMPSAC), pp. 265-270.

[40] Recker, J. C., & Mendling, J. (2006). On the translation between BPMN
and BPEL: Conceptual mismatch between process modeling languages. In
Proceedings 18th International Conference on Advanced Information
Systems Engineering, pp. 521-532.

[41] Rivera, J. E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., &
Vallecillo, A. (2009). Orchestrating ATL model transformations. In
Proceedings International Workshop on Model Transformation with ATL
(MtATL), vol. 9, pp. 34-46.

[42] Bouzitouna, S., Gervais, M.–P., & Blanc, X. (2005). Model Reuse in
MDA. In Software Engineering Research and Practice, pp. 354-360.

[43] Burger, E., Henss, J, Küster, M, Kruse, S., & Happe, L. (2016). View-
based model-driven software development with ModelJoin. Software &
Systems Modeling, vol. 15, no. 2, pp. 473-496.

[44] Ren, M., & Lyytinen, K. J. (2008). Building enterprise architecture agility
and sustenance with SOA. [Online]. Available:
http://works.bepress.com/kalle_lyytinen/3/. [Accessed 07 06 2017].

20

[45] Liu, F., Guo, W., Zhao, Z. Q., & Chou, W. (2010). SaaS integration for
software cloud. 3rd IEEE International Conference on Cloud Computing,
pp. 402-409.

[46] Eriksson, D. (1997). A principal exposition of Jean-Louis Le Moigne’s
systemic theory. Cybernetics & Human Knowing, vol. 4, no. 2-3, pp. 35-77.

[47] Simonin, J., Alizon, F., Deschrevel, J.-P., Le Traon, Y., Jézéquel, J.-M., &
Nicolas, B. (2008). EA4UP: an enterprise architecture-assisted telecom
service development method," in IEEE Enterprise Distributed Object
Computing Conference, pp. 279-285.

[48] Object Management Group, (2009). MOF 2.0 Query / View /
Transformation, OMG Technical Report. [Online]. Available:
http://www.omg.org/spec/QVT. [Accessed 05 08 2016].

[49] Dinçer, B. T., Ounis, I., & Macdonald, C. (2014). Tackling biased
baselines in the risk-sensitive evaluation of retrieval systems. Advances in
Information Retrieval, Proceedings 36th European Conference on IR
Research, vol. LNCS 8416, pp. 26-38.

[50] Lu, D., & Weng, Q. (2007). A survey of image classification methods and
techniques for improving classification performance," International
Journal of Remote Sensing, vol. 28, no. 5, pp. 823-870.

[51] Datta, R., Joshi, D., Li, J., & Wang, J. (2008). Image retrieval: Ideas,
influences, and trends of the new age. ACM Computing Surveys, vol. 40,
no. 2, article 5.

[52] Chatzichristofis, S., Arampatzis, A., & Boutalis, Y. (2010). Investigating
the behavior of compact composite descriptors in early fusion, late fusion
and distributed image retrieval. Radioengineering, vol. 19, no. 4, pp. 725-
733.

[53] Andres, S., Arvor, D., & Pierkot, C. (2012). Towards an ontological
approach for classifying remote sensing images. In Proceedings IEEE
International Conference on Signal Image Technology and Internet Based
Systems (SITIS), pp. 825-832.

[54] Zhang, Q., & Izquierdo, E. (2006). Optimizing metrics combining low-
level visual descriptors for image annotation and retrieval. In Proceedings
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. II 405-II 408.

[55] Yang, L., & Albregtsen, F. (1996). Fast and exact computation of
Cartesian geometric moments using discrete Green's theorem. Pattern
Recognition, vol. 29, no. 7, pp. 1061-1073.

[56] Liao, S., & Pawlak, M. (1998). On the accuracy of Zernike moments for
image analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 12, pp. 1358-1364.

[57] Chalechale, A., Naghdy, G., & Mertins, A. (2005). Sketch-based image
matching using angular partitioning. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, vol. 35, no. 1, pp. 28-41.

[58] Hwang, S.-H., & Kim, W.-Y. (2006). Fast and Efficient Method for
Computing ART. IEEE Transactions on Image Processing, vol. 15, no. 1,
pp. 112-117.

[59] Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. W. (2005). The
Amsterdam Library of Object Images. International Journal of Computer
Vision, vol. 61, no. 1, pp. 103-112.

[60] Barroso, R., Ponciano-Silva, M., Traina, A., & Bueno, R. (2013). Using
boundary conditions for combining multiple descriptors in similarity based
queries. In Iberoamerican Congress on Pattern Recognition, Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications,
LNCS 8258, pp. 375-382.

