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Abstract

The purpose of this article is to show that there are many differential viscoelastic models for which
the global existence of a regular solution is possible. Although the problem of global existence in the
classic Oldroyd model is still open, we show that by adding a non-linear contribution (proposed by R.G.
Larson in 1984), it is possible to obtain more regular and global solutions, regardless of the size of the
data (in the two-dimensional and periodic case). Similarly, more complex appearance models such as
those related to ”pom-pom” polymers are interesting and mathematically richer: some ”natural” bounds
on the stress make it possible to obtain global results. On the other hand, in the last part, we show
that other models clearly do not seem to fit into this framework, and do not even seem to have a global
solution in time. These kinds of results allow to highlight the advantages and disadvantages of such or
such viscoelastic fluid models. They can thus help rheologists and numericists to make choices with new
arguments.

1 Introduction

Throughout this paper we will consider incompressible fluids. We model the flow using partial differential
equations derived from fluid mechanics principles. More specifically, denoting by v the fluid velocity field, ρ its
density and by Σ the Cauchy stress tensor, the fundamental law of Dynamics (Newton’s law) yields the
equation {

ρ(∂tv + v · ∇v) = divΣ+ f

div v = 0,
(1)

where f denotes some external forces applied to the fluid. When you consider a Newtonian solvent in
dilute polymer solution, it is usual to write the Cauchy stress tensor as the sum of three main contributions
corresponding to the pressure forces, the viscous effects and the elastic ones:

Σ = −p δ + ηsDv + σ. (2)

The scalar p is the hydrostatic pressure, Dv is the rate of deformation tensor, Dv = 1
2 (∇v+(∇v)†), ηs is the

kinematic viscosity of the solvent, and σ corresponds to the extra-stress tensor. While (1) is derived from
first principles and is thus general, the precise form of the extra-stress tensor σ is given by a constitutive
law which depends on the fluid behavior. For some fluids like polymer melts, biological fluids, etc. the value
of the stress tensor at the present time t depends on the history of the past deformations (of course with a
weaker dependence on the far past), and not only on the present deformation. In other words, such fluids
have memory and property of elasticity.

A wide variety of models. The model which is at the base of the models presented in this article is the
nonlinear one described by Oldroyd, see for instance [52]. The Oldroyd-B fluid presents one of the simplest
constitutive models capable of describing the viscoelastic behavior of dilute polymeric solutions under general
flow conditions. He postulated quasi-linear and nonlinear constitutive equations of differential and integral
types related to the external observable variables, the extra-stress tensor σ, and strain rate tensor Dv, and
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also elucidated some of the important principles of invariance. The most iconic model of Oldroyd’s work
remains the following relatively simple model (called the Oldroyd-B model):

λ
(
∂tσ + v · ∇σ − σ · ∇v − (∇v)† · σ

)
+ σ = 2ηpDv (3)

where λ is the relaxation time and ηp corresponds to the polymer viscosity.
Several other concepts were also developed by scientists such as Rivlin, Green, Tobolsky, Ericksen, Lodge,
Phan-Thien, Tanner, Giesekus, Doi, Edwards and their numerous successors (see the references [7, 18, 43, 55,
61, 62, 64]). It was also recognized that many of these concepts were associated with the Oldroyd approach.
The results that are discussed in this article only relate to such differential models.

Remark 1.1 Note that there are other classes of models - that are not discussed in this article, for instance:

• Models of integral type for which the extra-stress tensor in one time t is expressed using an integral
covering all the past times T < t of the stresses/strain. The best-known models of this type are included
in the K-BKZ model class, which the review of Mitsoulis [50] gives an excellent overview. See also [5]
or [62].

• Micro-macros models, coupling the mesoscopic scale of kinetic theory to the macroscopic scale of con-
tinuum mechanics. Generally, the extra-stress takes the form of a particular average computed with
the distribution function over all possible configurations, the distribution function associated being the
solution to a Fokker-Planck equation, see for instance [38, 53, 62].

But few mathematical global results. About the Oldroyd-B model, the question of existence of global
solution is still open, even in the two dimensional case. There are, nevertheless, partial results: Guillopé and
Saut [23, 24, 25, 26] proved the existence of local strong solutions; Fernández-Cara, Guillén and Ortega [20,
21] proved local well posedness in Sobolev spaces; Chemin and Masmoudi [10] proved local well posedness
again but in critical Besov spaces. In these papers, some global existence results hold, only assuming small
data. It may be noted that in the co-rotational case, that is using a peculiar time derivative for the stress
tensor, see the definition (53) hereafter, and only for that case, a global existence result of weak solution has
been shown, see the result of Lions and Masmoudi [42].
Concerning the micro-macro models, coupling the Navier-Stokes equations with a Fokker-Planck equation,
a lot of local existence results are proved, see for instance [31, 47, 57, 69]. Recently, Masmoudi [48] proved
global existence of weak solutions to the FENE (Finite Extensible Nonlinear Elastic) dumbbell model.
The integral models are also studied in the last fifty years. The first significant theoretical results are
probably due to Kim [34], M. Renardy [56], Hrusa and Renardy [28], Hrusa, Nohel and Renardy [59, Section
IV.5]. In all these works the solution is either local in time or global but with small data. Later, Brandon and
Hrusa [9] study a one dimensional model with a singularity in the non-linearity: they obtain global existence
results for sufficiently small data. Recently global existence results for integral law are given in [13].
One of the objectives of the present article is to show that there exists other realistic viscoelastic fluid models
for which global solution existence results can be shown. This will provide additional arguments for choosing
models.

The PEC model as an example. In the present article, we will first focus on a typical model but a
discussion of the relevance of identical results for other more or less complex models is proposed in the
last sections. All models will be written in dimensionless form and we have chosen to take all the constant
equal to 1 (Reynolds number, Weissenberg number, retardation parameter...). In practice, all the results
announced will be true with any coefficients, the proofs remaining similar.

The model studied was initially introduced by Larson in [35] to take into account the partially extensible
nature of the polymer strands (without extensibility, we get the Maxwell model whereas the complete
extensibility model corresponds to the Doi-Edwards model). This model, called PEC model, writes1





∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

∂tσ + v · ∇σ − σ · ∇v − (∇v)† · σ + ε (Dv : σ)σ = 0.

(4)

1See the Appendix on page 22 for the notations, especially for contractions · or : and for transposition †.
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The trilinear term ε (Dv : σ)σ makes this model a singular case and truly different from more classical
models like the Oldroyd model, see the equation (3). In a relatively surprising way, we will see that this
term has a fundamental role for the stress as soon as ε satisfies 0 < ε < 2

trσ|t=0
.

For this model, we arrive at a result of the existence, uniqueness and stability of a global strong solution,
without smallness assumption on the data. This result, as all those presented in this paper, is proved in
the two-dimensional case, and assuming that the domain is periodic in space. The dimensional condition
is constrained by the known results on the Navier-Stokes equations: it is well known that currently we
do not know how to show the existence of a strong global solution to the Navier-Stokes equations in the
three-dimensional case: it is one of the Millennium Problems. In contrast, the periodicity condition is a
technical condition that allows overcoming some potential boundary problems: It is likely that the results
can be improved by avoiding this condition. Right now, we don’t see how we can do that. More precisely,
we show (see Theorem 2.1 on page 6):

Theorem 1.1 Given any regular initial data for the velocity v|t=0 and for the stress σ|t=0, the system (4)
admits a unique strong solution (v, p,σ) defined for all time t > 0 (in the two-dimensional case). Moreover,
solution’s behavior changes continuously with the initial conditions.
In the three dimensional case, the result holds if we do not taking into account the convective term v · ∇v in
the velocity evolution equation.

Note that, as usually, the uniqueness of the pressure is obtained by adding a condition, for example of zero
average pressure.

Why can we prove a global existence result for these kinds of models? The key point of the
proofs is the obtention of bounds for the stress (see Lemma 2.2). To obtain these bounds, we will see that
this model can be written using a conformation tensor as unknown instead of the constraint tensor (see
Subsection 2.3.1). The bound is then relatively natural. Once we have precise information on stress, we can
then use fine properties on the Navier-Stokes equations, see Lemma 2.3, to deduce limits on the velocity
field. In this lemma, the estimate (29) plays a pivotal role in the argument. It is this point which is the main
difference to the one-dimensional case studied in [59], where a much simpler estimate holds. The last step
consists in showing that these bounds prohibit the finite time explosion of solutions (mainly via a Gronwall
estimate).

Notion of ”good” solution in the mathematical sense In 1902, J. Hadamard [27] introduced the
notion of well-posed problem. He proposed that mathematical models of physical phenomena should have
the following three properties:

1/ a solution exists;
2/ it is unique;
3/ its behavior changes continuously with the initial conditions.

Clearly, Theorem 1.1 previously announced implies that the PEC problem (4) is well posed in the Hadamard
sense. Moreover, for an evolution model, i.e. a time-dependent model, it is possible to add another condition:

4/ the solution exists for all future times.
The result announced by the Theorem 1.1 indicates that the PEC model described by (4) has this property,
and one of the objectives of this article is not only to prove this result but also to show that other viscoelastic
models have this property.
It should be noted that, generally speaking, there are models for which the existence of a solution is only
local in time. This fact may in some cases correspond to a physical reality, for example when the model
ceases to be valid. However, a model can be described as ”bad” if one of its physical properties is no longer
satisfied. This will be the case in the example described in Subsection 3.4 where we will exhibit viscoelastic
fluid models for which the conformation tensor does not remain positive.

Article outline The paper is organized as follows: The main section of the paper is the next section
(Section 2) in which we precisely present the PEC model, we explicitly introduce the main results and we
give all the mathematical proofs. In Section 3 we discuss the relevance and possible adaptability of the proof
to several other differential models for polymer flows: PTT, MGI, Pom-Pom... Section 4 is a conclusion. It
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also contains example of model for which the previous study would not be successful. An additional section
- Appendix - indicates the main notations used in the paper.

2 The partially extending strand convection (PEC) model

2.1 Structure and origin of the PEC model

The PEC model is based on molecular theory, for a polymeric melt composed of polymers with side branches,
which hinder full retraction. This model was originally introduced by Larson [35]. The idea behind this
differential model is that long side branches can limit the extent to which a polymer strand is able to contract
back within the confining tubelike region postulated by Doi and Edwards. More precisely, on page 554 of [35,
equation (41)], the relation between σ and Dv reads

▽
σ +

2ξ′

3G
(Dv : σ)σ = 0, (5)

where ξ′ ∈ (0, 1) and G > 0 are two physical constants. As indicated in [35], constant ξ′ can be seen as an
interpolation parameter between the Lodge model (corresponding to the case ξ′ = 0) and the Doi-Edwards
model (corresponding to the case ξ′ = 1). We also note that in order to take into account the reptational
diffusion, as well as extending convection, it is possible to introduce the following constitutive equation
(see [35, equation (54), page 557]):

τ0

(▽
σ +

2ξ′

3G
(Dv : σ)σ

)
+ σ = Gδ,

where the linear term arises from the Doi-Edwards’ or impulsive diffusion (the parameter τ0 corresponding
to a relaxation time). To treat a more general case, we are interested in the constitutive equation where
the relation between stress σ and velocity gradient Dv expresses on the following form, see the book [41,
page 34] where such a general model is introduced. This model also corresponds to a special case to the
Oldroyd 8-constant model, see [52]:

▽
σ + a(trσ)σ + ε(Dv : σ)σ = c(trσ)δ. (6)

2.2 Mathematical results for the PEC model

One of the key point in order to get the theoretical results is that a solution σ of (6) can be express with
respect to the conformation tensor, denoted by C (see the subsection 2.3.1 for more explanations):

σ = γ(trC)C where
▽
C + α(trC)C = β(trC)δ,

the relations between the functions a, c, the constant ε and the functions α, β, γ will be given by the
system (11).

Example 2.1 For the specific case of the PEC model given by (5), the functions a, c and the constant ε are

a ≡ 0, c ≡ 0 and ε = 2ξ′

3G . In that configuration, the corresponding functions α, β and γ are α ≡ 0, β ≡ 0

and γ(s) = 3G
3(1−ξ′)+sξ′ . We can note that such last relation appears in the works of Larson, see [35, equation

(42), page 554].

We are then first interested in the following type problem coupling the Navier-Stokes equations and the
previously introduced constitutive law:






∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

σ = γ(trC)C where
▽
C + α(trC)C = β(trC)δ

v
∣∣
t=0

= vinit, C
∣∣
t=0

= Cinit.

(7)

The first result concerns the uniqueness of solution to the above problem (7). In a rigorous way we have
(see Subsection 2.3.2 for the proof, and Appendix on page 22 for the notations of the functional spaces):
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Proposition 2.1 (uniqueness and stability) Let T > 0 and d ∈ {2, 3}.
We assume that the scalar functions α, β and γ are of class C1 on R+.
If vinit ∈ L2 with div vinit = 0 in the sense of distributions, Cinit ∈ L∞ and if the system (7) possesses two
solutions (v1,C1) and (v2,C2), such that, for i ∈ {1, 2},

vi ∈ L∞(0, T ;L2), ∇vi ∈ L1(0, T ;L∞),

Ci ∈ L∞(0, T ;L∞), ∇Ci ∈ L2(0, T ;Lq) (for some q > d),

then they coincide.
Moreover, the possible solution depends continuously on the initial conditions in the following sense: if
(vi,Ci) is solution corresponding to the initial conditions (vi,init,Ci,init), i = {1, 2}, then there exists a
constant C ≥ 0 such that, for all t ∈ (0, T ),

‖v2(t)− v1(t)‖L2 + ‖C2(t)−C1(t)‖L2 ≤ C
(
‖v2,init − v1,init‖L2 + ‖C2,init −C1,init‖L2

)
.

The second result is an existence result of a local (in time) strong solution. It will be proved in Subsec-
tion 2.3.3:

Proposition 2.2 (local existence) Let d ∈ {2, 3}, r ∈]1,+∞[ and q ∈]d,+∞[.
We assume that the scalar functions α, β and γ are of class C1 on R+, and that there exists k ≥ 0 such that
for any s > 0 we have

|α(s)| . 1 + sk, |α′(s)| . 1 + sk−1, |β(s)| . 1 + sk and |β′(s)| . 1 + sk−1. (8)

If vinit ∈ Dr
q and Cinit ∈ W 1,q a symmetric positive definite almost everywhere then there exists T⋆ > 0 and

a solution (v,C) to the system (7) on [0, T⋆] satisfying:

v ∈ Lr(0, T⋆;W
2,q), ∂tv ∈ Lr(0, T⋆;L

q),
C ∈ L∞(0, T⋆;W

1,q), ∂tC ∈ Lr(0, T⋆;L
q).

Remark 2.1

1. The regularity announced in Proposition 2.2 allows us to apply Proposition 2.1. Indeed, if v ∈
Lr(0, T⋆;W

2,q) and ∂tv ∈ Lr(0, T⋆;L
q) then v ∈ W 1,r(0, T⋆;L

q) ⊂ L∞(0, T⋆;L
2). The last inclu-

sion is a consequence of the one-dimensional Sobolev embedding W 1,r(0, T⋆) ⊂ L∞(0, T⋆) for r > 1,
and of the assumption q > 2. On the other hand, if v ∈ Lr(0, T⋆;W

2,q) then ∇v ∈ Lr(0, T⋆;W
1,q).

The Sobolev embedding W 1,q ⊂ L∞ right as soon as q > d, and the fact that r > 1 implies that
∇v ∈ L1(0, T⋆;L

∞). In a same way, if C ∈ L∞(0, T⋆;W
1,q) and ∂tC ∈ Lr(0, T⋆;L

q) then it is not
difficult to prove that we have C ∈ L∞(0, T⋆;L

∞) and ∇C ∈ L2(0, T⋆;L
q). Consequently, the solution

obtained in Proposition 2.2 is unique.

2. As usually, it is certainly possible to obtain a global existence result assuming that the data are small
enough. A proof, similar to that proposed in the subsection 2.3.3, could be based on the fact that for
small data (that is, for small R1 and R2 - see the proof), the compact set KT,R1,R2

is stable by the
function Φ for all time T > 0.

3. Similar results must be hold introducing a exterior force f in the right hand side of the first equation
of (7) as soon as f ∈ Lr

loc(0,+∞;Lq) (see for instance [12] for similar result).

Next, we announce a global existence result if we add a few more assumptions (theses assumptions are
satisfied for the models previously presented):

Proposition 2.3 (global existence) Under the same assumptions that in Proposition 2.2, and if we as-
sume that the reals d, q and r satisfy

• d

2q
+

1

r
<

1

2
,

• d = 2 OR
(
d = 3 but without taking into account the convective term v · ∇v

)
,
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and that the functions α, β and γ satisfy

• β > 0 OR β ≡ 0,

• γ > 0 and s ∈ R+ 7−→ sγ(s) is one to one bounded,

• lim
s→+∞

(dβ(s)
s

− α(s)
)
< +∞,

then the solution to the system (7) given by Proposition 2.2 holds taking any T⋆ > 0.

Finally, we prove that the system (7) is equivalent to the following system, including the PEC model (5):






∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

▽
σ + a(trσ)σ + ε(Dv : σ)σ = c(trσ)δ

v
∣∣
t=0

= vinit, σ
∣∣
t=0

= σinit.

(9)

and can be conclude this section with the following main result:

Theorem 2.1 (global existence - stress formulation) Let d ∈ {2, 3}, r ∈]1,+∞[ and q ∈]d,+∞[ such
that

• d

2q
+

1

r
<

1

2
,

• d = 2 OR
(
d = 3 but without taking into account the convective term v · ∇v

)
.

Let ε > 0 and two scalar functions a and c of class C1 on R+. We assume that

• c > 0 OR c ≡ 0,

• 2

ε
a
(2
ε

)
≥ d c

(2
ε

)
.

For any symmetric positive definite tensor σinit ∈ W 1,q such that

• ε trσinit < 2,

the system (9) admits a unique, stable, global strong solution.

Remark 2.2 1. The assumptions are naturally verified in the examples presented above. In particular,
the last hypothesis is always true as soon as ε is small enough, whereas the previous hypothesis will be
valid as soon as xa(x) ≥ d c(x) for x large.

2. It is also important to note that assumption ε trσinit < 2 is practically not a smallness assumption on
the data. It can read

• either ”for any initial data, there is ε0 > 0 such that for ε ∈]0, ε0] there is a unique strong global
solution”;

• or ”taking ε = 2ξ
trσinit

where ξ ∈ (0, 1), the system (9) always admits a solution”. This case
corresponds to the PEC model, see [35, Pages 553-554].

3. It should be noted, however, that the result is not proven when ε = 0, and that a simple limit process
ε → 0 cannot remedy it. Indeed, the estimates obtained in the proof show that, at ε fixed, the solution
is defined for all time t but can behave as exp(exp(t/ε)).
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2.3 Proofs of the PEC model results

2.3.1 Link between stress formulation and conformation formulation

In this subsection, we show that the conformation formulation of the PEC model gives a solution to the
stress formulation. This is one of the key points of the results since it allows the mathematical results from
both the ”stress models” framework and the ”conformation model” framework to be used. More precisely,
we prove the following result:

Proposition 2.4 Let α, β and γ be three scalar functions of class C1 on R+.
We assume that γ is positive and that s ∈ R+ 7−→ sγ(s) is one to one.
A tensor σ defined by σ = γ(trC)C where C is solution of






▽
C + α(trC)C = β(trC)δ

C
∣∣
t=0

= Cinit,

satisfies {▽
σ + a(trσ)σ + b(trσ)(Dv : σ)σ = c(trσ)δ

σ
∣∣
t=0

= γ(trCinit)C init.
(10)

The relations between the functions a, b, c and α, β, γ are given by, for any s > 0,

a(sγ(s)) =
(
1 +

sγ′(s)

γ(s)

)
α(s) − dγ′(s)

γ(s)
β(s),

b(sγ(s)) = −2γ′(s)

γ(s)2
,

c(sγ(s)) = γ(s)β(s).

(11)

Proof of Proposition 2.4 We consider a tensor C, whose trace is denoted by s = trC, satisfying

▽
C + α(s)C = β(s) δ. (12)

Taking the trace of (12), we have

dts− 2Dv : C + s α(s) = d β(s). (13)

Now, we introduce the tensor σ defined by σ = γ(s)C. Due to the definition of the upper convected
derivative (52), we have

▽
σ = γ(s)

▽
C + γ′(s) dtsC.

The equations (12) and (13) imply

▽
σ = γ(s)

(
− α(s)C + β(s) δ

)
+ γ′(s)

(
2Dv : C − s α(s) + d β(s)

)
C.

Since C = σ/γ(s), we deduce that the quantity σ satisfies the following equation

▽
σ = −α(s)σ + γ(s)β(s) δ + γ′(s)

(
2Dv :

σ

γ(s)
− s α(s) + d β(s)

) σ

γ(s)
.

It corresponds to (10) as soon as the relations (11) hold, where we have remarked that trσ = sγ(s). We
also note that the functions a, b and c are well defined by (11) if s ∈ R+ 7−→ sγ(s) ∈ R+ is an injection. �

Remark 2.3 If we replace the upper convected derivative
▽· by the derivative Dξ, −1 ≤ ξ ≤ ξ (see (53) for

the notation), then Proposition 2.4 becomes

σ = γ(trC)C, DξC + α(trC)C = β(trC)δ

⇓
Dξσ + a(trσ)σ + ξ b(trσ)(Dv : σ)σ = c(trσ)δ

where the relations (11) between a, b, c and α, β, γ remain unchanged.
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2.3.2 Proof of the uniqueness and stability result

In this subsection, we prove Theorem 2.1 which provides the uniqueness and stability of the solution to the
system 




∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

σ = γ(trC)C

▽
C + α(trC)C = β(trC)δ

v
∣∣
t=0

= vinit and C
∣∣
t=0

= C init.

As usual, to obtain uniqueness result, we take the difference of the two solutions indexed by 1 and 2. The
vector v = v1 − v2, the scalar p = p1 − p2 and the tensors σ = σ1 − σ2, C = C1 −C2 satisfy the following
system: 





∂tv + v · ∇v1 + v2 · ∇v −∆v +∇p = divσ

div v = 0

σ = γ1C + (γ1 − γ2)C2

∂tC + v · ∇C1 + v2 · ∇C −C · ∇v1 −C2 · ∇v

− (∇v)† ·C1 − (∇v2)
† ·C + α1C + (α1 − α2)C2 = (β1 − β2)δ,

(14)

together with initial conditions v
∣∣
t=0

= v1,init − v2,init and C
∣∣
t=0

= C1,init − C2,init. For the sake of
simplification, we have noted γi, αi and βi the values of γ(trCi), α(trCi) and β(trCi) respectively.
Taking the scalar product of the first equation of (14) by v in L2, we obtain

1

2
dt
(
‖v‖2L2

)
+ ‖∇v‖2L2 = −

∫
(v · ∇v1) · v −

∫
σ : ∇v

≤ ‖∇v1‖L∞‖v‖2L2 +
1

2
‖∇v‖2L2 +

1

2
‖σ‖2L2 .

(15)

The difference σ of the stresses is controlled as follows |σ| ≤ |γ1||C|+ |γ1 − γ2||C2|. Since the function γ is
of class C1, and since the functions Ci are assumed to be bounded, the values γ(trCi) are bounded. Below,
we denote by sup(f) the bounded quantity sup |f(trCi)| for any function f ∈ C(R,R). The differences of
kind γ1 − γ2 are so controlled by sup(γ′)|trC1 − trC2| ≤ sup(γ′)|C|. We deduce

‖σ‖L2 ≤
(
sup(γ) + ‖C2‖L2 sup(γ′)

)
‖C‖L2 . (16)

Now, taking the scalar product of the fourth equation of (14) by C in L2, we have

1

2
dt
(
‖C‖2L2

)
= −

∫
(v · ∇C1) : C +

∫
(C · ∇v1) : C +

∫
(C2 · ∇v) : C +

∫
((∇v)† ·C1) : C

+

∫
((∇v2)

† ·C) : C −
∫

α1|C|2 −
∫
(α1 − α2)C2 : C +

∫
(β1 − β2)trσ.

(17)

The first term of the right member can be estimated as follows, using successively Hölder’s inequality,

Sobolev’s injection H1 →֒ L
2q

q−2 , holds for any q > d, Poincaré’s inequality and Young’s inequality (the
constant cP being a universal constant involved in injections):

∣∣∣
∫
(v · ∇C1) : C

∣∣∣ ≤ ‖v‖
L

2q
q−2

‖∇C1‖Lq‖C‖L2

≤ cP ‖∇v‖L2‖∇C1‖Lq‖C‖L2

≤ 1

4
‖∇v‖2L2 + c2P ‖∇C1‖2Lq‖C‖2L2.

Since the functions α and β are of class C1, the equality (17) implies

1

2
dt
(
‖C‖2L2

)
≤ 1

4
‖∇v‖2L2 + c2P ‖∇C1‖2Lq‖C‖2L2 + ‖∇v1‖L∞‖C‖2L2 +

1

4
‖∇v‖2L2

+ 2‖C2‖2L∞‖C‖2L2 + 2‖C1‖2L∞‖C‖2L2 + ‖∇v2‖L∞‖C‖2L2

+ sup(α)‖C‖2L2 + sup(α′)‖C2‖L∞‖C‖2L2 + sup(β′)‖C‖2L2 .

(18)
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Adding the estimates (15), (16) and (18), we deduce an estimate on the following form

dt
(
‖v‖2L2 + ‖C‖2L2

)
≤ h(t)(‖v‖2L2 + ‖C‖2L2),

where the function h is integrable on (0, T ). Indeed the function h contains quantities like ‖∇C1‖2Lq or
‖∇v1‖L∞‖C1‖2L∞ which are, by the regularity assumption, integrable. From the initial condition we deduce
that, for all t ∈ (0, T )

‖v(t)‖2L2 + ‖C(t)‖2L2 ≤
(
‖v1,init − v2,init‖2L2 + ‖C1,init −C2,init‖2L2

)
exp

(∫ T

0

h
)
,

corresponding to the stability result. In particular, the uniqueness result also follows taking the same initial
condition for the two solutions, i.e. vinit = 0 and C init = 0. �

Remark 2.4 Note that the uniqueness and stability results also holds if we replace the conditions

∇vi ∈ L1(0, T ;L∞) and Ci ∈ L∞(0, T ;L∞)
by the conditions

∇vi ∈ L2(0, T ;L∞) and Ci ∈ L4(0, T ;L∞).

The function h introduced at the end of the proof remains integrable on (0, T ).

2.3.3 Proof of the local existence result

This subsection is devoted to the proof of the local existence result (Proposition 2.2) for the system (7)
describing the fluid in term of velocity-conformation tensor (v,C). We rewrite the system (7) as a fixed
point equation and apply Schauder’s theorem. More precisely, for given velocity vector v and given tensor C,
we are interested in the following system






∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

σ = γ(trC)C

∂tC + v · ∇C −C · ∇v − (∇v)† ·C + α(trC)C = β(trC)δ.

(19)

From classical results on the Stokes problem, see for instance [22], the velocity v, solution of the two first
equations of (19) satisfies:

‖v‖Lr(0,T ;W 2,q) + ‖∂tv‖Lr(0,T ;Lq) . ‖vinit‖W 2,q + ‖divσ − v · ∇v‖Lr(0,T ;Lq). (20)

We control σ from C using the third equation of (19) and introducing the continuous and non-decreasing

real functions Γ(s) = max
0<τ<s

γ(τ) and Γ̃(s) = max
0<τ<s

γ′(τ):

‖divσ‖Lr(0,T ;Lq) ≤Γ
(
‖trC‖L∞(0,T ;L∞)

)
‖C‖Lr(0,T ;W 1,q)

+ Γ̃
(
‖trC‖L∞(0,T ;L∞)

)
‖C‖L∞(0,T ;L∞)‖∇(trC)‖Lr(0,T ;Lq).

As a direct consequence of the definitions of trace and norms on tensorial spaces (see Appendix, page 22),
we note that |trC|2 ≤ d|C|2 and that |∇(trC)|2 ≤ d|∇C|2. We deduce the following estimate

‖divσ‖Lr(0,T ;Lq) ≤Γ
(√

d‖C‖L∞(0,T ;L∞)

)
‖C‖Lr(0,T ;W 1,q)

+
√
d Γ̃

(√
d‖C‖L∞(0,T ;L∞)

)
‖C‖L∞(0,T ;L∞)‖C‖Lr(0,T ;W 1,q).

(21)

Given v andC, the existence of a unique solutionC to the fourth equation of (19) follows from the application
of the method of characteristics. Some details are given in [21, Appendix p. 26] but we reformulate the
estimates taking into account the specificities of the model. We first compute the L2 scalar product of the
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fourth equation of (19) by q|C|q−2C. Then we take gradients in the fourth equation of (19) and compute
the scalar product of the resulting equation with q|∇C|q−2∇C. By addition, we find:

dt
(
‖C‖qW 1,q

)
.‖∇v‖L∞‖C‖qW 1,q + ‖∇2v‖Lq‖C‖L∞‖∇C‖q−1

Lq

+ (1 + ‖C‖kL∞)‖C‖q−1
Lq + (1 + ‖C‖k−1

L∞ )‖∇C‖Lq‖C‖L∞‖∇C‖q−1
Lq

+ (1 + ‖C‖kL∞)‖∇C‖qLq + (1 + ‖C‖k−1
L∞ )‖∇C‖Lq‖∇C‖q−1

Lq .

(22)

We note that we used the assumptions |α(s)| . 1+sk, |β(s)| . 1+sk, |α′(s)| . 1+sk−1 and |β′(s)| . 1+sk−1.
Using Young inequalities as well as the Sobolev continuous embedding W 1,q →֒ L∞, valid for q > d, the
estimate (22) now writes

dt
(
‖C‖qW 1,q

)
.

(
1 + ‖∇v‖L∞ + ‖∇2v‖Lq + ‖C‖kW 1,q

)
‖C‖qW 1,q + 1 + ‖C‖kW 1,q . (23)

On the other hand, we express the time derivative ∂tC from the fourth equation of (19) to deduce

‖∂tC‖Lq .
(
1 + ‖v‖W 1,q + ‖C‖kL∞

)
‖C‖W 1,q + 1 + ‖C‖kL∞ . (24)

From (23) and (24), we deduce that there exists a continuous function F such that

‖C‖L∞(0,T ;W 1,q) + ‖∂tC‖Lr(0,T ;Lq) ≤ F
(
‖v‖L1(0,T ;W 2,q), ‖v‖Lr(0,T ;W 1,q), ‖C‖Lrk(0,T ;W 1,q)

)
. (25)

We conclude the proof introducing a compact convex set KT,R1,R2
for which the application Φ : (v,C) 7−→

(v,C) satisfies Φ(KT,R1,R2
) ⊂ KT,R1,R2

. Roughly speaking, the set KT,R1,R2
is composed of couples of

functions (w,B) such that

‖w‖Lr(0,T ;W 2,q) + ‖∂tw‖Lr(0,T ;Lq) ≤ R1, ‖B‖L∞(0,T ;W 1,q) + ‖∂tB‖Lr(0,T ;Lq) ≤ R2.

From the previous estimates (20), (21) and (25), if (v,C) ∈ KT,R1,R2
then, for R1 and R2 large enough,

and for T small enough then (v,C) ∈ KT,R1,R2
. This is the key to prove that the application Φ has a fixed

point, and then that the system (7) has a solution local in time, see [12, 21, 24, 25] for similar proofs.

2.3.4 Proof of the global existence result

In this subsection, we prove Proposition 2.3. The proof consists in developing estimates obtained in Propo-
sition 2.2 for the velocity v and for the conformation tensor C which are finite for any finite time. It is
decomposed into several parts. The three first lemmas treat the unknowns velocity/stress/conformation as
decoupled unknowns: Lemma 2.1 gives estimates on the conformation C. In Lemma 2.2 we obtain a bound
for the stress whereas in Lemma 2.3 we obtain regularity estimates for the velocity. We conclude the proof
of Proposition 2.3 obtaining a bound on the solution (v,C) of the coupled system (7), see Proposition 2.5.

Lemma 2.1 Let d ∈ {2, 3}, q > d and r > 1.
Let C init ∈ W 1,q and v such that ∇v ∈ L1(0, T⋆;L

∞) ∩ Lr(0, T⋆;W
1,q).

Let α and β be two scalar functions of class C1 on R+ such that β > 0 or β ≡ 0.
If the initial condition C init is a symmetric positive definite matrix, then the solution C of the following
equation 




▽
C + α(trC)C = β(trC)δ

C
∣∣
t=0

= Cinit,
(26)

remains a symmetric positive definite matrix for all time t ∈ [0, T⋆] and all x ∈ T
d.

Moreover, assuming

lim
s→+∞

(dβ(s)
s

− α(s)
)
< +∞,

we have, for any t ∈ (0, T⋆):

‖C‖L∞(0,t;L∞) . exp
(
‖∇v‖L1(0,t;L∞)

)
,

‖∇C‖Lr(0,t;Lq) .
(
1 + ‖∇2v‖Lr(0,t;Lq)

)
exp

(
‖∇v‖L1(0,T⋆;L∞)

)
.

(27)
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Proof of Lemma 2.1 – The proof of the positiveness of the conformation tensor C is given by M.A.
Hulsen (see [30]) in the three dimensional case. It can adapt as it is in the two dimensional case.
In order to obtain the first estimate of (27), we take the scalar product of (26) by q|C|q−2C:

dt|C|q + qα(trC)|C|q = qβ(trC)trC|C|q−2 + q|C|q−2(C · ∇v +∇v† ·C) : C.

Since C is symmetric positive definite, we can use the equivalence between trC and |C|, see relations 51.
We deduce

dt|C|q ≤ 2q|∇v||C|q + q
(dβ(trC)

trC
− α(trC)

)
|C|q. (28)

If lim
s→+∞

(dβ(s)
s

−α(s)
)
< +∞ then, due to the positiveness of trC and the continuity of α and β, we have

dβ(trC)

trC
− α(trC) . 1.

The estimate (28) becomes
dt|C|q . 2q|∇v||C|q + q|C|q.

Note that the symbol . introduced here does not depend on the integer q. Integrating with respect the the
space variable, we have

dt‖C‖qLq . q
(
2‖∇v‖L∞ + 1

)
‖C‖qLq .

We then have dt‖C‖Lq .
(
2‖∇v‖L∞ + 1

)
‖C‖Lq so that

‖C‖L∞(0,T ;Lq) . ‖Cinit‖Lqexp
(∫ T

0

(
2‖∇v‖L∞ + 1

))
. exp

(
‖∇v‖L1(0,t;L∞)

)
.

Since Cinit ∈ W 1,q ⊂ L∞, the last estimate does not depend on q, passing to the limit q → +∞, we deduce
the first estimate.

Finally, to obtain the second estimate of (27), we now take the gradients of (26) and compute the scalar
product in R

d×d×d with q|∇C|q−2∇C:

dt|∇C|q ≤3q|∇v||∇C|q + 2q|∇2v||C||∇C|q−1 + q|α(trC)||∇C|q

+ q|α′(trC)||∇(trC)||C||∇C|q−1 + q
√
d|β′(trC)||∇(trC)||∇C|q−1.

Note that from the previous bound ‖C‖L∞(0,T ;L∞) . 1, we have |f(trC)| . 1 for any continuous function f ,
like α, α′ or β′. We deduce the following estimate

dt|∇C|q . (|∇v|+ 1)|∇C|q + |∇2v||∇C|q−1.

Here, the coefficient hidden behind the symbol . depends on the integer q (but that does not matter here).
After integration in the space variable, we deduce

dt‖∇C‖qLq . (‖∇v‖L∞ + 1)‖∇C‖qLq + ‖∇2v‖Lq‖∇C‖q−1
Lq .

We multiply by ‖∇C‖r−q
Lq and use the Young inequality abr−1 ≤ 1

ra
r + r−1

r br in order to have

dt‖∇C‖rLq . (‖∇v‖L∞ + 1)‖∇C‖rLq + ‖∇2v‖rLq .

The Gronwall lemma allows us to conclude. �

Remark 2.5 Note also that the proof of the positiveness of the conformation tensor C presented by Hulsen
use the assumption β > 0. But it is not difficult to adapt the proof to the case where β is identically zero.
On the other hand, if β changes sign, the result can be false. We will see in Section 4, page 20, an example
where the term β changes sign, and where C does not remain positive.
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Lemma 2.2 Let σ : (0, T⋆)× T
d −→ R

d×d be defined by






σ = γ(trC)C

▽
C + α(trC)C = β(trC)δ

C
∣∣
t=0

= Cinit.

We assume that α, β and γ are three scalar functions of class C1 on R+ such that β > 0 or β ≡ 0, and

s 7−→ sγ(s) is bounded.

If the initial condition Cinit ∈ W 1,q is a symmetric positive definite matrix then the stress σ is bounded:

‖σ‖L∞(0,T⋆;L∞) . 1.

Proof of Lemma 2.2 – We perform the proof of the L∞-estimate of the stress σ point by point (for
simplicity we note here C and σ instead of C(t, x) and σ(t, x) respectively). Due to first part of Lemma 2.1,
we know that C, and then σ are symmetric positive definite matrices. Consequently, |σ| ≤ trσ (see rela-
tions 51) and since we have defined the stress by σ = γ(trC)C, we deduce that |σ| ≤ trC γ(trC). The
assumption on γ allows us to conclude that |σ| . 1. �

Lemma 2.3 Let d ∈ {2, 3}, r ∈]1,+∞[ and q ∈]d,+∞[ such that d
2q + 1

r < 1
2 . We assume that

d = 2 OR
(
d = 3 but without taking into account the convective term v · ∇v

)
.

If vinit ∈ Dr
q and σ ∈ Lr(0, T⋆;W

1,q) ∩ L∞(0, T⋆;L
∞) then the solution v of the following Navier-Stokes

equation 



∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

v
∣∣
t=0

= vinit,

satisfies the estimates, for any t ∈ (0, T⋆):

‖∇v‖L∞(0,t;L∞) . 1 + ‖σ‖L∞(0,t;L∞) ln(e + ‖∇σ‖Lr(0,t;Lq)),

‖∇2v‖Lr(0,t;Lq) . ‖∇σ‖Lr(0,t;Lq).
(29)

Proof of Lemma 2.3 – The proof is based on the integral representation of the solution to the Navier-
Stokes equation:

v(t, x) = et∆vinit +

∫ t

0

e(t−s)∆
Pdiv f(s, x) ds, (30)

where we have introduced f := σ − v ⊗ v.

• The first estimate is obtain as follows: Due to the analyticity of the heat kernel, and using the Sobolev

injections (essentially W
d
q
,q →֒ L∞), we successively prove that

‖et∆∆αg‖L∞ . t−α‖g‖L∞ and ‖et∆∆g‖L∞ . t−
q+d

2q ‖∇g‖Lq .

These two estimates make it possible, from (30) and as soon as d
2q +

1
r < 1

2 , to obtain (see [13, 14] for similar

results):
‖∇v(t, ·)‖L∞ . 1 + ‖f‖L∞(0,t;L∞) ln

(
e + ‖∇f‖Lr(0,t;Lq)

)
. (31)

In the two dimensional case (d = 2), an analysis of the Navier-Stokes equation implies that (see [13, 14]) for
a.e. t ∈ (0, T⋆):

‖v‖L∞(0,t;L∞) . 1,

‖∇v‖Lr(0,t;Lq(T2)) . 1 for any 1 < q, r < +∞.
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This makes it possible to control the non-linearity v ⊗ v and reduce the control of f (resp. ∇f) to that of σ
(resp. ∇σ). It results the first estimate of (29).
In the three dimensional case (d = 3), we do not take into account the contribution v⊗ v so that f = σ and
the results directly follow from (31).

• The second estimate announced in Lemma 2.3 comes from the integral representation (30) again and

to the fact that the linear operator g 7→
∫ t

0 e
(t−s)∆∆g(s) ds, is bounded in Lr(0, T ;Lq) for 1 < q, r < +∞,

see [40, p. 64]. �

Proposition 2.5 Under the assumptions of Proposition 2.3, the solution (v,C) to the system (7) on [0, T⋆]
satisfies, for any t ∈ (0, T⋆),

‖v‖Lr(0,t;W 2,q) . 1, ‖∂tv‖Lr(0,t;Lq) . 1,

‖C‖L∞(0,t;W 1,q) . 1, ‖∂tC‖Lr(0,t;Lq) . 1.

Proof of Proposition 2.5 – Combining the results of Lemma 2.3 and Lemma 2.2, we deduce that for any
t ∈ (0, T⋆) we have

‖∇v‖L∞(0,t;L∞) . 1 + ln(e + ‖∇σ‖Lr(0,t;Lq)),

‖∇2v‖Lr(0,t;Lq) . ‖∇σ‖Lr(0,t;Lq).
(32)

The first goal is then to obtain a bound on

y(t) := ‖∇σ‖rLr(0,t;Lq).

We use the stress formulation introduced in Subsection 2.3.1, see Proposition 2.4:

▽
σ + a(trσ)σ + b(trσ)(Dv : σ)σ = c(trσ)δ. (33)

We first take gradients in equation (33) and compute the L2 scalar product of the resulting equation
with |∇σ|q−2∇σ. From the bound ‖σ‖L∞(0,T⋆;L∞) . 1, we control f(trσ) for f = a, b, c, a′, b′, c′. Us-
ing the Hölder inequality, we find

dt‖∇σ‖qLq . (1 + ‖∇v‖L∞)‖∇σ‖qLq + ‖∇2v‖Lq‖∇σ‖q−1
Lq .

We next multiply this result by ‖∇σ‖r−q
Lq and use the Young type inequality xyr−1 ≤ 1

rx
r + (1 − 1

r )y
r to

treat the last term. We deduce

dt‖∇σ‖rLq . (1 + ‖∇v‖L∞)‖∇σ‖rLq + ‖∇2v‖rLq .

Using estimate (32), we conclude that y′(t) . y(t) ln(e + y(t)) + y(t) that implies that y(t) is well defined

for any time t > 0 (it is bounded by a double exponential function of kind ee
t

). From Lemma 2.3, we then
have for any t ∈ [0, T⋆]:

‖v‖Lr(0,t;W 2,q) . y(t) . 1.

We also note that, from (32), we have
‖∇v‖L∞(0,t;L∞) . 1.

In order to obtain the bound on the conformation C, we use Lemma 2.1 and the two previous estimates:

‖C‖L∞(0,t;W 1,q) . 1.

The two last bounds follow from the equations (7) expressing ∂tv and ∂tC with respect to v, ∇v, ∆v, divσ,
C and ∇C. �
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2.3.5 Proof of the main theorem 2.1

From Proposition 2.3 we know that there exists a strong solution to the conformation formulation (7) as
soon as some assumptions on the functions α, β and γ are satisfied. Moreover, in Subsection 2.3.1, we proved
that any solution to the conformation formulation implies a solution to the stress formulation (9), the link
between functions α, β, γ and functions a, b, c being given by (11). To prove the Theorem 2.1 it suffices to
show that the assumptions on functions a and c correspond to assumptions on α, β and γ in Proposition 2.3.
Note that this approach does not show the uniqueness of the solution. However, the proof of uniqueness may
be made independently by following exactly the same method as for proof of existence in the conformation
formulation, see Subsection 2.3.2.

• Let a, c be two scalar functions of class C1 on R+, and ε > 0. We introduce the three scalar functions
α, β and γ defined on R+ by

α(s) = (1 + ε s)
(
a(sγ(s))− d ε

2
c(sγ(s))

)
, β(s) =

c(sγ(s))

γ(s)
and γ(s) =

2

1 + ε s
,

so that the relations (11) hold with b = ε.

• Let σinit ∈ W 1,q be a symmetric positive definite tensor. Assuming ε trσinit < 2 it is possible to define
the symmetric positive definite matrix C init ∈ W 1,p by

C init =
σinit

2− ε trσinit
,

so that σinit = γ(trC init)C init.

Consequently, due to Subsection 2.3.1, the solution to (7) will be solution to (9).
We must therefore prove that functions α, β and γ defined above satisfy the assumptions of Proposition 2.3.
Since a and c are functions of class C1 on R+, and due to the definition of γ, it is clear that α, β and γ are
of class C1 too. Moreover the assumption

(
c > 0 OR c ≡ 0

)
clearly implies

(
β > 0 OR β ≡ 0

)
.

Finally, the other assumptions are direct consequences of the following asymptotic behaviors, for s → +∞:

γ(s) =
2

εs
+O

( 1

s2

)
, α(s) = ε

(
a
(2
ε

)
− d ε

2
c
(2
ε

))
s+O(1) and β(s) =

ε

2
c
(2
ε

)
s+O(1).

It should be noted in particular that hypothesis lim
s→+∞

(dβ(s)
s

− α(s)
)
< +∞ is verified because we have

assume that
2

ε
a
(2
ε

)
≥ d c

(2
ε

)
.

3 Global existence results for other models?

In this section, we highlight the fact that the method proposed above to obtain the existence of a solution can
be adapted to other non-Newtonian models. Some are direct corollaries of previous results (as is the case for
PTT-type models, see Subsection 3.1) while others require some intermediate results (for example to be able
to apply the method to the MGI-type model, see Subsection 3.2 or pom-pom type polymer, Subsection 3.3).
We end this section by showing almost the same type of models for which the positivity of the conformation
is not respected over time, see Subsection 3.4.

3.1 The Phan-Thien-Tanner (PTT) model with additive nonlinear term

The crucial point in modeling is the choice of a suitable constitutive equation which has a capability to
correctly represent non-linear behavior of the melts. In recent years, significant progress has been made
to develop such constitutive equations. Usual nonlinearities from the Oldroyd model, see equation (3), can
be described by the PTT model. Such model is an extension of the Oldroyd model to include a function
dependent upon trσ, the trace of the polymer stress. More precisely, the constitutive law for the PTT model
(with the additive term those the coefficient is ε̃ > 0) is

λ
▽
σ + f(trσ)σ + ε̃(Dv : σ)(λσ + ηpδ) = 2ηpDv. (34)
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There are three forms of the function f(trσ) found in the literature:

f(s) =






1 +
κλ

ηp
s Linear PTT

1 +
κλ

ηp
s+

1

2

(κλ
ηp

s
)2

Quadratic PTT

exp
(κλ
ηp

s
)

Exponetial PTT,

where κ ∈ [0, 1] is a model parameter. Parameter κ is inversely proportional to the extensional viscosity of
the fluid and the linear or quadratic models only approach well the exponential form at low deformations.
The linear and exponential forms of the PTT model are extensively used, and are the two forms mentioned
in [63, Sections 5.6.5 and 5.6.6] about the PTT model. The exponential model was first proposed by Phan-
Thien [54] a year after the linear model of [65]. The quadratic form is far less widely used or mentioned in
the literature, but is used, for example, to model the wire-coating process in [51], where all three PTT forms
are investigated.
We remark that this type of model (34) falls within the framework that we have described in this article,
and that consequently we can apply the result of Theorem 2.1.
Indeed, introducing σ̃ = λσ + ηpδ, the equation (34) takes the form of the third equation of (9) with

a(s) =
1

λ
f
(s− dηp

λ

)
, c(s) =

ηp
λ
f
(s− dηp

λ

)
and ε =

ε̃

λ
.

Under the condition ε̃ d ηp ≤ 2λ, corresponding to the condition 2
εa

(
2
ε

)
≥ d c

(
2
ε

)
, it is then possible to apply

Theorem 2.1 and deduce the existence of an unique global strong solution.

Remark 3.1

1. The same results are also true with other classic models:

i- the FENE-P (Finitely Extensible Non-Linear Elastic-Peterlin) proposed by Bird, Armstrong and
Hassager [6]. See also recent theoretical results relative to a diffusive case [44];

ii- the FENE-CR ( Finitely Extensible Non-Linear Elastic-Chilcott and Rallison) proposed by Chilcott
and Rallison [11].

If we add a non-linear term of the form ε(Dv : σ)σ (with a possibly very small ε positive coefficient)
then we have a global existence of a strong solution for any initial data.

2. In the previous models (PEC, MGI, PTT, FENE-P or FENE-CR) it is possible to use the derivative Dξ,
ξ 6= 0, instead of the UCM derivative (see (53) for the notation). All the proof presented in this paper

remains correct. In particular, introducing σ̃ = σ +
ηp

ξλδ, the equation (34) - with Dξσ instead of
▽
σ -

takes the form of equation (9)3 where we replace ε by ξ ε.

3.2 The Marrucci, Greco and Ianniruberto (MGI) type model

The incorporation of additional mechanisms, such as contour length fluctuations and stress release, see [18],
leads to a precise description of the viscoelastic properties under the flow. Many modifications such as taking
into account the finite stretchability of the chain have also been introduced. Thus, in [46], Marrucci, Greco
and Ianniruberto argued that a force balance on the entanglement nodes should be fulfilled, resulting in a
modified Q tensor. In this manner, a better agreement with experimental data for the normal stress ratio
could be obtained. The modified Q tensor is given with respect to the Finger tensor C, measuring the
deformation of a fluid element, by

Q =

√
C

tr
√
C

with
▽
C = 0. (35)

The tensor
√
C here appearing is a special case of the Seth tensor Ca sometimes proposed in phenomeno-

logical equations for rubber or for viscoelastic liquids, see [37]. Larson [36] relates the
√
C tensor to the
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disclination lines liquid crystal, which also carry a constant tension.The other characteristic of the choice (35)
is the ratio defining Q. This point is essential from a theoretical point of view since it clearly implies a L∞

bound on the tensor Q. According to Marrucci, Greco and Ianniruberto [45], this form of writing is a gener-
alization of the linear case ”Q = C” to large deformations. More exactly, they claim that during retraction,
the number of strands per unit volume decreases in inverse proportion to the average increase of strand
length scale with tr

√
C. The stress tensor σ obeys time-strain separability and is obtain as

σ = GΛ(t)Q,

where G > 0 is a physical constant and Λ is a function. In practice, the function Λ is a solution of a
differential equation coupled with the velocity and/or the stress, see for instance [46, 66, 67]. Nevertheless,
following the remark given in [46, equation (7), page 100]: ”The reptation function Λ is not very different
from a single exponential Λ(t) = e−t/τ0”, we will assume that the function Λ is any positive and regular
function. We are therefore interested in the following system





∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

σ = Λ(t)

√
C

tr
√
C

where
▽
C = 0

v
∣∣
t=0

= vinit, C
∣∣
t=0

= C init.

(36)

3.2.1 Mathematical results for the MGI model

Following the same ideas as in the previous Section, we have the following results:

Proposition 3.1 (uniqueness and stability) Let T > 0 and d ∈ {2, 3}.
We assume that Λ is a positive function of class C1 on R+.
If vinit ∈ L2 with div vinit = 0 in the sense of distributions, Cinit ∈ L2 is symmetric positive definite almost
everywhere, and if the system (36) possesses two solutions (v1,C1) and (v2,C2), such that, for i ∈ {1, 2},

vi ∈ L∞(0, T ;L2), ∇vi ∈ L1(0, T ;L∞),

Ci ∈ L∞(0, T ;L∞), ∇Ci ∈ L2(0, T ;Lq) (for some q > d),

then they coincide.
Moreover, the possible solution depends continuously on the initial conditions in the following sense: if
(vi,Ci) is solution corresponding to the initial conditions (vi,init,Ci,init), i = {1, 2}, then there exists a
constant C ≥ 0 such that, for all t ∈ (0, T ),

‖v2(t)− v1(t)‖L2 + ‖C2(t)−C1(t)‖L2 ≤ C
(
‖v2,init − v1,init‖L2 + ‖C2,init −C1,init‖L2

)
.

Proposition 3.2 (local existence) Let d ∈ {2, 3}, r ∈]1,+∞[ and q ∈]d,+∞[.
We assume that Λ is a positive function of class C1 on R+.
If vinit ∈ Dr

q and Cinit ∈ W 1,q is symmetric positive definite almost everywhere then there exists T⋆ > 0 and
a strong solution (v,C) to the system (36) in [0, T⋆] satisfying:

v ∈ Lr(0, T⋆;W
2,q), ∂tv ∈ Lr(0, T⋆;L

q),
C ∈ L∞(0, T⋆;W

1,q), ∂tC ∈ Lr(0, T⋆;L
q).

Theorem 3.1 (global existence) Under the same assumptions that in Proposition 3.2, if we assume that

• d

2q
+

1

r
<

1

2
,

• d = 2 OR
(
d = 3 but without taking into account the convective term v · ∇v

)
,

then the solution given by Proposition 3.2 holds taking any T ⋆ > 0.
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3.2.2 Proofs of the MGI model results

Recall that the MGI model (36) is based on the following constitutive relation, expressing the stress σ as
follows:

σ = Λ(t)

√
C

tr
√
C

where
▽
C = 0.

Since this model makes the root of C appear, we first note that the tensor C remains symmetric positive
definite if it is initially the case (apply Lemma 2.1). This observation suggests that the law is consistent.
In a first lemma (Lemma 3.1), we will see that it is possible to reformulate this constitutive relation into a
differential equation linked σ, σ2 and Dv. Next, we will see in Lemma 3.2 how to estimate ∇σ using ∇(σ2).

Reformulation in term of stress tensor For the model (36), it is possible to derive a differential
equation for the stress tensor σ. The next idea follows the same kind of formulation that those presented
in [46].

Lemma 3.1 Let Λ : (0, T ) → R be a positive function of class C1.
If σ is defined by

σ = Λ(t)

√
C

tr
√
C

where
▽
C = 0,

then we have
▽

(σ2)− 2Λ′

Λ
σ2 +

2

Λ
(Dv : σ)σ2 = 0. (37)

Remark 3.2 In the two dimensional case, the Cayley-Hamilton theorem implies that

σ2 − (trσ)σ + (detσ)δ = 0.

Since trσ = Λ(t) and Dv : δ = div v = 0, we have Λ(t)Dv : σ = Dv : σ2. Consequently, the equation (37)
can be written in terms of σ2 without intervening σ. From a numerical point of view, this remark can make
it possible to treat this model almost as simply as the PEC model previously studied.

Proof of Lemma 3.1 - We introduce B =
√
C and Q = B

trB . Derivating Q2 with respect to the time
(using precisely the convective derivative dt), we obtain

dt(Q
2) = dt

( B2

(trB)2

)
=

dt(B
2)

(trB)2
− 2

tr (dtB)

(trB)3
B2. (38)

Writing the relation
▽
C = 0 using the tensor B, we have

dt(B
2) = B2 · ∇v + (∇v)† ·B2. (39)

Multiplying left this equation by B−1 and taking the trace, we obtain

dt(trB) = Dv : B. (40)

Finally, plugging (39) and (40) in (38), we obtain

dt(Q
2) =

B2 · ∇v + (∇v)† ·B2

(trB)2
− 2

Dv : B

(trB)3
B2,

which can be completely rewritten in term of stress tensor Q as follows

▽
(Q2) + 2(Dv : Q)Q2 = 0.

Finally, multiplying this equation by Λ(t)2, we deduce the result since σ2 = Λ(t)2Q2 with Λ(t) > 0. �
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Gradient of the square root

Lemma 3.2 Let σ : Td −→ R
d×d be a symmetric positive definite matrix values function.

If σ is of class C1 then we have the following inequality

|∇σ| ≤ 1√
2
|σ−1||∇(σ2)|. (41)

Remark 3.3

1. If f : Td 7−→ R is a positive scalar function, the result is obvious since ∇(f2) = 2f∇f . In particular,
inequality (41) is not optimal.

2. If σ : Td −→ R
d×d is not symmetric positive definite then the result is false. Consider for instance

σ(x) =

(
1 cos(2πx1)
0 −1

)
. We have σ2 = δ so ∇(σ2) = 0 whereas ∇σ 6= 0.

Proof of Lemma 3.2 - The spatial gradient of a 2-tensor tensor is a 3-tensor. We have

(∇(σ2))ijk = ∂i(σjmσmk) = ∂iσjmσmk + σjm∂iσmk.

Using the notations given in the Appendix, page 22, it follows that

(∇(σ2))† = (∇σ)† · σ + σ · (∇σ)†.

Multiplying left and right by σ−1/2 (precisely making a 1-contraction on left and right) we have

σ−1/2 · (∇(σ2))† · σ−1/2 = σ−1/2 · (∇σ)† · σ1/2

︸ ︷︷ ︸
=A

+ σ1/2 · (∇σ)† · σ−1/2

︸ ︷︷ ︸
=B

. (42)

Computing the scalar product of the two 3-tensors A and B, we remark that

A (3)
: B = σ

−1/2
im (∇σ)†mjn σ

1/2
nk σ

1/2
iℓ (∇σ)†ℓjp σ

−1/2
pk

= σ
−1/2
im σ

1/2
iℓ︸ ︷︷ ︸

=δℓm

(∇σ)jmn (∇σ)jℓp σ
1/2
nk σ

−1/2
pk︸ ︷︷ ︸

=δnp

,

where we use the fact that σ is symmetric. We deduce that A (3)
: B = |∇σ|2. The equality (42) is written

|σ−1/2 · (∇(σ2))† · σ−1/2|2 = |A|2 + 2A (3)
: B + |B|2 ≥ 2|∇σ|2,

which directly implies the desired result. �

Uniqueness and stability – The procedure to prove uniqueness and stability results is similar to the
case of the PEC model (see the subsection 2.3.3): we write the difference between two solutions indexed
by 1 and by 2, and then we make a L2 estimate making the scalar product of the results by v = v1 − v2
and C = C1 −C2. The only difference with the case presented in the subsection 2.3.3 comes from how to
control the difference between the stresses σ = σ1 − σ2 from the difference in the conformations C.
We recall that

σ = Λ(t)
( √

C1

tr
√
C1

−
√
C2

tr
√
C2

)
.

The desired control is a consequence of the mean value theorem apply to the function

f : C ∈ S+ 7−→
√
C

tr
√
C

∈ S+,

the set S+ denoting the set of symmetric positive definite matrices. Indeed, using the inverse function
theorem, it’s well known that the inverse of C ∈ S+ 7−→ C2 ∈ S+ (that is the square root matrix function)
is of class C1. The function f is also of class C1 and the mean value theorem reads

|σ| = |Λ(t)| |f(C1)− f(C2)| ≤ sup
(0,T )

|Λ|M |C1 −C2| . |C|,

where M is a bound on df on any compact set of S+ containing C1 and C2.
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Local existence – The proof follows the same steps that in the proof of the local existence for the PEC
type model (see the subsection 2.3.3). We rewrite the system (36) as a fixed point equation





∂tv + v · ∇v −∆v +∇p = divσ

div v = 0

σ = Λ(t)

√
C

tr
√
C

∂tC + v · ∇C −C · ∇v − (∇v)† ·C = 0,

and apply Schauder’s theorem to the application (v,C) 7−→ (v,C) exactly like in the subsection 2.3.3.

Global existence – The strategy to show the result of global existence in time - Theorem 3.1 - follows the
same principles as that of Theorem 2.3. The L∞-estimate on the stress σ is a consequence of the estimate
on the trace trσ (the trace controls the L∞-norm for any symmetric positive definite matrix, see the proof
of Lemma 2.2) :

|σ(t, x)| ≤ trσ(t, x) = Λ(t) ≤ sup
(0,T )

|Λ|.

Lemma 2.3 is again used to control the velocity from the stress.
To conclude the proof, it is enough to know how to control y(t) = ‖∇σ‖Lr(0,t;Lq) for 0 ≤ t ≤ T⋆. In practice,
we have no equation on σ but only one coupling σ2 and σ (see the equation (37) in Lemma 3.1). We then
first get an estimate on w(t) = ‖∇(σ2)‖Lr(0,t;Lq). We have

▽
(σ2)− 2Λ′

Λ
σ2 +

2

Λ
(Dv : σ)σ2 = 0. (43)

We first take gradients in (43) and compute the L2 scalar product of the resulting equation with q|∇(σ2)|q−2∇(σ2).
Using the Hölder inequality and the fact that |σ(t, ·)|L∞ . 1 we deduce

dt‖∇(σ2)‖qLq . (1 + ‖∇v‖L∞)‖∇(σ2)‖qLq + ‖∇2v‖Lq‖∇(σ2)‖q−1
Lq + ‖∇v‖L∞‖∇σ‖Lq‖∇(σ2)‖q−1

Lq . (44)

Since σ is positive definite on a compact set [0, T⋆]× T
d, Lemma 3.2 implies

‖∇σ‖Lq . ‖∇(σ2)‖Lq . (45)

The estimate (44) becomes

dt‖∇(σ2)‖qLq . (1 + ‖∇v‖L∞)‖∇(σ2)‖qLq + ‖∇2v‖Lq‖∇(σ2)‖q−1
Lq . (46)

The end of the proof is similar to the proof of the PEC case: the function w(t) = ‖∇(σ2)‖Lr(0,t;Lq) satisfies

w′(t) . w(t) ln(e + w(t)) + w(t).

It is bounded by a double exponential function of kind ee
t

. In virtue of (45), that we can also write y . w,
we deduce that y is bounded too, that concludes the proof.

3.3 The Pom-Pom polymer model with constant backbone stretch

The Pom-Pom model, introduced by McLeish and Larson [49] in 1998, was a breakthrough in the field of
viscoelastic constitutive equations. The model is developed, mainly, for long-chain branched polymers. The
multiple branched molecule can be broken down into several individual modes. Each mode is represented
by a backbone between two branch points, with a number of dangling arms on every end. The backbone
is confined by a tube formed by other backbones, for details refer to [49]. In the case where the backbone
stretch, denoted by Λ, is assumed to be constant (or is assumed to be known as a given function depending
on time, Λ(t)), the constitutive equation reads

σ = Λ(t)
C

trC
where

▽
C + (C − 1

d
δ) = 0.

This model resembles the MGI model studied in Subsection 3.2 with two differences:
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1. The present model does not appear the square root of C;

2. The evolution of the tensor C seems a little bit more complicated...

The first point simplifies the study since we do not need to control
√
C from C (that correspond to

Lemma 3.2). We also make sure that the second point does not disturb the proofs of Subsection 3.2.
In particular, we use the first part of the Lemma 2.1 in order to verify that C still remains symmetric
positive definite.

Remark 3.4 The original differential form by McLeish and Larson (as for the complete MGI model) make
appear a differential equation implementing the evolution of the backbone stretch Λ:






σ = Λ2 C

trC
▽
C + (C − 1

d
δ) = 0

dtΛ = Λ(Dv : C)− (Λ− 1) strictly for Λ < q.

But the presence of the equation on Λ make appear mathematical difficulties: it seems difficult to have a
L∞-estimates on Λ, despite condition Λ < q, which does not seem entirely compatible with Λ’s evolution
equation. Moreover, this lack of control is noticeable in numerical simulations. For instance, on page 280
of [68], it is written:

”In the complex flow simulations, we also observed an unphysical behaviour for the pom–pom
stretch parameter that cannot be observed in steady and start-up rheometrical flows. Indeed,
at high Weissenberg number, the stretch may become smaller than unity when Dv : C becomes
negative, which is physically unrealistic. This happens in flow regions where the velocity
gradient changes sign as, for example down- stream of a contraction/expansion.”

To avoid regularity issues when Λ reaches q, Renardy [58, page 97] regularize the equation for Λ :

dtΛ =
q − Λ

q − Λ + ε

[
Λ(Dv : C)− (Λ− 1)

]
,

with ε > 0 so that Λ < q, and using similar method that for the MGI model, we can prove that σ remains
bounded. Since then, several authors have proposed relatively complex modifications, see for instance [66]. It
would certainly be interesting to try to analyze these models from a mathematical point of view.

3.4 Example of ”bad” model

Several models take similar forms to those studied in this article. This is for example the case of the non
stretching form of the Rolie-Poly model which is written (see for instance [60]):





σ = GC

▽
C +

2

3
(Dv : C)(C + µ(C − δ)) + ε(C − δ) = 0.

(47)

Remark 3.5 We can notice that the solution of the model (47) satisfies tr (C − δ) = 0 if this relationship
is true initially. However, this is not fine enough to apply the results proved in the present article since the
trace control does not allow to have a bound on the tensor (especially if it is not defined positive!).

Unfortunately, and unlike the other models presented in the present paper, it is not clear that the tensor C,
satisfying (47) always remains positive. More precisely, the proof presented by Hulsen in [30] gives a sufficient
condition for the solution C of

▽
C = g1(C,∇v) δ + g2(C,∇v)C + g3(C,∇v)C2, (48)

to remain positive definite if the initial value C init is positive definite. In particular, the proof strongly use
the assumption g1 > 0. We can see that the result holds if g1 ≡ 0 but it is possible to build a counterexample
in the case where we have no information on the sign of g1, that is the case for model (47): the value of g1
being given by g1(C,∇v) = ε+ 2

3µDv : C.
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Example 3.1 Consider the velocity field v(x, y) = (x,−y) and the solution C to the following equation

▽
C = (Dv : C)(δ −C), (49)

corresponding to the equation (48) with g1(C,∇v) = Dv : C, g2(C,∇v) = −Dv : C and g3 = 0.
We assume that the initial condition is given by

C init =

(
a0 0
0 b0

)
, a0 > 0, b0 > 0,

so that we can looking for a solution C as a diagonal matrix:

C(t, x, y) =

(
a(t) 0
0 b(t)

)
.

The functions a and b satisfy {
a′ − 2a = 2(a− b)(1− a)

b′ + 2b = 2(a− b)(1− b).

We look for a0 > 0, b0 > 0 such that a(t) < 0 for t large enough. Introducing α = a+ b and β = a− b, we
obtain the following equivalent system {

α′ − 2β = 2β(2− α)

β′ − 2α = −2β2.

In term of (α, β), we look for initial condition (α0, β0) with −α0 < β0 < α0 and such that β(t) < −α(t) for t
large enough. Remark that if α0 = 3 then α(t) = 3, and in this case, β satisfies

β′ + 2β2 = 6. (50)

We finally look for β0 with −3 < β0 < 3 such that the solution of (50) satisfies β(t) < −3 for t large enough.
Equation (50) is a Riccati equation those the solution is expressed as

β(t) =
√
3− 2

√
3

1 +
(√

3+β0√
3−β0

)
e4

√
3t
.

If β0 < −
√
3 then the function β decrease and goes to −∞ in finite time: for t large enough, we have

β(t) < −3.

As example, we take α0 = 3, β0 = 1
2 (−3−

√
3). In term of initial values (a0, b0), we have a0 = 1

2 (α0+β0) =
3−

√
3

4 and b0 = 1
2 (α0 − β0) =

9+
√
3

4 . We compute the time t1 for which β(t1) = −3 (that corresponds to the
time where a(t1) = α(t1) + β(t1) = 0):

t1 =
1

8
√
3
ln 3.

As a consequence, if the initial condition is on the following form (which is a positive definite matrix)

C init =
1

4

(
3−

√
3 0

0 9 +
√
3

)
,

then the solution C of the equation (49) becomes non positive for time t > 1
8
√
3
ln 3.

From a physical point of view, to quote Leonov and Prokunin [41, Section 3.3.5, page 68]:

”if in any point of the medium a principal value of C is negative, the Hadamard instability
will immediately happen. Moreover, in this case, we cannot also satisfy the restrictions
imposed by the Second Law.”

In fact, such a behavior was numerically detected in [67, page 305]:

”Physically, trσ can not become smaller than 0. However, numerically we have encountered
these unrealistic values at the front and back stagnation points in the flow around a cylinder
at sufficiently high Weissenberg numbers.”
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4 Conclusion: How do you know if a rheological model is good?

In conclusion, the results proved in this paper show that adding non-linear contributions can generate funda-
mental and interesting mathematical properties. These types of results are well known when diffuse effects
on stress are added, see for instance the works of Barrett and Suli [1, 2, 3, 4]. Here we show that there are
other ways to ”regularize” that are hidden in relatively recent and relevant models: the partially extensible
nature of the polymer strands for the PEC model, the chain stretch effects in convective constraint release
theories for entangled polymers in the MGI model, etc. The results of this article therefore affirm that adding
such terms are not only essential to capture observed phenomena but also fundamental to show theoretical
results: the two aspects naturally complement each other.
Another interesting point of view is that of the numerical aspect: numeric can be viewed as a bridge between
the two aspects (experimental and theoretical) discussed in this conclusion. A mathematical model will be
relevant if solutions can be calculated (at least approximately) and if these solutions are close to what is
observed. But before calculating a solution numerically, it is essential to know if this solution exists, and if
it is unique: that is if the model is mathematically well posed. More precisely, in this article we add to the
notion of well posed character in Hadamard’s sense, the notion of the lifetime of the solution (because prob-
lems are evolutionary). We thus show that physically relevant problems for viscoelastic flow models are well
posed in long time. These types of issues (globality in time of solutions) are generally not solved in similar
frameworks, which generates numerical problems for evaluating solutions. As example, the famous Height
Weissenberg Number Problem (HWNP) is intimately linked to the lack of knowledge on the theoretical struc-
ture of the Oldroyd linear model. Many authors published articles in the 1980s that explore the HWNP:
Debbaut and Crochet in [17], Keunings in [32, 33] or Davies in [16]. See also more recently the works [8, 19]
without any real success. At the same time, many theoretical studies (see [10, 21, 26, 42], but there are
many others) are interested in the problems of global existence for the Oldroyd model, without more success!

Finally, the natural question can be:

Can we validate a model as soon as we know that it is mathematically well posed?

The results presented here tend to say that PEC and MGI models are mathematically relevant, and it would
therefore be possible to calculate numerical solutions even in long time - with some validity.
The key to success in the models presented lies mainly on the natural bound that exists on stress. Roughly
speaking, we show that if we have sufficient bounds on stress then the underlying models will be well
posed. It is also important to note that for the study introduced here, these bounds are strongly related
to a positiveness property (which is also physically important). The results of the present articles provide
answers on some models but there are still many questions:

• On the one hand, for some other models, the question of global existence remains open because we do
not know how to obtain sufficient bounds on stress. This is the case with the Oldroyd model, although it is
known that the associated stress is positive definite, see [38] (the positiveness is a consequence of the Kramers
expression for the stress tensor using a micro-macro model). Beale–Kato–Majda criterion of explosion are
known for viscoelastic models (see [29, 39]) but no result makes it possible to affirm if these criteria are or
are not satisfied.

• On the other hand, it seems clear that we can invalidate some models as soon as we have that they
are not mathematically well posed. This is the subject of Subsection 3.4, which highlights some models
for which the conformation tensor do not remain positive over time. The theoretical analysis proposed in
this article can therefore no longer be applied, and the underlying physics therefore seems to be in serious
trouble!

Appendix - Notations

In this appendix, we describe the notations used in the article. First, the notations on the tensor analysis are
recalled (contracted products and norms). Then, we specify the notations used for the temporal derivatives
(partial, total, convected...). Finally, the functional spaces used in the article are introduced.
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First note that throughout the article, we use the symbol x . y which means that there exists a constant C
such that x ≤ Cy. Obviously, according to the context, the constant C does not depend on the main variable
of the studied problem.

Tensorial tools

X For a 2-tensor A, we denote by ”trA” and by ”detA” its trace and its determinant respectively. The
bold symbol δ corresponds to the identity 2-tensor whose components satisfies δij = 1 if i = j and δij = 0
if not.

X For a N -tensor, N ≥ 2, we denote by A† the generalization of the transpose operation. It is defined by
inverting the two first indices:

A
†
ijk = Ajik.

In the previous expression - as in the following, the bold index notation k denotes a multi-index. Above
we have k = k1, k2, · · · , kN−2. As usual, we also introduce some contractions of pair of tensors. The 1-
contraction between a N -tensor A and a M -tensor B with N ≥ 1, M ≥ 1, is the (N +M −2)-tensor defined
by (using the Einstein summation convention):

(A ·B)ij = AimBmj.

In the same way, the 2-contraction between two tensors of order larger than 2 reads

(A : B)ij = AimnBmnj.

More generally, we can perform the N -contraction
(N)
: of any pair of tensors of order larger than N . For

instance, we will use the 3-contraction defined as follows

(A
(3)
: B)ij = AimnℓBmnℓj.

X Finally, the Frobenius norm of a N -tensor A will always denoted by | · |, regardless of the size of N . It is
defined by

|A|2 = A
(N)
: A.

On several occasions, we will use the fact that when a 2-tensor A is symmetrical and positive definite then
its norm is equivalent to its trace:

|A| ≤ trA ≤
√
d |A|. (51)

The proof may be inferred from the orthogonal decomposition of symmetric positive definite 2-tensor.

Time derivative

X We denote the material derivative by dt := ∂t + v · ∇.

X It is well known that one must be careful when handling tensor equations because of the principle of frame
indifference or material objectivity. The equations (and thus the time derivative) should not depend on rigid
motions of the observer. We will use the classical upper convected time derivative (UCM) for a 2-tensor
function A:

▽
A := dtA−A · ∇v − (∇v)† ·A. (52)

Although we will only present results with the UCM derivative - except for an application to the PTT models
in Subsection 3.1 , the theorems stated here can easily adapt to any classical frame indifferent derivatives Dξ,
ξ ∈ [−1, 1]:

DξA := dtA+
1− ξ

2
(A · ∇v† +∇v ·A)− 1 + ξ

2
(A · ∇v + (∇v)† ·A), (53)

the particular cases ξ = −1, ξ = 0 and ξ = 1 correspond respectively to the lower convected, Jaumann and
upper convected derivative - see Remarks 2.3, point 3.
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Functional spaces

X The results presented in this article are only proved in space periodic domains Td, d = 2 or d = 3. This
constraint is purely technical and it is certainly possible that the results may extend to the case of the whole
space R

d. Nevertheless, in the case of a bounded domain study, it must be ensured that all the arguments
could still be adapted.

X For all real s ≥ 0 and all integer q ≥ 1, the set W s,q corresponds to the Sobolev spaces. We classically
denote Lq = W 0,q the associated Lebesgue space. Since we will frequently use functions with values in R

d or
in the space Rd×d of real matrices... the usual notations will be abbreviated. For instance, the space (W 1,q)d

will be denoted W 1,q. Moreover, all functional norms will be denoted by indices, for instance like ‖ · ‖W 1,q .

X The space Dr
q stands for some fractional domain of the Stokes operator Aq in Lq (cf. Section 2.3 in [15]).

Its norm is defined by

‖w‖Dr
q
:= ‖w‖Lq +

(∫ +∞

0

‖Aqe
−tAqw‖rLq dt

)1/r

.

Roughly, the vector-fields of Dr
q are vectors which have 2 − 2

r derivatives in Lq and are divergence-free. It
may be identified with Besov spaces. It also can be view as an interpolate space between Lq and the domain
of the Stokes operator D(Aq), see [15].

X The notation of kind Lr(0, T ;W 1,q) denotes the space of r-integrable functions on (0, T ), with values in
the space W 1,q.

X Finally let us denote P the orthogonal projector in L2 onto the set of the divergence-free vectors fields
of L2. The pressure p is a Lagrange multiplier associated to the divergence free constraint. It can be solved
using the Riesz transforms. More precisely, we take the divergence of the first equation of Navier-Stokes
equations, and we use the periodic boundary conditions to have

p = −(−∆)−1div div (σ − v ⊗ v). (54)

We will see from Theorem 2.2 or 3.2 that the solutions discussed in this paper satisfy σ−v⊗v ∈ L∞(0, T ;L2).
The pressure is meant to be given by (54).
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[8] Sébastien Boyaval, Tony Lelièvre, and Claude Mangoubi. Free-energy-dissipative schemes for the
Oldroyd-B model. M2AN Math. Model. Numer. Anal., 43(3):523–561, 2009.

[9] Deborah Brandon and William J. Hrusa. Global existence of smooth shearing motions of a nonlinear
viscoelastic fluid. J. Integral Equations Appl., 2(3):333–351, 1990.

24



[10] Jean-Yves Chemin and Nader Masmoudi. About lifespan of regular solutions of equations related to
viscoelastic fluids. SIAM J. Math. Anal., 33(1):84–112 (electronic), 2001.

[11] MD Chilcott and John M Rallison. Creeping flow of dilute polymer solutions past cylinders and spheres.
Journal of Non-Newtonian Fluid Mechanics, 29:381–432, 1988.

[12] Laurent Chupin. Existence results for the flow of viscoelastic fluids with an integral constitutive law.
J. Math. Fluid Mech., 15(4):783–806, 2013.

[13] Laurent Chupin. Global existence results for some viscoelastic models with an integral constitutive law.
SIAM J. Math. Anal., 46(3):1859–1873, 2014.

[14] Peter Constantin. Smoluchowski navier-stokes systems. Contemporary Mathematics, 429:85, 2007.

[15] R. Danchin. Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech.,
8(3):333–381, 2006.

[16] AR Davies. Reentrant corner singularities in non-newtonian flow. part i: Theory. Journal of Non-
Newtonian Fluid Mechanics, 29:269–293, 1988.

[17] B Debbaut and MJ Crochet. Further results on the flow of a viscoelastic fluid through an abrupt
contraction. Journal of Non-Newtonian Fluid Mechanics, 20:173–185, 1986.

[18] M. Doi and S.F. Edwards. The theory of polymer dynamics. Oxford University Press, 1988.

[19] Raanan Fattal and Raz Kupferman. Constitutive laws for the matrix-logarithm of the conformation
tensor. Journal of Non-Newtonian Fluid Mechanics, 123(2-3):281–285, 2004.

[20] E. Fernández-Cara, F. Guillén, and R.R. Ortega. Existence et unicité de solution forte locale en temps
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