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Abstract

In this paper we consider energy management optimization problems in a future wherein an interaction
with micro-grids has to be accounted for. We will model this interaction through a set of contracts
between the generation companies owning centralized assets and the micro-grids. We will formulate a
general stylized model that can, in principle, account for a variety of management questions such as
unit-commitment. The resulting model, a bilevel stochastic mixed integer program will be numerically
tackled through a novel preprocessing procedure. As a result the solution for the bilevel (or single leader
multiple follower) problem will be neither “optimistic” nor “pessimistic”. We will numerically evaluate
the difference of the resulting solution with the “optimistic” solution. We will also demonstrate the
efficiency and potential of our methodology on a set of numerical instances.

Keywords: integer programming, power generation, bilevel optimization, stochastic optimization,
single leader multiple follower games
2010 MSC: 90C10, 90C27

1. Introduction

In the upcoming future the energy landscape will significantly change from the current picture by in-
corporating more and more decentralized elements. Of particular importance is the advent of so-called
micro-grids (MG). These are subparts of the system with an advanced energy management system inter-
acting with programmable elements in the grid including good monitoring and control functions, a per-
vasive communication system and specific items such as smart meters, programmable loads, switchable
storage systems and a variety of controllable energy sources including solar, wind and wave generators.
Some of the major changes introduced by smart grids are the following:

• Micro-grids: smaller nearly isolated sub-grids that interact only with the global system when a
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load/offer mismatch occurs. Most importantly these sub-grids can be managed to follow a local
economical target (which may be different and contrary to a system-wide interest).

• Partial storage, perhaps through electrical vehicles or powerful batteries. These storage devices
can partially mitigate the intermittency of local decentralized production such as wind / solar
generation.

• Demand management tools: use advanced information technology to pilot electricity use. For
instance, shut down electrical heating, reprogram hot water tank recharging etc...

In this new setting it becomes of great interest to examine the interaction with more traditional elements
composing the power system. For instance what will be the new role for large centralized generation
assets such as nuclear, thermal or hydro generation? It also becomes of interest to examine how classical
energy management questions, such as unit-commitment (e.g., [1, 2]), scheduling maintenance of large
power plants or cascaded reservoir management (e.g., [3, 4]) should evolve to account for this new
context. Needless to say, these classical management questions are already difficult on their own without
considering a potential interaction with micro-grids. On top of this comes also the need to consider and
account for uncertainty which are of great importance for obtaining meaningful management solutions.

The interaction between such micro-grids and centralized assets may be mathematically cast into the
setting of a “game”. We will make the specific choice of considering hierarchical games wherein a (sin-
gle) large centralized operator (the leader or upper level) interacts with one or several micro-grids (the
follower(s) or lower level) in a specific way. Such problems also go by the name of single leader multi-
follower or in the case of a single follower by the naming of Stackelberg game or principal agent problems.
We follow the terminology of [5] speaking of bilevel optimization problems, i.e., an optimization problem
containing constraints that certain variables belong to the optimal set of other parametric optimization
problems. Generally speaking these problems fall into the class of mathematical problems with equi-
librium constraints, where [6, 7] are key references. The situation with multiple leaders is significantly
harder to analyse and falls into the class of Equilibrium problems with Equilibrium constraints (EPECs).
We refer to, e.g., [8–11] for some applications in energy and to e.g., [12, 13] and references therein for
structural studies. Under some appropriate structure, a bilevel optimization problem involving only
continuous variables can be cast as a DC (difference of convex) - problem. We refer to [14, 15] for more
on such methodology.

In [16] the authors claim to investigate bilevel programming in the electric utility industry for the first
time. The lower level (or follower), representing customers deals with maximizing benefit while investing
in energy conservation. From a technical viewpoint, the authors substitute the Karush-Kuhn-Tucker
(KKT) conditions for the lower level problem and process the subsequent mathematical program with
equilibrium constraints (MPEC), by employing an exhaustive search on the complementarity conditions
(one classic problem is solved for each state of the complementarity conditions). This procedure means
that for an n dimensional complementarity constraint, 2n problems need to be solved. Substituting the
lower level KKT conditions in order to obtain a one-level more classic problem is commonplace in the
energy literature (e.g., [17–19] just to name a few). However it should be noted that, following [20],
this does not necessarily lead to an equivalent formulation of the original problem. In other words, the
solution resulting from the KKT reformulation need not be a solution to the original bilevel program.
This phenomenon can occur even in the simplest linear setting. We also refer to the recent [21] illustrating
a similar phenomenon. The essential observation is that the original problem is augmented with a given
set of Lagrange multipliers. Consequently any local solution to the original problem must be a local
solution to the augmented problem for all such Lagrange multipliers. However, whenever the augmented
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problem is solved, one ends up with just one specific Lagrange multiplier. In principle it should thus
be verified if the thus obtained solution remains a local solution for all other Lagrange multipliers. Yet
these are in general not readily available. For a simple 2 variable example of a situation wherein the
KKT reformulation provides local solutions that are not local solutions of the original problem, see [5,
Example 3.1]. The authors of [22] also consider a leader-follower framework in the electrical industry but
rather in the objective of benchmarking a given investment strategy in cogeneration against a centrally
planned strategy. In order to do so, they develop an iterative algorithm, which numerically seems to
converge to a Betrand-Cournot equilibrium. The comparison with the centrally planned solution reveals
inefficiencies of the given investment strategy.

Recently, demand side management (or demand response) was recognized to be an important aspect
of the upcoming electrical system. As such, the authors of [23] claim to be the first to consider such
demand response within a bilevel framework. The lower level (or follower) problem is an optimal power
flow problem under a direct current assumption. The lower level power balance equation and its dual
multiplier in turn help fixing the global price of energy in the upper level (or leader) problem (e.g.,
[24, 25] suggest a similar model but without solving it). From a methodological viewpoint, bilinear
terms are linearized using McCormick envelopes, the lower level KKT conditions are substituted for
the lower level problem and the special model structure can be exploited through several substitutions.
In view of those claims our work is one of the first to consider the effect of demand side management
on classical energy management questions. Moreover we will highlight that demand side management
is responsible for ensuring that the optimistic and pessimistic solutions of the bilevel program are not
identical. Although in our work we will focus on the interaction between a utility and several end-users
grouped within one or several smart-grids, we will not consider the interaction between users as done
in [26] where the focus is on reducing peak-to-average load ratios while accounting for potential games
between users. As usual in these works, we too will adopt a market-like setting wherein a predetermined
set of contracts is offered to the customers.

In this paper we thus contribute to this difficult question by considering a stylized interaction between
a generation company (GenCo) owning a (large) set of centralized assets and a set of micro-grids. We
also account for potential competition at the centralized level, but only in a simplified way. Indeed we
will make the assumption that any competitors to the GenCo have a fixed predetermined interaction
with the micro-grids. In this work the GenCo can offer contracts to the micro-grid that detail the
price of buying/selling electricity to the network. From a mathematical viewpoint we suggest a bilevel
stochastic mixed integer program (BMIP) which in principle can account for a variety of instantiations
thus covering any of the above management questions. In our numerical experiments however, we will
focus on unit-commitment.

The first general methods for obtaining “optimistic” optimal solutions BMIPs can be traced back to [27]
and [28], which could solve only small instances, with up to 10 general integer variables and 35 binary
variables for the upper level problem. While more recent works have shown significant improvements
(e.g., [29] based on intersection cuts), they are unable to handle the complex MILPs involved in unit-
commitments or more complex power flow optimization problems. Our technical contribution therefore
lies in suggesting a tractable reformulation of the bilevel problem that leads to a solution that is neither
“optimistic” nor “pessimistic”. This “heuristic” reformulation is tractable thanks to a preprocessing
step that is not harder than solving the original management problem. We also compare the solution
obtained from this reformulation with the “optimistic” solution that can only be obtained in reasonable
times for small systems. Extensive numerical experiments confirm the interest of the here suggested
reformulation. Essentially our reformulation takes inspiration, and to some degree is equivalent with,
the value function approach originally designed by Outrata [30]. An advantage of this approach over the
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usual substitution of the KKT conditions is that we do obtain a solution of the original problem, albeit,
not necessarily the “optimistic” solution.

The outline of this work is as follows. The assumptions of our model are described in Section 2, where
we present the ingredients of our model in a deterministic setting. Section 3 deals with the suggested
reformulation technique for the bilevel problem. In Section 4, we show how our models can be adapted to
handle uncertainty. We also show how our suggested reformulation can be adapted to this new setting.
We assess our models and methodology in Section 5 on a case study built from realistic data. Some of
the details of the model underlying the case study are provided in Appendix A. Finally, we conclude
the paper in Section 6.

2. The problem

2.1. Description

In this paper we propose a stylized model wherein the current electrical system has transmuted into a
likely potential future. In this future, several nearly independent subsystems, – micro-grids –, exist and
interact with classical generation companies. We will make the assumption that micro-grids typically
dispose of a set of generation assets mostly comprised of renewable intermittent sources (wind, solar).
Remaining energetically independent of the rest of the system is then possible, up to a certain extent,
by also disposing of a set of batteries. The remaining time, i.e., in case of production surplus or lack
of generation, an interaction with the classical generators will provide useful back up to meet the total
demand in energy. In our model we will focus on this last type of interaction from an abstract level and
suggest several convenient reformulations so as to make the model tractable. This is non-trivial, since the
formulated model will be a bilevel stochastic mixed integer optimization problem. Needless to say, the
price to pay for tractability is a heuristic means of solving the problem, but by no means an unrealistic
one. Indeed, our suggestion solution will be “feasible”1 for the original bilevel problem, but neither be the
“optimistic” nor “pessimistic” solution. From the viewpoint of practice, this is actually not unrealistic
since both extremes (the “optimistic” and “pessimistic” views) are stylized anyway. Indeed there is no
reason to believe that an independent actor pursuing his own goals (e.g., in the case of micro-grids, this
could be to remain independent energetically speaking most of the time), will purposely select the most
advantageous response for the leader, nor any reason to believe it would select the most adverse option.
Having something in between can thus be assumed reasonably realistic.

Before providing a more mathematical description of our model, let us begin by introducing the key
elements of it.

Parties involved. We consider an extension of electricity production problems that involve two types of
parties:

• GenCos are big producers of electricity in the network (they own large assets such as nuclear,
thermal, hydro and other renewable energies). In order to avoid having to face an even tougher
class of problems (an equilibrium problem with equilibrium constraints, or a coupled set of MPECs,
e.g., [31]), we focus on the decision of a single operator that faces competing companies that have
a fixed, perfectly known, policy. Hence, in what follows, GenCo refers to that single operator.

1Feasible here means that the given solution satisfies both upper and lower level constraints. Moreover at the given
fixed upper level variables, the lower level variables are optimal for the lower level problem.
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• Each micro-grid q ∈ Q consists of a small subnetwork that has highly volatile generation capacities
(solar, wind), and two types of demands to be attended, which we denote as hard and elastic
demands. On the one hand, hard demands must be met strictly at all times. On the other hand,
elastic demands (heating up water, recharging electric cars, ...) can be shifted within a certain
time window. This models the fact that environmentally aware users may be willing to postpone
/ anticipate an essential electrical consumption in order to reduce overall environmental burden
(here translated through the system cost). Since this use is essential it will take place somewhere
else within a given time window. Micro-grids are assumed to be relatively autonomous in terms
of energy. However, due to the uncertain nature of their production, they need to buy or sell
electricity from the GenCo.

Contract. Micro-grids and GenCos interact through contracts that specify the costs of buying/selling
electricity from/to the GenCo for each period of the time horizon T . Specifically, each contract k ∈ K
is specified by (i) the price of contract ck paid by the micro-grid to the GenCo that proposes it, (ii) a
linear cost function x 7→ fktx for buying the amount x of electricity during time period t, and (iii) a
linear function y 7→ gkty for selling the amount y of electricity during time period t. We denote by K0

the subset of contracts possibly proposed by the GenCo whose decisions are being optimized, while K
also contains contracts of competing companies.

Objective. On the one hand, the objective of the GenCo is to propose the least cost production schedule
based on (i) the classical costs of unit-commitment and related problems (hydro optimization and nuclear
maintenance scheduling, for instance) and (ii) the cost/benefit of buying/selling electricity to the micro-
grids. On the other hand, the objective of each micro-grid is to minimize its total cost of buying/selling
electricity to the GenCos, by choosing a contract offered by the GenCo or one of the competing companies
(in the latter case, the GenCo does not produce, buy or earn anything for/from the micro-grid). These
two conflicting objectives can be naturally modeled as a bilevel optimization problem, introduced in the
next section.

Coupling among the different time periods. We are given a time horizon T = {1, . . . , T} that is further
partitioned into days: T = D1 ∪ · · · ∪DJ . Elastic loads couple all time periods of a given day. However,
they do not couple time periods of different days as we may reasonably assume that the required load
will be met during one full day. Nevertheless, time periods of different days may be coupled together
in the presence of batteries with significant storage capacity. In this setting, the resulting multi-stage
stochastic optimization problem is significantly harder, preventing us from decomposing the problem in
time (by day). This is an immediate result of the temporal coupling of adjacent days through the large
storage capacity batteries and the “strongly increasing complexity” of multi-stage stochastic programs
with the number of stages (e.g., [32]).

2.2. A bilevel formulation

We describe below our mathematical model, represented as a bilevel multi-stage stochastic program.
Let x ∈ RQ×T represent the electricity production of the GenCo. We are mainly interested here in the
interaction between the GenCo and the micro-grids, so the value xqt represents the electricity produced
by the GenCo and fed into micro-grid q during period t. Similarly, we can define yqt as the amount of
electricity bought by the GenCo from micro-grid q during time period t. We denote by F : RQ×2T →
R ∪ {∞} the cost of producing x− y. Hence, one can think of the problem

min
x,y≥0

F (x, y) (1)
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as a compact abstract representation for the combination of unit-commitment, nuclear power plant
maintenance planning, hydro power generation and other related problems, feeding the connected micro-
grids with the power described by x − y. The mapping F can take the value ∞ for given vectors x, y
if certain constraints cannot be met. For instance, whenever x − y exceeds the generation capacity of
the system. With this convention any constraints on generation (or other constraints) can be readily
incorporated in the framework by adding the characteristic function of these constraints to F . Let us note
that computing F (0, 0) amounts to solving the power generation problem without considering micro-
grids. In particular, computing F is therefore as difficult as computing the least cost power generation
schedule. We also remark that in view of the above discussion, assuming that the GenCo problem is
feasible without micro-grids means that F (0, 0) <∞. We note that from a computational viewpoint it
is better to incorporate constraints directly in the model so as to avoid having to deal with very large
numerical values. This is what is done in the numerical experiments. Handling constraints by allowing
F to take on the value ∞ is just convenient for the mathematical presentation.

In our model the vectors x and y indicate the power flow between the micro-grids and the (GenCo).
Within the model it is not optimal to buy and sell energy at the same time. Hence at any optimal solution,
x and y will not both be positive. Moreover, these variables are related to the internal functioning of the
micro-grids and in particular their internal constraints. To this end we introduce an abstract constraint
set Mq for each q ∈ Q, modelling in particular the demand-power balance. These power flows induce a
certain cost governed by a contract. In our model, the GenCo has to decide which contracts it proposes to
the micro-grids. We introduce an additional binary variable Zqk that is equal to 1 if contract k is offered
to micro-grid q and zero otherwise. The index set K will denote the set of all contracts and K0 ⊆ K, the
set of contracts suggested by the GenCo, i.e., K\K0 is the set of contracts suggested by the competitors of
the GenCo. We denote the set of contracts that the GenCo can offer as Z ⊆ {0, 1}|Q|×|K0|. For instance,
Z could contain all binary vectors, where the GenCo offers a fixed number of contracts Nq to each
micro-grid q ∈ Q. In that case, we would have Z = {Z ∈ {0, 1}|Q|×|K0| :

∑
k∈K0

Zqk ≥ Nq, ∀q ∈ Q}.
For each micro-grid q ∈ Q, the binary variable zqk indicates if micro-grid q subscribes to contract k.
Notice that micro-grid q interacts with the GenCo only if it subscribes to one of its contracts, that is,
if
∑
k∈K0

zqk ≥ 1. We will introduce local versions of the variables x, y, called x̃ and ỹ that describe
locally the power status. In particular, x = x̃ and y = ỹ only if a contract with the GenCo is subscribed.

Summarizing, the deterministic bilevel problem below considers the following optimization variables:

• Zqk: 1 if contract k is offered to micro-grid q (leader)

• zqk: 1 if contract k is subscribed by micro-grid q (follower)

• x̃qt: power consumed by micro-grid q during period t (follower)

• ỹqt: power produced by micro-grid q during period t (follower)

• xqt: power consumed by micro-grid q during period t from the GenCo (follower)

• yqt: power produced by micro-grid q during period t for the GenCo (follower)
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We are now in measure to formulate our bilevel program:

min F (x, y)−
∑
q∈Q

∑
k∈K0

zqk(ck +
∑
t∈T

(fktxqt − gktyqt)) (2a)

s.t. Z ∈ Z (2b)

(xq, yq, zq) ∈ arg min
zq.∈{0,1}K ,x̃q,ỹq

∑
k∈K

zqk(ck +
∑
t∈T

(fktx̃qt − gktỹqt)), ∀q ∈ Q (3a)

s.t. (x̃q, ỹq) ∈Mq, (3b)

xq = x̃q
∑
k∈K0

zqk, (3c)

yq = ỹq
∑
k∈K0

zqk, (3d)

zqk ≤ Zqk, k ∈ K (3e)∑
k∈K

zqk = 1, (3f)

where the constraints (2b), (3b)-(3f) are as explained below. The objective function of the leader,
(2a), minimizes the production cost already mentioned in (1) combined with transaction costs related
to the micro-grids. Similarly, the objective functions of the micro-grids, (3a), amounts to minimizing
their total transaction costs with respect to all GenCos, not only the one represented by the leader.
Hence, (3a) involves all contracts in K while (2a) considers only the contracts in K0. Constraints
(2b) and (3b) restrain, respectively, the set of contracts offered by the GenCo and the feasible power
consumption/production for the micro-grids. Constraints (3c) and (3d) model that xq = x̃q and yq = ỹq
if and only if micro-grid q subscribes to one of the contracts offered by the GenCo. Constraints (3e)
impose that only the contract offered by the GenCo can be subscribed by the micro-grid, while constraints
(3f) forces each micro-grid to select exactly one contract.

3. MILP reformulations

In this section we will provide two reformulations of the bilevel problem (2)-(3). In order to understand
these, it is to be observed that problem (2)-(3) is not “unequivocally” defined in the sense that it is
not clear what is meant with min in (2a), unless (xq, yq, zq) in (3a) is always unique. A classic way to
remove this ambiguity is to consider a so called optimistic formulation wherein among all (xq, yq, zq) in
the lower level problem (3) optimal set, the most advantageous for the leader is chosen. The pessimistic
formulation then corresponds to picking the most disadvantageous case. Obviously both notions coincide
whenever the lower level problem has a unique solution. We refer to [5] for further information on this
topic. It is generally recognized that the pessimistic formulation is significantly harder to analyze than
the optimistic formulation. In section 3.1 we will suggest a reformulation that is neither optimistic nor
pessimistic, but somewhere in between. We also suggest a formulation leading to optimistic solutions
in section 3.2 for comparative reasons. In particular the numerical experiments carried out in section 5
will show that results from both reformulations differ, hence implying that the arg min in (3a) is indeed
not unique and justifying that care should be taken in the interpretation.
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3.1. Heuristic reformulation

The bilinear optimization problem described in the previous section involves binary variables and non-
linear constraints, all that being built on the top of the already difficult optimization problem (1).
Hence, we address the problem heuristically rather than exactly and we show below how it is possible to
exploit the somewhat simple linking constraints (3e) to provide a heuristic reformulation for the bilinear
problem.

We propose below a one-level reformulation of the bilevel problem that may lead to solutions that are
not solutions to the optimistic problem. The key aspect of our reformulation relies on pre-processing.
Specifically, for each k ∈ K and q ∈ Q, we solve the restricted follower problem where zqk is equal to 1,
namely:

min
x̃q,ỹq

ck +
∑
t∈T

(fktx̃qkt − gktỹqkt)

s.t. (x̃qk, ỹqk) ∈Mq.

We assume that the set of contracts and micro-grids is of reasonable cardinality so that this preprocessing
step remains tractable. Let (xqk, yqk) be an optimal solution of the above problem and Cqk be its solution
cost. Then, a heuristic solution to the bilevel problem (2)-(3), which ensures the optimality of the lower
level, can be found by solving:

min
z,Z

F (x, y)−
∑
q∈Q

∑
k∈K0

Cqkzqk (4a)

s.t. xqt =
∑
k∈K0

xqktzqk, ∀q ∈ Q, t ∈ T (4b)

yqt =
∑
k∈K0

yqktzqk, ∀q ∈ Q, t ∈ T (4c)

zqk ≤ Zqk, ∀q ∈ Q, k ∈ K (4d)∑
k∈K

zqk = 1, ∀q ∈ Q (4e)

zqk ≤ 1− Zq`, ∀k ∈ K, l ∈ K, q : Cqk > Cql (4f)

Z ∈ Z (4g)

z ∈ {0, 1}Q×K

The objective (4a) is obtained from (2a) by replacing the micro-grid cost for the GenCo by Cqkzqk.
Similarly, (4b) and (4c) are obtained from (3c) and (3d) by replacing the variables x̃ and ỹ with their
fixed values x and y computed in the pre-processing phase. It is exactly in these constraints that lies the
heuristic aspect of our reformulation since the followers no longer choose the optimal solution that most
benefits the leader, but instead take the one computed in the pre-processing phase, when (3a) admits
several solutions. Finally, constraint (4f) ensures that the micro-grids choose the contracts that lead to
the cheapest solutions. Indeed if Zql = 1 and the cheap solution C̄ql is available, any costlier solution is
ruled out by equation (4f).

3.2. Comparative exact formulation

To assess the quality of our heuristic approach, we have also devised an exact one-level reformulation
for the problem where (4b) and (4c) are replaced by non-linear constraints involving the aforementioned
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decision variables x̃ and ỹ that are restricted by the setsMq for each q ∈ Q. In addition, the formulation
contains restrictions enforcing x̃ and ỹ to be optimal for the subproblems.

min
z,Z,x̃,ỹ

F (x, y)−
∑
q∈Q

∑
k∈K0

Cqkzqk (5a)

s.t. (4d)− (4g)

xqt =
∑
k∈K0

x̃qktzqk, ∀q ∈ Q, t ∈ T (5b)

yqt =
∑
k∈K0

ỹqktzqk, ∀q ∈ Q, t ∈ T (5c)

Cqk = ck +
∑
t∈T

(fktx̃qkt + gktỹqkt), ∀q ∈ Q,∀k ∈ K (5d)

(x̃qk, ỹqk) ∈Mq (5e)

z ∈ {0, 1}Q×K

Constraints (5b) and (5c) contain bilinear terms that can be linearized using classical techniques. Specif-
ically, let us introduce variables Xqkt and Yqkt, respectively equal to products x̃qktzqk and ỹqktzqk. These
variables can be substituded in constraints (5b) and (5c), adding also the constraints

Xqkt ≤ x̃qkt
Xqkt ≤Mzqk

Xqkt ≥ x̃qkt −M(1− zqk)

Yqkt ≤ ỹqkt
Yqkt ≤Mzqk

Yqkt ≥ ỹqkt −M(1− zqk),

that models the products through linear constraints involving big-M coefficients. The difficulty of the
resulting MILP is that big-M coefficients often lead to numerical instability and weak LP relaxations.
In our numerical experiments we have observed no specific difficulties related to the big-M coefficients.

4. Stochastic extension of the model

Power generation problems that involve renewable intermittent energy like wind and solar are subject
to uncertainty, since the output of the renewable power plants depends on the weather conditions. This
power output is therefore only partially known and should in principle be considered uncertain. We will
set up a model in this section that accounts for uncertainty in generation. The resulting bilevel stochastic
optimization problem will again become tractable due to a reformulation akin to the one used in the
deterministic case. Obviously the main impact of considering uncertainty is that the preprocessing step
will become much harder.

4.1. Model

The most important assumption for our stochastic model below is how we set up the structure of
information. The main assumption, making a reformulation as in the deterministic case feasible, is that
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we will restrict the choice of contracts to the first stage. This means that all contracts have to be decided
prior to observing any uncertainty. The second choice involves the structure of information within the
remaining stochastic program. Therein we will assume that decent weather forecasts are available for
an upcoming day and hence that all information for a given day is known at the beginning of that day.
The stochastic program therefore has as many stages as there are days. In what follows we will denote
with ξj the uncertainty related to day j ∈ {1, . . . , J}. Let us summarize these assumptions:

• First stage

– The GenCo chooses a set of contracts that are compatible with its objective.

– Each micro-grid chooses a contract among the contracts offered by the GenCos.

• Subsequent stages The exact productions and demands are known for all entities for all time periods
that belong to the current day. Hence, the GenCo can produce the electricity and the micro-grids
manage their elastic loads and batteries according to the chosen contracts and generated power.

A second important assumption that we will make is that uncertainty ξ has finite support. It can
therefore be represented by a finite set of scenarios Ξ and uncertainty can be assumed to be represented
by a scenario tree. For any given scenario ξ ∈ Ξ, we define x(ξ) and y(ξ) as the scenario dependent
power flows between the GenCo and micro-grids. Following e.g., [33], we choose to not make explicit
the non-anticipativity constraints which can be appended to the model through an additional abstract
subspace to which the decisions should belong. Obviously on the scenario tree these conditions are readily
enforced. As stated earlier, the optimization problem has as many stages as days and all information
within a day is assumed to be known.

The introduction of uncertainty affects both the objective function and the constraints of the follower
problem, as well as the objective function of the leader. Thanks to our specific measurability assumption
concerning the days, uncertainty in constraints has an easy interpretation. In particular the abstract
set Mq(ξ) (covering for instance power balance equations) is such that Mq(ξ) =

∏J
j=1Mq(ξj). Conse-

quently, we can write (x̃q(ξ), ỹq(ξ)) ∈Mq(ξ) a.s., which for a random realization at day j, simply means
that (x̃q(ξj), ỹq(ξj)) ∈Mq(ξj) as a plain deterministic constraint.

As uncertainty is also present in the objective function, this calls for a consideration of a tradeoff between
risk and average performance (see e.g., [34] for a thorough discussion on such matters). As is common
in practice, we will adopt a Markowitz type of idea so that we will weigh a measure of risk and average
performance. To this end we will endow ourselves with a convex weight λ, that will weigh the average
performance and the risk measure for the leader (the micro-grids are assumed risk-neutral for now, we
discuss how to relax this assumption later). We choose to use the CVaRε as a measure of risk as it
preserves convexity and moreover allows for a linear reformulation due to the following characterization
(e.g., [35]):

CVaRε[X(ξ)] = min
v

{
v +

1

1− ε
E[(X(ξ)− v)+]

}
(7)

for any random variable X and probability level ε ∈ (0, 1).
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We can now present the following risk-averse version of the bilevel energy management problem:

min λE

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

 (8a)

+ (1− λ)CVaRε

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

 (8b)

s.t. Z ∈ Z (8c)

(xq(ξ), yq(ξ), zq) ∈ arg min
zq.∈{0,1}K ,x̃q,ỹq

E

[∑
k∈K

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

]
, q ∈ Q (9a)

s.t. (x̃q(ξ), ỹq(ξ)) ∈Mq(ξ)a.s., ξ ∈ Ξ (9b)

xq(ξ) = x̃q(ξ)
∑
k∈K0

zqk, ξ ∈ Ξ (9c)

yq(ξ) = ỹq(ξ)
∑
k∈K0

zqk, ξ ∈ Ξ (9d)

zqk ≤ Zqk, k ∈ K0, ξ ∈ Ξ (9e)∑
k∈K

zqk = 1, ξ ∈ Ξ (9f)

4.2. Heuristic reformulation

As in the deterministic case, the problem (8)-(9) can be solved heuristically by solving follower problems
in a pre-processing phase. For each k ∈ K and q ∈ Q, we solve the restricted follower problem where
zqk is equal to 1

min
x̃q(ξ),ỹq(ξ)

ck + E

[∑
t∈T

(fktx̃qt(ξ)− gktỹqt(ξ))

]
(10a)

s.t. (x̃q(ξ), ỹq(ξ)) ∈Mq(ξ)a.s., ∀ξ ∈ Ξ, (10b)

under non-anticipativity constraints. Let (xqk, yqk) be an optimal solution and Cqk be its optimal value,
namely,

Cqk = ck + E

[∑
t∈T

(fktxqt(ξ) + gktyqt(ξ))

]
.
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Then, a heuristic solution to the stochastic bilevel problem (8)-(9), which ensures the optimality of the
lower level, can be found by solving:

min
z,Z

λE

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk


+ (1− λ)CVaRε

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

 (11a)

s.t. zqk ≤ Zqk, ∀q ∈ Q, k ∈ K0 (11b)∑
k∈K

zqk = 1, ∀q ∈ Q (11c)

xqt(ξ) =
∑
k∈K0

xqkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (11d)

yqt(ξ) =
∑
k∈K0

yqkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (11e)

zqk ≤ 1− Z`q, ∀k, q : Cqk > Cql (11f)

Z ∈ Z (11g)

z ∈ {0, 1}Q×K . (11h)

The above program can be further reformulated by replacing CVaR with its characterization (7) and
by introducing the optimization variables w(ξ) to linearize the function [·]+. This yields the regular
stochastic program:

min
z,Z,w(ξ)

E

λF (x(ξ), y(ξ))− λ
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk + (1− λ)

(
v +

w(ξ)

1− ε

)
s.t. (11b)− (11h)

w(ξ) ≥ F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk − v, ∀ξ ∈ Ξ

w(ξ) ≥ 0, ∀ξ ∈ Ξ.

We mention that a similar MILP reformulation can be obtained whenever the micro-grids are also as-
sumed to be risk-averse. For instance, we could consider the same Markowitz type model and endow
ourselves with a set of convex multipliers {λq}q∈Q weighting the expectation and CVaRε for each micro-
grid. The resulting counterpart of (10) is more demanding computationally due to the difficulty of
decomposing the problem per scenario. This difficulty is well-known in risk-averse stochastic optimiza-
tion, see for instance the recent [33]. As this goes beyond the scope of this paper, we disregard this
extension in what follows.
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4.3. Comparative reformulation

As in the deterministic case, the above heuristic reformulation can be made exact by replacing constraints
(11d) and (11e) with the bilinear constraints

xqt(ξ) =
∑
k∈K0

x̃qkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (13)

yqt(ξ) =
∑
k∈K0

ỹqkt(ξ)zqk∀q ∈ Q, t ∈ T , ξ ∈ Ξ (14)

and adding constraints

Cqk = ck + E

[∑
t∈T

(fktx̃qt(ξ) + gktỹqt(ξ))

]
, ∀q ∈ Q, k ∈ K (15)

(x̃qk(ξ), ỹqk(ξ)) ∈Mq(ξ), ∀q ∈ Q, k ∈ K, ξ ∈ Ξ. (16)

Moreover optimization is now to be carried out over (z, Z, x̃(ξ), ỹ(ξ)). Evidently the resulting problem
is significantly harder!

5. Case study based on thermal power unit-commitment

We assess below our heuristic reformulation on a power generation problem where F represents a thermal
unit-commitment problem, following closely [36]. The latter minimizes the total operation cost, which is
defined as the sum of the production cost, the startup cost, and the shutdown cost. The production cost
is piece-wise linear, while the startup cost is piece-wise linear approximation of an exponential function of
the off-line time prior to the startup. Since the MILP model is rather technical, and because computing
F (x, y) is not the focus of this work, we refer the interested reader to, e.g., [36] for the details about
the mixed-integer linear program behind F . We also refer to [1, 2] and the many references therein for
further alternatives to the model considered here. In addition, we detail the constraints used in our
micro-grid model in Appendix A.

5.1. Data

5.1.1. General system

The time horizon is one week starting on Monday at 12 am, each day is split in periods of one hour,
i.e., |T | = 168. The data used for the unit-commitment part is provided by [36], 50 generators are used
giving a daily fixed load of 135,5 GWh.

5.1.2. Considered contracts

Several types of contracts are proposed combining the possibility of lower prices during nighttime and/or
the possibility of lower prices during the weekend. This leads to a total of four types of contracts. The
competitors offer one contract of each type to each micro-grid. The GenCo generates four possible
contracts of each type, thus |K0| = 16 and |K| = 20. For all contracts, the average cost of 1kW is about
0,10 EUR2.

2http://www.rte-france.com/fr/document/bilan-previsionnel-de-l-equilibre-offredemande-2016
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Figure 1: Duck curve example for a micro-grid with 10000 devices

5.1.3. Description of the micro-grids

In what follows we will define devices as an abstract group of objects fulfilling a purpose of consumption,
production or storage under time constraints within a micro-grid. The devices considered, their con-
sumption and the time periods where they are used fit numbers reported in a recent study of electricity
demand/offer equilibrium in France2.

• Consumption devices are devices appearing in a common household, which we split into three
further sub-classes:

– Constant: these devices consume power constantly. They represent 30% of the daily con-
sumption.

– Comfort: devices that consume power during a predetermined period each day, representing
30% of the daily consumption.

– Elastic: devices for which predetermined windows of usage are defined for each day as well as
a total daily load. They represent 40% of the daily consumption.

The periods where comfort devices are used and elastic devices can be used as well as their con-
sumptions are randomly generated such that the graph of the total consumption of a micro-grid
fits a classical duck curve for each day. The average consumption of 200 devices over one week is
1GWh, which corresponds to the consumption of 5000 common (European) households. Consump-
tion of elastic devices can be reorganized to reduce costs by taking advantage of low hourly prices,
production devices and storage devices. Figure 1 illustrates the hourly demand of the micro-grid
composed of 10000 devices.

• Production devices are equally split into solar panels and wind turbines. The production capacity
of each production device is generated randomly. For each micro-grid, their production capacity
is sufficient to satisfy on average 50% of the consumption of micro-grids.
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• Storage devices are of a single type, their capacity is sufficient to store on average 30% of the
daily electricity load of a micro-grid. We consider that during the storage process there is a total
loss of 10% of energy due to physical constraints which corresponds to the storage efficiency of
state-of-the-art domestic batteries such as Tesla’s Powerwall3.

In the largest instance, 90,000 devices are considered, corresponding to over 2, 000, 000 households. The
total consumption of devices in this instance is on average 64 GWh per day. As on average 50% of the
daily load is supplied by production devices, about 32 GWh must be provided from the global network
each day.
The penetration of the MGs in the total load of the GenCo is defined as

penetration =
load of the MGs

total load for the GenCo

If all MG considered choose a contract from the GenCo, the penetration rate is about 19%.

5.1.4. Uncertainty

Four simple independent scenarios are considered based on the possibility of good sunshine and good
wind that influence production of micro-grids. Weather conditions are considered as identical each day
of the week in a scenario. In bad conditions (no sunshine or no wind), a production device produces only
50% of its maximum production capacity. Notice that this implies that the multi-stage structure of the
problem is simplified to a two-stage problem for which no non-anticipativity constraints are required.
The value of ε used in CVaR is equal to 0.1, representing a high aversion to risk. The full instance details
are available from the authors upon request.

5.2. Numerical results

All the methods were implemented using Julia 0.4.6 and ILOG CPLEX 12.7 as MIP solver. Tests were
made on a 4-core i7 2.30 GHz processor with 16Go of RAM memory. Maximum computation time is
set to 3600s.

Table 1 presents the average computation times for solving the follower problems. Times and objectives
are averaged over the 20 possible contracts for the 5 instances of micro-grids of each size. The objectives
are the average consumption costs for micro-grids of a given size which is also the average income for
a GenCo supplying those micro-grids. They are provided in euros. The standard deviation (σ) of the
objective value is also provided. These results show that solving the restricted follower problem can be
done fairly quickly. The objective value for all contracts is positive and for all instances considered, there
exists at least one contract of the GenCo that is cheaper and one that is more expensive than those of
the competitors. Each micro-grid is financially interesting for the GenCo if the additional production
costs are not too high. In terms of size, the formulation of the follower problem on a micro-grid with
100 devices and a single contract available contains 59136 variables and 35390 constraints.
Figure 2 illustrates the optimal demand strategies over time of two micro-grid of 5000 devices for two
contracts. The left graph represents a micro-grid composed of households and the right one a micro-grid
composed of offices. One contract considers constant buying and selling prices over time (full line) and
the other considers smaller prices during nighttime and weekends (dashed line). The different demand
strategies will influence the production of the GenCo if the two contracts are proposed.

3https://www.tesla.com/fr BE/powerwall?redirect=no
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# Devices Avg. Obj σ time(s)
100 34.99 2.25 0.15
200 37.41 3.67 0.32
1000 207.51 14.97 1.91
2000 332.93 21.32 3.95
5000 653.61 37.36 14.57
10000 957.65 40.56 24.01

Table 1: Average computation time and objective value for the micro-grid power planning preprocessing step.
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Figure 2: Micro-grid demand management

Notice that the curves have a different aspect than a classical duck curve illustrated in Figure 1. This
is due to production devices as solar panel that can be active only during daytime. As a result, the
demand is negative almost all daytime and reaches its biggest values during nighttime. The right hand
side graph is mostly flat during the weekend as the micro-grid considered is composed of offices with
very low consumption during this period.

Table 2 presents results solving small instances with the exact (Exact optimistic) and the heuristic
(Heuristic) bilevel reformulations. Here, the value of λ is set to 1 in order to optimize the expectation.
The first two columns report the number of devices in the considered micro-grids and the number of
micro-grids of each size. Hence, the first line considers one micro-grid with 100 devices and the last line
considers five micro-grids with 100 devices plus five micro-grids with 200 devices.

It has been observed in the results that for each instance, both approaches (Heuristic and Exact) select
the same contracts for each micro-grid.

The difference between optimal values lies in the extra production cost there is for the GenCo to satisfy
the demand of the micro-grids who subscribed a contract. Specifically, in Exact, the planning of elastic
devices of those micro-grids can be reorganized to reduce the cost of the UC problem, preserving optimal
cost for the micro-grids. This observation shows that the bilevel problem (8)-(9) (or (2)-(3)) is indeed
ambiguous in so much that the argmin of problem (9) is not unique. Consequently the pessimistic
and optimistic versions of the model differ and our heuristic reformulation offers something in between.
However, this gap, as reported in the column ∆(F − UC) is not very large. Indeed, let us denote
by (xopt, yopt) and (xheur, yheur) the power generation returned by Exact and Heuristic, respectively.
Columns F (xopt, yopt) − F (0, 0) and F (xheur, yheur) − F (0, 0) correspond to GenCo’s extra production
costs due to the consumption of the micro-grids in the solutions of Exact and Heuristic respectively.
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Test set Exact Heuristic
∆(F − UC) (%)

# Devices nb F (xopt, yopt)− F (0, 0) time(s) F (xheur, yheur)− F (0, 0) time(s)

100 1 8.134968 76.26 8.146005 26.9 0.136
100 2 29.413995 202.3 29.438447 28.63 0.083
100 3 67.440871 312.46 67.471015 28.07 0.045

100 4 52.290345 678.9 52.334735 26.67 0.085
100 5 24.543927 690.63 24.588317 27.22 0.181
200 1 0 135.01 0 21.16 -

200 2 71.09899 242.34 71.1142 25.88 0.021
200 3 128.69007 635.02 128.717851 28.05 0.022
200 4 188.672761 1684 188.715209 25.85 0.022

200 5 171.455653 1919.43 171.498219 25.95 0.025
100-200 1 60.079001 223.74 60.090038 25.7 0.018

100-200 2 100.510032 893.82 100.550933 25.93 0.041

100-200 3 196.12615 1697.23 196.184324 27.19 0.030
100-200 4 240.957646 3520.43 241.045643 27.38 0.037

100-200 5 - > 3600 196.081488 28.7 -

Table 2: Comparing Exact and Heuristic on small instances.

The value

∆(F − UC) =
F (xheur, yheur)− F (xopt, yopt)

F (xopt, yopt)− F (0, 0)

is the relative gap between the costs of extra production in Heuristic and Exact. The reported compu-
tation times of Heuristic do not include the preprocessing times.

Computation times of Heuristic (without considering preprocessing) are quite stable while those of
Exact tend to grow very quickly and the last instance considering 10 micro-grids cannot be solved in
one hour. Concerning the instance with a single micro-grid with 200 devices, the extra production cost is
0 because the micro-grid chose a contract of another company. The gap on extra production cost is very
low in all tests. The Heuristic/Exact formulation of the instance with five micro-grids of 100 devices
contains 200/300 binary variables, 1680/37255 continuous variables and 1975/279725 constraints. As no
variables are related to devices in the Heuristic formulation, the number of devices does not impact its
the size.
Table 3 reports the results of Heuristic on larger instances. We consider three values for λ: 1, 0.5 and
0. When set to 1 (resp. 0), the formulation optimizes the expectation (resp. CVaRε). We have chosen
a value ε of 0.1, representing a high aversion to risk. In each instance, five micro-grids of each size are
used. Columns E report the expectation of the optimal solutions, columns CVaR report their conditional
value-at-risk, both are given in thousands of e. Columns sold report the number of contracts of the
GenCo chosen by the MG in the optimal solution found. These values are reported only for λ = 1 as they
were identical for other values of λ after rounding. The first line considers only the original UC problem
while the last line considers 20 micro-grids (5 of each size) with a maximum possible penetration of 19%.
Notice the negative solution cost of the last line, which is obtained from a revenue from the micro-grids
that is higher than the production cost. Computation times tend to grow slowly when adding micro-
grids and stay close to the computation time of the original UC problem when λ = 1. For λ = 0.5, the
expectation is similar, the CVaR decreases significantly for some instances and the computation time
increases of about 20%. With λ = 0, results for the expectation and CVaR are similar than for λ = 0.5
and computation times are more than doubled for most instances in comparaison of λ = 1.

Our formulation does not increase much the difficulty of the UC problem on the tested instances when
17



Test set
λ = 1 λ = 0.5 λ = 0

E CVaR time(s) sold penetration E CVaR time(s) E CVaR time(s)
UC 3599 - 20.98 0 0 3599 - 20.98 3599 - 20.98
1000 3221 3580 26.31 5 1.2% 3221 3250 30.09 3221 3250 47.41
2000 2973 3304 22.98 4 2.1% 2973 3018 26.37 2973 3018 46.71
5000 1373 1526 24.38 5 6.0% 1374 1510 27.33 1375 1509 46.54
10000 -421 768 24.98 5 10.9% -421 -144 29.87 -420 -145 56.54

1000-2000 2595 2884 25.00 9 3.3% 2595 2670 28.09 2595 2670 50.53
1000-2000-5000 378 960 25.61 14 9.1% 379 589 30.24 379 589 50.63

1000-2000-5000-10000 -2055 145 32.42 10 12.6% -2055 -1768 44.19 -2053 -1769 82.29

Table 3: Solution of Heuristic for larger instances.

minimizing the expectation. Integrating CVaR in the objective function with λ = 0.5 seems interesting
as it is not very time consuming and reduces CVaR almost to its best attainable value.

The number of contracts sold per instance reflects the quadratic aspect of production costs considered
in the formulation for the UC [36]. Summing the numbers of contracts sold in instances where all micro-
grids have the same size (lines 2 to 5 of Table 3), a total of 19 contracts are sold to the 20 micro-grids.
When solving the problem with all 20 micro-grids together (last line of the table), only 10 contracts are
sold. In this solution, respectively 2, 1, 4 and 3 contracts are sold to the MGs of size 1000, 2000, 5000
and 10,000. The results of this last instance let us suppose the GenCo cannot afford having a penetration
rate higher than about 13% with the contracts proposed by the competitors. Even the small MG with
1000 devices go to competitors illustrating that the GenCo can only propose contracts more expensive
than those of competitors. If many micro-grids must be supplied with electricity, the average production
costs increases for the GenCo in the UC problem. At some point, the GenCo cannot afford proposing low
price contracts to additional micro-grids, otherwise it would produce at a loss. Our approach prevents
the GenCo from falling in this situation by proposing contracts that are more expensive than those of
the competitors to micro-grids that are not financially interesting.

For each instance, the same MGs choose a contract of the GenCo for each value of λ considered but the
contracts sold are not all identical. Table 4 illustrates the solution of the instance with 5 micro-grids
of size 5000. The contracts are represented in the columns and are grouped by type. Constant price,
daytime-nighttime price, week-weekend prices and daytime-nighttime plus week-weekend prices. A blank
dot appears when a contract is proposed to a micro-grid by the GenCo, a black dot appears when a
micro-grid selects a contract. The five micro-grids select a contract from the GenCo for all values of λ
but the contracts proposed and chosen for the fourth and fifth micro-grid vary. Integrating CVaR can
discredit contracts that present a high risk in some scenarios.

6. Conclusions and perspectives

We have addressed a variant of power generation optimization problems where the GenCo interacts with
micro-grids by buying or selling power to them. We have modeled the problem as a bilevel stochastic
optimization problem, built on the top of the already difficult power generation optimization problem
that the GenCo must solve to produce its energy. For realistic size data, solving the bilevel problem
exactly is out of reach so that we have focused on a heuristic reformulation that produces a solution
to the bilevel problem that is neither “optimistic” nor “pessimistic”. Although our numerical results
exhibit that the resulting solution is indeed different from the “optimistic” solution, they also indicated
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Test set Cst price DN price WWE price DN and WWE price
MG λ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

1
0.5
0

2

1
0.5
0

3

1
0.5
0

4

1
0.5
0

5

1
0.5
0

Table 4: Contracts proposed and selected to five MG with |D| = 5000.

that the gap is small (roughly 0.05 - 0.1 % variation on the upper level objective function). Interestingly
enough, we could link this discrepancy between the optimistic bilevel solution and our solution to the
existence of load-shifting devices within the micro-grid that are piloted differently in the “optimistic”
situation.

We have assessed our reformulation on a case-study based on a thermal unit-commitment problem using
realistic data. Our numerical results have confirmed the tractability of the heuristic approach, since the
solution time of our reformulation is at most 50% higher than the one required for solving the thermal
unit-commitment problem. In contrast, the solution of an exact reformulation of the bilevel problem
increases the solution times by more than 10 000% in the presence of only 8 micro-grids. Our results
also confirm the quality of the approximation provided by our heuristic, which provides a solution very
close to the solution of the exact “optimistic” model. An interesting venue for future research would
seek to extend the kind of reformulations proposed in this paper to other bilevel optimization problems
with integer variables, which is a class of optimization problems that are notoriously difficult to solve
exactly.

Acknowledgments. The authors are grateful for the comments of two anonymous referees.

[1] M. Tahanan, W. van Ackooij, A. Frangioni, F. Lacalandra, Large-scale unit commitment under uncertainty: a litera-
ture survey, 4OR 13 (2) (2015) 115–171. doi:10.1007/s10288-014-0279-y.

[2] W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, M. Tahanan, Large-scale unit commitment under
uncertainty: an updated literature survey, Submitted preprint: available http://eprints.adm.unipi.it/2374/1/

UUC-Survey.pdf (2018) 1–57.
[3] R. Taktak, C. d’Ambrosio, An overview on mathematical programming approaches for the deterministic unit com-

mitment problem in hydro valleys, Energy Systems 8 (1) (2017) 57–79. doi:10.1007/s12667-015-0189-x.
[4] V. L. de Matos, D. P. Morton, E. C. Finardi, Assessing policy quality in a multistage stochastic program for long-term

hydrothermal scheduling, Annals of Operations Research 253 (2) (2017) 713–731. doi:10.1007/s10479-016-2107-6.
URL http://dx.doi.org/10.1007/s10479-016-2107-6

19
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Appendix A. Micro-grids

For simplicity, this specific study considers the bus model for power flows, that is, the power network is
not taken into consideration. We define two types of unit components in the micro-grid, which are called
devices in the sequel. Storage devices typically represent batteries, whose status may switch between
online (connected to the grid) and offline during the time horizon. During its offline periods, a storage
device can be unloaded: for example, an electric vehicle is loaded during the night. During this time
period, it can be used to store and serve power, but it must be fully loaded at the end of the night.
During the day, the vehicle is used and its battery is emptied so that its storage level is low when it
is back online. In our setting, we associate with each storage device a set of online time intervals. At
the beginning of such a time interval, the charge level is a stochastic input parameter (for example,
it depends on how much the vehicle has been used during the day). The required charge level at the
end of the online period is modeled through more general parameters giving minimum and maximum
acceptable charge levels for each online time step. We also assume that each storage device has limited
capacity, charging and discharging speed and a power loss factor that is the proportion of power stored
to the power consumed during the charge.

The regular devices come with stochastic consumptions and productions of power during each time step.
Some of their consumption can be partially delayed (elastic demand). We model this feature by defining
a set of time intervals for each device (for example, a water heater must heat the water during the night).
During each of them, the required total power consumption is known, as a stochastic input data. The
maximum power consumption of devices is limited during each time step.

The decisions to be taken in the micro-grid problem are, first, to choose a contract among those proposed
by the GenCos. Then, for each regular device and each time step, the amount of elastic power consump-
tion must be determined. For each storage device, the amounts of power consumed (to charge) and
released must be fixed. We provide below a model for the problems faced by each one of the micro-grids.

Parameters. Scenario-independent parameters:

• K: set of available contracts, defined by ck, fk and gk. We assume that ∀t ∈ T , fkt ≥ gkt.

• D: set of non-storage devices. For each device d ∈ D:

– Θd
D: set containing sets of time periods defining elastic consumption slots

• S: set of storage devices. For all d ∈ S:

– s̄d: capacity of storage device d

– ¯̀d: maximum power used to reload d during one time period
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– ūd: maximum power released by d during one time period

– αd: power loss factor when charging d

– Θd
S : set of time intervals when d is online (can be charged or discharged). We note, for all

θ ∈ Θd
S , θ = [t−(θ), t+(θ)].

– Sdt , S̄
d
t : minimum and maximum charge level for d at time t.

Scenario-dependent parameters: For all scenarios ξ ∈ Ξ:

• For each device d ∈ D:

– ∀t ∈ T :

∗ bdt (ξ): power production of d during period t in scenario ξ

∗ rdt (ξ): power consumption of d during period t in scenario ξ

∗ w̄dt (ξ): maximum possible elastic consumption of d during t

– ∀θ ∈ Θd
D

∗ edθ(ξ): total elastic power demand of d during θ in scenario ξ

– For each storage device d ∈ S and online interval θ ∈ Θd
S : Idθ (ξ) is the initial stock level when

d is plugged in.

Decision variables.

• Stage 0:

– ∀k ∈ K: zk = 1 if contract k is chosen by the micro-grid, 0 otherwise

• Stage t, t ∈ T :

– xt(ξ): power consumed by the micro-grid during period t

– yt(ξ): power produced by the micro-grid during period t

∗ ∀d ∈ D, wdt (ξ): elastic power consumed by d during t

∗ For all d ∈ S:

· sdt (ξ): power stock in d at the end of t

· `dt (ξ): power consumed to charge device d during t

· udt (ξ): power released by discharging device d during t
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Formulation.

min E

[∑
k∈K

∑
t∈T

(fktxt(ξ) + gktyt(ξ) + ck) zk

]
(Aa)

s.t.
∑
k∈K

zk = 1 (Ab)

xt(ξ)− yt(ξ) =
∑
d∈D

(
rdt (ξ) + wdt (ξ)− bdt (ξ)

)
+
∑
d∈S

(
`dt (ξ)− udt (ξ)

)
∀t, ξ (Ac)

sdt (ξ) = sdt−1(ξ) + αd`dt (ξ)− udt (ξ) ∀d ∈ S, θ ∈ Θd
S , t ∈ θ − {t−(θ)}, ξ (Ad)

sdt−(θ)(ξ) = Idθ (ξ) + αd`dt−(θ)(ξ)− u
d
t−(θ)(ξ) ∀d ∈ S, θ ∈ Θd

S , ξ (Ae)∑
t∈θ

wdt (ξ) = edθ(ξ) ∀d ∈ D, θ ∈ Θd
D, ξ (Af)

wdt (ξ) ≤ w̄d ∀d ∈ D, t, ξ (Ag)

Sdt ≤ sdt (ξ) ≤ S̄dt ∀d ∈ S, t, ξ (Ah)

`dt ≤ ¯̀d ∀d ∈ S, t (Ai)

udt ≤ ūd ∀d ∈ S, t (Aj)

`dt (ξ) = udt (ξ) = 0 ∀d ∈ S, θ /∈ Θd
S , t ∈ θ (Ak)

zk ∈ {0, 1} ∀k ∈ K (Al)

x, y, w, r, s, l, u ≥ 0 (Am)

The objective of the problem (Aa) is to minimize the total cost for the micro-grid, which is com-
posed of the fixed cost of the contract, the cost of buying power from the GenCos minus the income
obtained from selling the over-production. Constraint (Ab) states that exactly one contract must be
chosen. Constraints (Ac) ensure that the power flow into/out of the micro-grid is equal to its pro-
duction/consumption during each time step. In the right-hand-side, the summation over D (resp. S)
represents the total consumption/production of regular (resp. storage) devices. Constraints (Ad) and
(Ae) define the level of power stock for each device and time step. Constraints (Af) fix the correct total
amount of power that must be consumed by a device during an elastic consumption interval. The in-
stantaneous power consumed by a device is limited by constraints (Ag). The acceptable stock levels are
bound by constraints (Ah). Constraints (Ai) and (Aj) define maximum charging and discharging speeds
for the storage devices, while constraints (Ak) are just a way to state that an offline device cannot be
charged or discharged (the corresponding variables may as well be omitted in the model). The domains
of the variables are given in constraints (Al) and (Am).
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