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Abstract

The purpose of this paper is to present a method for the ultrasonic characterization of air-
saturated porous media, by solving the inverse problem using only the reflected waves from
the first interface to infer the porosity, the tortuosity and the viscous and thermal characteristic
lengths. The solution of the inverse problem relies on the use of different reflected pressure signals
obtained under multiple obliquely incident waves, in the time domain. In this paper, the authors
propose to solve the inverse problem numerically with a first level Bayesian inference method,
summarizing the knowledge on the inferred parameters in the form of posterior probability
densities, exploring these densities using a Markov-Chain Monte-Carlo approach. Despite their
low sensitivity to the reflection coefficient, it is still possible to extract the knowledge of the
viscous and thermal characteristic lengths, allowing the simultaneous determination of all the
physical parameters involved in the expression of the reflection operator. To further constrain
the problem and guide the inference, the knowledge of a particular incident angle is used at
one’s advantage in order to more precisely define the thermal length, by effectively yielding a
statistical relationship between tortuosity and characteristic lengths ratio.

1 Introduction

Porous materials find widespread applications, ranging from hydrology [1] to medicine (cancellous
bone [2]) and sound absorption [3]. The estimation of their micro-structural properties, such as
porosity, tortuosity and characteristic lengths, plays a crucial role in the characterization of their
physical behavior. One common goal of these areas of physics is the non intrusive, robust and cheap
inference of all the required intrinsic properties of porous media that are necessary to describe their
physical behavior. Due to the inherent measurement system noise, the quantitative assessment of
the uncertainty of the identified parameters is equally important.

The most widespread model to characterize wave propagation inside poroelastic media is Biot’s
model [4, 5, 6, 7], which accounts for the presence of three different waves inside the poroelastic
material: two compressional waves and one shear wave. In some applications, one is mostly inter-
ested in acoustic propagation in rigid porous media where the solid phase is immobile and only the
airborne compressional wave propagates; this configuration is the focus of the present study. The
equivalent fluid model of Johnson–Champoux–Allard (JCA [8, 9]) is widely used for sound propa-
gation in rigid porous media and requires the knowledge of 5 intrinsic material properties (porosity,

∗remi.roncen@onera.fr
†Permanent adress: LUNAM Universite du Maine, UMR CNRS 6613 Laboratoire d’Acoustique de l’Universite du

Maine UFR STS Avenue O. Messiaen 72085 Le Mans CEDEX 09, France

1



2

tortuosity, static viscous permeability, viscous and thermal characteristic lengths). The JCA model
is well adapted to describe the acoustical behavior of porous materials with rigid skeletons having
arbitrary pore shapes. The model is obtained by the connection between asymptotic developments
in the low and high frequency regions. In the high frequency regime, where the viscous boundary
layer is much smaller than the pore radius, the porosity, tortuosity and characteristic lengths are
sufficient to define the porous wave behavior. These are the parameters inferred in the present
study.

Different inverse problems for parameter identifications have been attempted in the past re-
garding air-saturated porous media, mostly in the audio frequency regime [10, 11, 12, 13, 14]. The
largest unaddressed issues of these studies are the modeling deficiency at these frequencies and the
scarcity of uncertainty considerations. Being in the high frequency domain allows the use of models
that are exactly defined in the asymptotic limit, overcoming the modeling limitations of audio-
frequency based inverse methods. In earlier studies, Fellah et al. [15, 16] formulated the reflection
coefficient at the first interface of a rigid porous material in the high frequency limit. Multiple
obliquely incident waves in the high frequency domain were used to obtain a direct relationship
between the reflected waves and two parameters of interest, namely, the porosity and tortuosity.
To extend the identification to other parameters, Fellah et al. [17] then introduced an ultrasonic
characterization technique to identify the porosity, tortuosity and the two characteristic lengths,
by using both reflected and transmitted waves and an inverse method based on time-domain sig-
nals, and by assuming a given ratio between the viscous and thermal characteristic lengths. Groby
et al. [18] then developed an analytical method using both the reflected and transmitted signals in
the ultrasonic regime to extract the values of the porosity, tortuosity and the viscous and thermal
lengths, in the frequency domain; it was argued that for highly resistive materials, the method
might yield wrong results. Later, Fellah et al. [19] focused on low resistivity materials and solved
the inverse scattering problem in the ultrasonic regime for the transmission mode only, to identify
the porosity, tortuosity and characteristic lengths using time domain signals. Using reflected waves
from the first interface is particularly suited to characterizing highly resistive materials, because
they have large reflection coefficients. However, the previous studies have not been able to yield the
identification of the characteristic lengths using only reflected waves from the first interface. Only
the porosity and tortuosity have been measured in this configuration [15, 16].

The primary aim of the present study is to extend the previous results of [15, 16] to identify the
characteristic lengths of porous materials, using only the knowledge of obliquely reflected waves at
the first material interface, in the high-frequency domain. In previous work [15, 16], the dispersive
contribution to the reflection operator has been neglected. In this article, we take into account the
dispersive part of the reflection coefficient (fractional derivative of order −1/2 in the time domain
and 1/

√
jω term in the frequency domain). The influence of the characteristic lengths on the

reflection operator is taken into account, which in turn makes their identification possible when
using only reflected waves.

The secondary objective is to apply to the ultrasonic time-domain identification process a
statistical Bayesian inference method. This enables the systematical encompassing of measurement
uncertainties and prior information into the identification of porous media properties, as was done
previously in [20, 21] in the frequency domain at audio-frequencies when using impedance tube
measurements as observational inputs.

The present article is organized as follow: the acoustical model is presented in Section II, where
the high frequency limit of the JCA model is detailed and where the reflection operator formulation
is given. The reflected wave is then expressed in the time domain. A critical incident angle is
presented, relating the tortuosity to the characteristic length ratio. The inference methodology
is described in Section III, where Bayes’ theorem is recalled and the numerical exploration of the
parameter space is detailed. Results for the inference of three widely different porous materials are
presented in Section IV. Concluding remarks are presented in Section V.
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2 Acoustical Model

In the study of porous media, two different cases are typically considered. When the fluid and solid
phases have coupled contribution to the acoustic attenuation in the material, the Biot model is used
to describe the wave propagation in both the solid and fluid phases, resulting in the occurrence of
two compressional and one rotational waves. When the solid phase can be assumed rigid, which is
often the case in air-saturated porous media, and the frame motion can be neglected, one usually
resorts to using an equivalent fluid model where only the compressional wave propagation in the fluid
phase of the porous material is considered. The classical properties of density and compressibility
are replaced by equivalent properties in order to take into account viscous and thermal dissipation
in the pores. This is the approach we adopt in this work.
Let a macroscopically homogeneous rigid porous material of porosity φ be filled with a fluid of
density ρf and dynamic viscosity η. Assuming weak fluid-frame coupling and a wavelength much
larger than the pore size, one can apply continuum mechanics to the fluid phase in the material
and identify the whole porous medium as an equivalent fluid material of effective properties to
account for viscous and thermal dissipation arising from the fluid-frame interaction. As initially
proposed by Zwikker and Kosten [22], one can decouple the contribution of viscous and thermal
dissipation in the pores. To do so, one defines the dynamic tortuosity α̃(t) that encompasses the
viscous-inertial fluid/structure interactions, and the dynamic compressibility β̃(t) that takes into
account all the thermal fluid/structure interactions. In the time domain, these factors are operators
and the equations controlling the wave behavior are the Euler equation and a constitutive equation,
given in the time domain by

ρf

∫ t

0
α̃(t− τ)

∂v(τ)

∂τ
dτ = −∇p,

1

Kf

∫ t

0
β̃(t− τ)

∂p(τ)

∂τ
dτ = −∇ · v. (1)

In the previous equations, v is the macroscopic velocity and p the macroscopic pressure, obtained
by averaging the microscopic velocity and pressure fields over a representative elementary volume;
ρf is the fluid density and Kf is the fluid bulk modulus.
Of primary interest to this study is to determine parameters defined in the high frequency limit,
namely the porosity φ, the tortuosity α∞, the viscous characteristic length Λ (unit m, [8]) and the
thermal characteristic length Λ′ (unit m, [9]). The theoretical expressions of α̃(t) and β̃(t) in the
time domain, in the high frequency limit, are given by Johnson et al.[8] and Champoux & Allard [9],
and are written in time domain [23] as

α̃(t) = α∞

(
δ(t) +

2

Λ

√
η

πρf

H(t)√
t

)
,

β̃(t) = δ(t) +
2(γ − 1)

Λ′

√
η

πPr ρf

H(t)√
t
, (2)

where Pr is the Prandtl number, η is the fluid dynamic viscosity, γ = 1.4 is the fluid heat capacity
ratio, δ(t) is the Dirac delta function (which represents the instantaneous, non-dispersive response of
the material), and H(t) is the Heaviside function (H(t < 0) = 0, H(t ≥ 0) = 1), used for causality
reasons. The time convolution of t−1/2 is interpreted as a fractional derivative operator of order
ν = 1/2, following the definition in Samko [24]:

Dν [g(t)] =
1

Γ(−ν)

∫ t

0
(t− u)−ν−1g(u)du, (3)

where Γ(x) is the gamma function. These terms in α̃(t) and β̃(t) represent the dispersive kernel,
expressing the dispersive nature of the viscous and thermal effects in the pores at high frequencies.
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Figure 1: Schematic of the scattering problem

For a more in-depth analysis of fractional derivatives in acoustical modeling, the reader is referred
to [25] and the references therein. Combining Eqs. 1 with Eqs. 2 yields

ρfα∞
∂v

∂t
+ 2

ρfα∞
Λ

√
η

πρf

∫ t

0

∂v/∂τ√
t− τ

dτ = −∇p, (4)

1

Kf

∂p

∂t
+ 2

γ − 1

KfΛ′

√
η

πPr ρf

∫ t

0

∂p/∂τ√
t− τ

dτ = −∇ · v. (5)

The dispersive nature of porous media is taken into account via a memory effect, meaning that part
of the material’s response is not instantaneous and is associated with a time delay.

2.1 Reflection scattering operator

The direct scattering problem requires finding the pressure field reflected by the first interface of
the porous material. Let us consider here a rigid-frame, air-filled isotropic porous medium inside a
semi-infinite region 0 ≤ x < +∞, as depicted in Fig. 1. A sound pulse impinges on the medium
from the left with an incident angle θi. We are mostly interested here in determining the reflected
wave, or, equivalently, the reflection scattering operator R̃(t) that describes the relationship between
incident (pi (x, t)) and reflected (pr(x, t)) plane waves, as

pr(x, t) =

∫ t

0
R̃(τ)pi (x, t− τ) dτ. (6)

To derive the required operator, continuity of pressure and velocity on the first interface of the
material is assumed, resulting in the interface conditions [26]

p(0−, t) = p(0+, t), v(0−, t) = φv(0+, t), (7)

where a porosity of 1 has been taken for the ambient fluid (x < 0), and where the − superscript
stands for the left domain, and the + superscript stands for the right domain. In order to manipulate
the following equations more easily , we make use of the Laplace transform method, assuming an
idle medium as initial condition. We note P (x, s) (resp. V (x, s)) the Laplace transform of p(x, t)
(resp. v(x, t)) defined by

P (x, s) = L [p(x, t)] =

∫ ∞
0

exp (−st) p(x, t)dt, (8)
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and the inverse Laplace transform by p(x, t) = L−1 [P (x, s)]. For the Laplace coefficients, we use
the same symbols as the time operators, but remove the tilda. Using the relations L [δ(t)] = 1 and

L
[
H(t)√
πt

]
=
√

1
s , one can transform the expressions of α̃(t) and β̃(t) in the Laplace domain into

α(s) = α∞

(
1 +

2

Λ

(
η

sρf

)1/2
)

β(s) = 1 +
2(γ − 1)

Λ′

(
η

sPr ρf

)1/2

. (9)

The expression of the pressure field in the region at the left of the material is the sum of the incident
and reflected fields

p1(x, t) =pi
(
t− x

cf
cos θi − y

cf
sin θi

)
+ pr

(
t+

x

cf
cos θi − y

cf
sin θi

)
, (10)

where cf =
√
Kf/ρf ≈ 340 m.s−1 is the sound speed in air. In the Laplace domain, the fields on

the left side of the material become, for x < 0 [27]

P1(x, s) =

(
e
−s x

cf
cos θi

+R(s, θi)e
s x
cf

cos θi
)
e
−s y

cf
sin θi

V1(x, s) = cos θi

Zf

(
e
−s x

cf
cos θi

−R(s, θi)e
s x
cf

cos θi
)
e
−s y

cf
sin θi

(11)

whereR(s, θi) is the Laplace transform of the reflection kernel of interest, Zf = ρfcf ≈ 418 kg.m−2.s−1

is the characteristic impedance of the material, and V1(x, s) is the x component of the velocity. In-
side the material, the fields are expressed, for 0 ≤ x < +∞, as{

P2(x, s) = A(s)e−s
x

cm
cos θme−s

y
cm

sin θm

V2(x, s) = cos θ1
Zm

A(s)e−s
x

cm
cos θme−s

y
cm

sin θm (12)

where A is an unknown parameters, θm is the refracted wave angle in the porous material, relative
to its normal, and V2(x, s) is the x component of the velocity. The phase velocity in the equivalent
fluid material is defined as cm = cf/

√
α(s)β(s), while the characteristic impedance of the material

is given by Zm = Zf

√
α(s)
β(s) .

Using the boundary conditions of Eq. 7, one obtains the equation system

1 +R(s, θi) = A(s), 1−R(s, θi) = φ
Zf cos θm

Zm cos θi
A(s). (13)

Solving the system 13 yields the reflection coefficient R(s, θi) as

R(s, θi) =
1− E(s)

1 + E(s)
, E(s) =

cos θm

cos θi
φ

√
β(s)

α(s)
,

cos θm =

√
1− sin2 θi

α(s)β(s)
, (14)
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and where the Snell-Descartes law has been used. Using the inverse Laplace transform to go back
into the time domain, the reflection coefficient at the first interface described in Eq. 14 acts as an
operator whose expression is:

R̃(t, θi) =
1− E0

1 + E0
δ(t) +

2E0

√
η/ρf(

α∞ − sin2 θi
)

(1 + E0)2

×
(
α∞ − 2 sin2 θi

Λ
− α∞(γ − 1)

Λ′
√

Pr

)
H(t)√
πt
, (15)

with

E0 =
φ
√
α∞ − sin2 θi

α∞ cos θi
. (16)

Once the reflection operator is known, one can convolve the incident signal with it in order to
yield the numerical reflected signal in the time domain, for a given incident angle θi, which can in
turn be compared to the experimental reflected signal, allowing one to carry on with the inverse
method, as presented in Section III. Anticipating Section II.C, let us consider a porous material
(P1) with certain properties (given in Table 1). An incident transient pressure wave pi impinges
on the material and is partly reflected. In Figure 2, we plot the experimental incident signal, the
numerically calculated reflected signal and the reflection operator used in the convolution.

Figure 2: (Color online) Time domain representation of reflected pressure signals (left axis) and
reflection operator (right axis)

2.2 Critical angle at oblique incidence

An important property of the reflection coefficient can be identified by first simplifying Eq. 15 as

R̃(t, θi) = R̃0(t, θi) + R̃1(t, θi), (17)

with

R̃0(t, θi) =
1− E0

1 + E0
δ(t), (18)

and

R̃1(t, θi) =
2E0

√
η/ρf(

α∞ − sin2 θi
)

(1 + E0)2

×
(
α∞ − 2 sin2 θi

Λ
− α∞(γ − 1)

Λ′
√

Pr

)
H(t)√
πt
, (19)
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where R̃1 corresponds to the dispersive part of the reflection coefficient. One observes that R̃1 can
be canceled if there exists a critical angle θc,1 verifying

sin2 θc,1 =
1

2
α∞

(
1− Λ

Λ′
γ − 1√

Pr

)
. (20)

Measuring such an angle can be done by detecting, for instance, a change in the sign of the imaginary
part of the total reflection coefficient, which can be readily measured by first transforming the
incident and reflected signals in the frequency domain via an fast Fourier transform, and calculating
the ratio between the two signals. The higher the tortuosity and the lower the ratio Λ/Λ′, the
higher the critical angle becomes. This is the first time that this relationship has been highlighted,
and its knowledge used in inverse identification methods. There also exists an angle θc for which
R̃(t, θc) = 0, as was shown initially in [28]. While its expression is time dependent, estimating its
value numerically can be done quickly. This angle will not be used in the inverse problem, as it was
not detected experimentally. In the same fashion, an angle θc,0 for which R̃0(t, θc,0) = 0 exists and
is relatively close to θc. Again, its value was not measured experimentally for the cases at hand and
thus its expression was not used further during the inference.

2.3 Illustrations of the direct problem

For completeness, let us consider 3 different numerically generated porous materials (P1, P2 and
P3) and display their reflection coefficient and critical angles (properties were chosen close to the
ones inferred later on). The material properties are summarized in Table 1, along with the critical
angle θc,1 for which R̃1 cancels out, and the critical angle θc for which the full reflection cancels out,
at 190 kHz. The spread of these two values is increased for low porosity materials that typically
display a higher reflection coefficient. We now display the full reflection coefficient against the

Name φ α∞ Λ(µm) Λ′(µm) θc,1 (°) θc (°)
P1 0.5 1.7 30 90 57.8 74.5

P2 0.8 1.5 50 150 52.6 62.7

P3 0.99 1.04 200 400 39.0 46.6

Table 1: Synthetic porous media: summary of their properties

angle of incidence at 190 kHz for all three materials studied, in Figure 3 (left). The dispersive
part of the reflection coefficient, R1(s, θi), is also displayed in Figure 3 (right). When looking at
low values of incidence angles, the dispersive contribution is more important for materials of type
P1 and P2 (associated with high flow resistivities). This result is in agreement with our initial
comments that the dispersive correction of the reflection is greater for resistive, low characteristic
length materials. However, this is surprisingly not the case anymore for high values of the incidence
angle, for which R1(s, θi) takes more important values in the case of material P3 (associated with
low flow resistivities). This raises the question of where (in terms of the incident angle) one should
observe a given material in order to optimally determine its parameters. Our examples suggest
that highly resistive materials should be observed at low angles of incidence, while low resistivity
materials could yield better identification results when observed at higher incidence angles, provided
that the added uncertainty stemming from grazing angles of incidence remains low. In Figure 4, we
show a decomposition of the reflected waves for the three materials considered, at an angle where
the dispersive nature of the material is the most marked: using Figure 3(right) yields an angle of
0° for materials P1 and P2, and an angle of 80° for material P3. This decomposition consists in
the reflected wave associated with the instantaneous response of the material (convolution of the
incident wave with R̃0(t, θi)) and the dispersive part of the reflection (convolution of the incident
wave with R̃1(t, θi)), the sum of which yields, by linearity of the convolution operator, the full
reflected wave (associated with the convolution of the incident wave with R̃(t, θi)). As expected,
the contribution of the dispersive nature of porous media is significant and has to be taken into
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Figure 3: (Color online)For the three synthetic materials P1, P2 and P3, at 190 kHz. Left: Absolute
value of the total reflection coefficient |R(s, θi)| as a function of the incident angle. Right: Absolute
value of the scattering part of the reflection coefficient |R1(θi)|

account, even for low resistivity materials, when high angles of incidence are concerned. This result
has not been mentioned in the literature before, to the best of the authors’ knowledge, and opens
the way for new characterization methods, focusing the observation on regions of interest depending
on prior knowledge on the porous material nature and pore scales (which is often a readily available
piece of information). Since R̃1(t, θi) is a significant contribution to the reflection and depends on
the parameters φ, α∞, Λ, Λ′ to be identified, we can now proceed with the inference method.

Figure 4: (Color online) Reflected waves in the time domain associated with three different reflection
operators: R̃, R̃0, R̃1. For material P1 at angle of incidence θi = 0° (left), material P2 at angle of
incidence θi = 0° (middle), and material P3 at angle of incidence θi = 80° (right). The angles are
chosen according to Figure 3(right), corresponding to the maximum of R̃1.

3 Statistical inference

In the context of inverse problems for parameter estimation, statistical inference in the Bayesian
framework consists in recasting parameters of interest as random variables associated with proba-
bility densities encompassing established information, or new information collected through mea-
surements. The solution of such an inverse problem is no longer a single value for the estimated
parameters of interest, but their posterior probability density [29, Chap. 8]. A good review on
inverse problem theory can be found in [30].
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3.1 Bayes’s theorem

Statistical inverse problems rely on information from both the observed experimental data dexp and
the prior knowledge on the parametersm. In the present article, dexp encompasses all the measured
reflected signals in the time domain, and is thus represented by a matrix of size Nd × K, where
Nd is the number of observed discrete time steps and K is the number of different incident angles
considered. The parameters of interest are m = (φ, α∞, Λ, Λ′). These two states of information
are combined to express our degree of knowledge about the true values of m, improved by the
information contained in the observation dexp. We define a marginal posterior probability density
π(m|dexp) for the model parameters m, given a set of observable parameters dexp. Using Bayes’
theorem, this becomes

π(m|dexp) =
π(dexp|m)π(m)

π(dexp)
, (21)

where L(m) ≡ π(dexp|m) is the likelihood function, π(m) is the prior density, and π(dexp) is the
Bayesian evidence. Prior and posterior densities represent the state of knowledge, or degree of belief
we have on the parameters, before and after having observed a certain piece of data dexp, respectively.
The posterior probability π(m|dexp) reflects all the information inferred on m, conditional on the
observation dexp, and is the quantity to be found. The evidence π(dexp) represents the probability
of the experimental data being generated by the given parameters and models; the evidence is
generally a term difficult to evaluate numerically: its calculation can be conveniently circumvented
by the MCMC method detailed in Subsection III.D. The aforementioned terms are detailed in the
following.

3.2 Likelihood

The information on the physical correlations betweenm and dexp as predicted by a physical model,
here a convolution between incident signal and reflection operator, is represented by a deterministic
forward operator G, and a noise ε accounting for our uncertainty relative to the experiment, at each
observed time step, and for all angles. Thus, ε is of size the size of dexp. For each incidence angle
θk,

dexp
k = G(m∗, θk) + εk, (22)

with m∗ unknown and where the components of εk are assumed independent and identically dis-
tributed random variables of zero mean Gaussian density πε. The forward operator is represented
in the discrete-time way by noting G(m, θk) = (G1(m, θk), . . . Gj(m, θk), . . . , GNd

(m, θk)), where
Nd is the number of time-steps observed in the experimental reflected signal, and with

Gj(m, θk) =

∫ tj

0
R̃(m, τ, θk)p

i(xmeas, tj − τ)dτ, (23)

where the dependency on the parameters m has been made explicit in the writing of the reflection
kernel. The measurement location is noted by xmeas, and tj is the jth observed time step. The jth

component of dexp becomes, for the kth incident angle:

dexp
j,k = Gj(m, θk) + εj,k, (24)

The likelihood of an observation conducted with a given incident angle θk takes the form

L(m, θk) = πε(d
exp
k −G(m, θk)), (25)

which reads, assuming πε follows a zero mean Gaussian distribution,

L(m, θk) =

nd∏
j=1

1√
2πσ2

j,k

exp

−
∣∣∣dexp
j,k −Gj(m, θk)

∣∣∣2
2σ2

j,k

 , (26)
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Parameter φ α∞ Λ(µm) Λ′/Λ

Prior Min 0.2 1.0 1.0 1.0

Prior Max 0.99 3.0 1000 10

Table 2: Prior boundaries

where σ2
j,k denotes the noise variance associated to a time step and an incident angle, and is either

determined experimentally or set a priori, for each signal. The larger the value of σ2
j,k, the larger

the estimated uncertainty on the observation. The value of the standard deviation σj,k is taken in
this work to 2% of the absolute value of the considered experimental reflected signal, to encompass
our uncertainty in the acquisition chain and the experimental conditions (temperature, pressure,
etc...). For numerical reasons, the logarithm of the likelihood is used instead of Eq. 26. The total
log-likelihood is then obtained as

log (L(m)) =

K∑
k=1

log (L(m, θk)) , (27)

where K is the number of incident angles used. Similar to classical inverse problems where a cost
function has to be minimized in order to retrieve the parameters of interest, one can view the
likelihood as the probabilistic equivalent of such a quantity, effectively measuring the probability of
the experience being observed, for a given set of parameters.

3.3 Prior model

The prior probability π(m) contains the information obtained on the model parameters indepen-
dently of the experimental data used during the inference. It reflects the user’s prior insight into the
problem, generalizing the classical constraints used during deterministic inversion, assigning weights
to the more probable values. When no prior information is available, a wide-range, non-informative
improper homogeneous density represents well one’s ignorance and merely sets boundaries for each
parameter, as in classical deterministic inverse problems. In the present article, we first assume
prior independence among the unknown parameters, setting

π(m) =

nm∏
i=1

πi(mi). (28)

In the absence of observation, there is no known correlation between the parameters. As no sta-
tistical information on the parameters was accessible prior to the inference, a uniform probability
πi(mi) ∼ U(mi,min,mi,max) is assumed for the priors, with mi,min and mi,max the boundaries, given
in Table 2. To further constrain the problem, when possible, one can include a known correlation
between the parameters, using the approximate knowledge of the critical angle defined in Eq. 20.
As this information is gained through the observation of the signals in the frequency domain, it can
still be seen as a prior (independent) knowledge, since the inference is performed on the reflected
signals in the time domain. This method is applied for the inference of material M2 in Section IV.C.

3.4 MCMC: posterior sampling

As the posterior probability density defined in Eq. 21 is only known up to a normalizing con-
stant, one still needs to devise a technique to draw samples directly from the posterior distribution,
without having to calculate the evidence, which is especially arduous in high-dimensional parameter
spaces. To address this issue, a technique called Markov Chain Monte Carlo (MCMC) was exploited.

The central idea behind MCMC is to draw samples directly from the posterior distribution
without having to calculate the normalizing factor, by designing a random-walk algorithm that
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explores the posterior density and moves preferentially towards regions of high probability densities,
efficiently exploring the area of interest and creating a Markov chain whose stationary distribution is
the distribution of interest [31]. This is done with a Metropolis-Hasting algorithm [32, 33], consisting
in an acceptance/rejection step that creates the transition kernel of a Markov chain converging to
the posterior distribution. The MCMC strategy is coupled with a Differential Evolution algorithm
[34]: multiple chains are run in parallel and learn from each other through a mutation operator, thus
solving the problems of selecting a direction and a scale for the jump from the current point to the
proposal point [35, 36]. In the present study, the latest improvements on MCMC techniques were
integrated, making use of multi-try sampling from past states, snooker updates and self-adaptive
randomized subspace sampling. The full details on this method, coined MT_DREAM_ZS, are
given in [37] and the references therein.

In the present work, 3 chains were used on which 105 iterations were performed, with the first
10% of each chain being discarded as burn-in to allow decorrelation with the initial samples. The
chains were initialized by sampling from the prior’s support. Convergence was checked a posteriori,
through a Gelman-Rubin diagnostic [38] and a visual check of the chain samples.

4 Results

In this section, three widely different materials are tested and their properties inferred. The first
material, M1, consists in a random packing of spheres and is highly resistive; material M2 is a
resistive foam and material M3 is a classical foam used as a sound absorbing material, of low
estimated resistivity. Due to its low resistivity and the low values of incident angles, the reflected
wave amplitudes of M3 are lower than for the two other materials, and it is interesting to test the
limits of the present method in such a case. For the first and third materials, no critical angle
θc,1 was observed; for the second material, it was estimated. For all materials, the inference is
summarized through the display of posterior probability density functions (pdfs) of all parameters,
along with joint-pdfs to reveal the correlations between parameters. These were evaluated from
the chain samples through a kernel density estimation. Other experimental results, obtained with
reference methods developed in [39, 40, 16, 41], are displayed as well. The Maximum A Posteriori
(MAP) estimator was chosen as the reference probabilistic estimator in this study, since it is closest
in meaning to the estimates obtained through usual deterministic methods, related to a maximum
likelihood estimation. The MAP mMAP estimate is defined as

mMAP = arg max
m

π(m|dexp). (29)

4.1 Experimental procedure

Experiments were performed in air with two broadband Ultran NCT202 transducers with a 190kHz
center frequency and 6dB bandwidth extending from 150 to 230kHz. The associated wavelength
is λ = cf/f ≈ 1.8 mm, which remains larger than the pore sizes of all the materials considered in
this study. An optical goniometer was used to position the transducers. Uncertainties on the angle
measurements are not considered in the present work. Pulses of 400V amplitude were provided by
a 5052PR Panametrics pulser/receiver. The signals received were amplified to 90dB and filtered
above 1MHz to avoid high frequency noise. Electronic interference was removed by 1000 acquisition
averages. Measuring the reference incident signal was done with the help of a rigid metal plate
acting as an acoustic mirror. The experimental setup is shown in Figure 5.

4.2 M1 identification: sphere packing

The waves reflected from material M1 were measured at 3 different angles of incidence (13.5°, 17°,
66.6°). Figure 6 shows the posterior marginal probability density functions of each parameter (di-
agonal elements) and the 2D scatter-plot obtained from the Markov Chains (off-diagonal elements)
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Figure 5: Simplified schematic of the experimental apparatus

inferred on the material M1 properties. The 4 colored curves on the scatter plots each delimit 20%
of the scattered points, thus representing credibility intervals of 20, 40, 60 and 80% , respectively.
Such an interval is interpreted as a percentage probability that the true value of a given set of 2
parameters falls within the credible region.

These results are summarized in Table 3 where the MAP and standard deviation of each
parameter are reported. Results obtained in [16] using classical identification techniques on the
same material are also recalled for reference. These reference measurements did not account for the
dispersive contribution to the reflection operator, thus explaining the difference between obtained
values. Interestingly, the porosity remains quite close in both cases. While φ, α∞ and Λ densities
have a Gaussian shape, the density of Λ′/Λ is less informative, indicating the asymmetric loss of
sensitivity relative to the likelihood function when Λ′ increases (seen by the flattening of the pdf).
Note that the extreme limit imposed by the prior Λ′/Λ = 10 is reached for this material, and that
a larger boundary would have extended the density support.
A joint-pdf of approximate elliptic shapes such as the ones between φ, α∞ and Λ in Fig. 6 denotes
a positive correlation between parameters. This indicates that an increase in the estimation of one
parameter results in an increase in the correlated parameter. These correlations need to be taken
with caution, as they do not necessarily denote a physical correlation between the parameters. For
instance, a material with very high porosity tends to have lower tortuosity, which is opposite to what
could be understood from the joint-pdf. These correlations stem from the modeling structure and
the experimental observations used in the inference. Correlations between parameters are expected
to be strong, due to their association in the reflection coefficient expression, in Eq. 15. For example,
if one looks at the expression of E0 (Eq. 16), which intervenes in the definition of R̃0, one sees
that at θi = 0, E0 = φ/

√
α∞. A simultaneous increase in both φ and α∞ could then leave E0

unchanged, which in turn would result is a sensibly similar likelihood function, thus explaining the
positive correlations between those two parameters during Bayesian inference process. Taking into
account R̃1 would change these correlations, but the idea remains the same.
Should a more informative prior be stipulated for the porosity, the posterior marginal probability
density of φ would be shifted towards the prior, and α∞ and Λ would be shifted in the same
direction (increase or decrease). In the case where no prior is used, the Bayesian inference is
called objective [42]. An objective inference allows to learn about correlations between parameters,
stemming from the modeling structure or the experimental observation. Knowing these correlations,
one can then anticipate the influence of setting a more informative prior on a certain parameter.

In second level Bayesian inference [42], the prior modeling itself can enter the inference process,
resulting in extra parameters in the identification, and model selection. In the present study, only
the first level Bayesian inference (model calibration) was considered.
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Figure 7: (Color online) Normalized experimental signals : and normalized MAP estimate:
at θi = 66°. Left: normalized time signals. Right: normalized frequency spectrum.

Parameter φ α∞ Λ(µm) Λ′/Λ

Reference values 0.44 1.87 N/A N/A
Inverted MAP value 0.43 1.63 52.9 2.6

Standard deviation 0.002 0.03 8.1 0.88

Table 3: M1 inference summary (N/A: non-available). Reference results are obtained with methods
developed in [16].

The signals calculated using the Markov chain samples are compared with the experimental
reflected signals in Figure 7 for a particular incident angle used in the inference. The Fourier
transform is also used to compare the spectral density of calculated and experimental signals for the
same two angles. Signals are normalized using the maximum value of the experimental signal. The
remaining small discrepancies between signals can be explained in the following two ways: the rigid
skeleton hypothesis may not be adequate in the case of high amplitude waves for sphere packing
materials such as this one, due to a movement between the spheres. Furthermore, the geometry of
the representative pore itself is somewhat out of the scope of the JCA model, where it is assumed
that no constriction is present between pores. Due to the sphere curvatures, it is possible that the
model corrections of Pride [43] are necessary to represent more accurately the wave propagation in
such a material. This is left for a future study.

4.3 M2 identification: high resistivity foam

The waves reflected from material M2 were measured at 4 different angles of incidence (0°, 23°,
39.7°, 49.8°). Figure 8 shows the pdfs (diagonal elements) and joint-pdfs (extra-diagonal elements)
inferred on the material M2 properties. These results are summarized in Table 4 where the MAP and
standard deviation of each parameter are reported. Results obtained using classical identification
techniques are also recalled for reference. The small discrepancies between reference and MAP
values can be attributed to a lower sensitivity of the porosity in the transmission mode at high
frequencies [27]. All the parameters display a pdf of Gaussian shape. Once again, elliptic joint-pdfs
denote the correlations between parameters, stemming from the modeling used.

Parameter φ α∞ Λ(µm) Λ′/Λ

Reference values 0.75 1.45 50 2− 3

Inverted MAP value 0.80 1.44 45.4 2.3

Standard deviation 0.003 0.02 3.2 0.22

Table 4: M2 inference summary. Reference results are obtained with methods developed in [39, 40,
41].

The results presented here take into account prior information obtained on the critical angle
defined in Eq. 20, estimated between θi = 39.7° and θ′i = 49.8°. Indeed, as can be seen in Figure 9,
the phase of the experimental coefficient is seen to become negative between these two values. The
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Figure 9: (Color online) Imaginary part of the reflection coefficient for material M2, at four different
incident angles.

Figure 10: (Color online) Normalized experimental signals : and normalized MAP estimate:
at θi = 23°. Left: normalized time signals. Right: normalized frequency spectrum.

prior density function is updated as

π(m)× πθc(aθc)← π(m), (30)

where aθc = 1/2α∞

(
1− (Λ/Λ′)(γ − 1)/

√
Pr
)
and πθc is a normal distribution centered on (sin2 θi+

sin2 θ′i)/2 with standard deviation (sin2 θi − sin2 θ′i)/6. The standard deviation is chosen so as to
get 99% of the probabilistic weight between the observed boundaries. This choice is made in light
of our lack of certainty regarding the exactness of relation 20, which, in particular, does not hold
any longer when the Pride correction [43] is taken into account.

To further validate the inference, the signals calculated using the Markov chain samples are
compared with the experimental reflected signals in Figure 10 for a particular incident angle that
was used for the inference. The Fourier transform is also used to compare the spectral density
of calculated and experimental signals at the same two angles. Signals are normalized using the
maximum value of the experimental signal.

It should be noted that without the extra prior knowledge on the critical angle, the inference
outcome is less conclusive, as the ratio Λ′/Λ is clearly not a well identified parameter. As was
noted for the identification of material M1, the ratio Λ′/Λ tends to lose sensitivity to the likelihood
function as its value increases (asymmetric sensitivity function): once a certain value has been
reached, it is virtually impossible to distinguish the likelihood, which makes the inverse problem
challenging to solve. Regularizing the inference through prior information is one of the strengths of
such a statistical approach, which would have otherwise failed here.

4.4 M3 identification: low resistivity foam

The waves reflected from material M3 were measured at 4 different angles of incidence (0°, 17°,
23°, 35°). Figure 11 shows the pdfs (diagonal elements) and joint-pdfs (extra-diagonal elements)
inferred on the material M3 properties. These results are summarized in Table 5 where the MAP and
standard deviation of each parameter are reported. Results obtained using classical identification
techniques on the same material are also recalled for reference. For highly porous materials such as
the one considered here, it is common to have ratios of Λ′/Λ between 2 and 3. To take this prior
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Figure 11: (Color online) M3 inference pdfs (the graphs on the diagonal) and joint-pdfs (the off-
diagonal scatter plots)

knowledge into account, the prior density function was updated as

π(m)× πΛ′/Λ(Λ′/Λ)← π(m), (31)

where πΛ′/Λ ∼ N (2.5, 1). The standard deviation was taken as 1.0 to explain our uncertainty in the
guidelines for the prescription in Λ′/Λ, and to avoid shifting too strongly the parameter towards
the prior: it is estimated that few foam materials such has the one considered here have a ratio of
characteristic lengths higher than 4. The influence of a priori information on the posterior has not
been studied further here. The results in Table 4 indicate a posterior probability close to the prior
mean, with a standard deviation about half as large. This translates the fact that information from
the observed quantities contained identifiable knowledge on Λ′/Λ for us to extract. Despite this
prior, the standard deviation of Λ remains large, compared with the other inferences performed in
this study. Values for the porosity and tortuosity, however, remain well defined and close to the
expected values for this type of foam. The observed discrepancies between values can be attributed
to the method reaching its limits for this kind of low resistivity material, where the reflected wave
amplitude is much smaller than the incident wave amplitude

Parameter φ α∞ Λ(µm) Λ′/Λ

Reference values 0.97 1.06 263 1.63

Inverted MAP value 0.99 1.11 283 2.92

Standard deviation 0.004 0.011 54.2 0.47

Table 5: M3 inference summary. Reference results are obtained with methods developed in [39, 40,
41]
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Figure 12: (Color online) Normalized experimental signals : and normalized MAP estimate:
at θi = 17°. Left: normalized time signals. Right: normalized frequency spectrum.

The signals calculated using the Markov chain samples are compared with the experimental
reflected signals in Figure 12 for a particular incident angle that is used for the inference. The Fourier
transform is also used to compare the spectral density of calculated and experimental signals. Signals
are normalized using the maximum value of the experimental signal.

In future studies, higher values of incident angles will be used for the identification of low
resistivity materials such as this one, as this appears to be the observable region where the dispersive
part of the reflection is the greatest.

4.5 Discussion

One of the key strengths of Bayesian inference is updating one’s belief on a certain hypothesis
or parameter through the observation of new data via a robust and coherent approach. In the
present work, only a modest use of this strength was tested: the user would certainly benefit
from including previous experiments on given materials in terms of informative priors, which would
further regularize the inverse problem at hand. While reflected waves were the primary concern
of the present study, one is prone to wonder why the transmitted waves were not measured and
used as well, in order to gain more information through this observational quantity. This question
is especially valid for material M3, a low resistivity foam that is more often tested in transmission
measurement mode, since its reflection coefficient is low. Again, the goal set in the present study
was purely to introduce a new measuring experiment (the first interface reflected wave at oblique
incidence), and a coherent way to aggregate different observations on a given material through
first level Bayesian inference. It is of course strongly advised to make use of transmission results
whenever readily available. Here, the only additional measurement that was used is the critical
angle for which the scattering operator cancels out, for material M2.

5 Conclusion

This article proposes a method for the statistical Bayesian inference of homogeneous porous media
with a rigid frame, using reflected ultrasonic waves from the first interface in the time domain and
the Johnson–Allard model. The reflection operator of the material at the first interface has been
worked out in the asymptotic regime in the high frequency limit, for obliquely incident waves. This
result has been further analyzed to yield an interesting relationship between a particular angle of
incidence, directly relating the tortuosity to the characteristic length ratio of the material. This
new knowledge has been used as prior information to improve the regularization of the inverse
problem. Furthermore, a detailed analysis of the diffusive kernel of the reflection operator has given
new insights into the identification strategy: for highly resistive materials, observing the reflected
pressures at low oblique incidence angles is the best strategy, since this is where the diffusive kernel is
the most influential; for low resistivity materials, by contrast, it appeared that the diffusive kernel’s
influence is truly significant mainly for high values of incidence angles, where the full reflection
coefficient is greater than for low incidence angles.

In the context of first level Bayesian inference, the information contained in the experimental
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observation and the user knowledge obtained independently of the experiments has been combined
to express the posterior probability density of the parameters of interest: the porosity, tortuosity
and characteristic lengths. This method offers the possibility to coherently take into consideration
prior knowledge of the material properties and to allow uncertainties in the experiment. It is a
robust way to take into account new experiments such as the one presented in this study, and
combine the extracted knowledge with previous experiments.

Three different materials have been tested and their properties inferred: one granular resistive
material of low porosity, one resistive foam of low pore size and medium porosity, and a classical
sound absorbing, low resistivity and high porosity foam. It has been shown that using the knowledge
of the reflected waves by the first interface only, in the high frequency limit, the extraction of
information on the target parameters is possible, even in the case of the low resistivity material
where the reflection coefficient is low.
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