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Series containing squared central binomial
coefficients and alternating harmonic num-
bers

John M. Campbell

Abstract. We introduce an integration method for evaluating infinite
series involving alternating harmonic numbers that generalizes many
of the results in [Integral Transforms Spec Funct 28:7, 2017]. Using
this method, we provide new evaluations for series containing factors

of the form
(
2n
n

)2
H ′

2n that cannot be evaluated using known generating
functions involving harmonic-type numbers. A closed-form evaluation is
given for the series

∞∑
n=1

(
− 1

16

)n (2n
n

)2
H ′

2n

n+ 1
,

and we describe why the problem of symbolically computing this partic-
ular series is especially difficult. The integration technique given in our
article may be applied to evaluate natural generalizations and variants
of the above series, such as the binomial-harmonic series

∞∑
n=1

(
− 1

16

)n (2n
n

)2
H ′

2n

2n− 1
=

(π − 4 ln(2))Γ2
(
1
4

)
8
√

2π3/2
−
√

π
2

(π + 4 ln(2)− 4)

Γ2
(
1
4

)
introduced in our article. Our integration-based method, when applied
in conjunction with the main lemma from [Ramanujan J 46:2, 2018], also
provides a new way of evaluating series involving even-indexed harmonic
numbers.

Mathematics Subject Classification (2010). Primary 33C75, 33C20; Sec-
ondary 65B10.

Keywords. Alternating harmonic number, Infinite series, Integral trans-
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1. Introduction

The symbolic computation of infinite series containing harmonic numbers is
a fascinating subject that traces back to Euler’s seminal work on the eval-
uation of series of the form

∑∞
n=1

Hn
nm . Of course, the study of the closed-

form evaluation of infinite series with summands containing factors given by
harmonic-type numbers remains an active area of research. In our present
article, we introduce a useful technique for evaluating infinite series involving
alternating harmonic numbers.

New techniques for computing series containing products of harmonic-
like numbers and central binomial coefficients are given in [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 14]. Letting G denote Catalan’s constant, our article is inspired
in part by the recent formula

4G− 12 ln 2 + 6

π
=

∞∑
n=1

(
2n
n

)2
16n(2n− 1)2

H2n (1.1)

that was proved in [5] following two separate techniques, through an appli-
cation of the operator Tln,arcsin introduced in [5] and also through the use
of a generating function given by Chen in 2016 in [7], in which a variety of
generating functions involving harmonic-like numbers and binomial-type ex-
pressions are given. The interesting formula given in (1.1) was subsequently
noted in [13], in which the evaluation of series of the form

∞∑
n=1

H
(m)
pn

n
(
n+k
k

)
is explored. From the elegant evaluation provided in (1.1), together with

the technique introduced in [3] for evaluating series containing
(
2n
n

)2
Hn as a

factor for indices n ∈ N, we are inspired to explore the symbolic computation

of series with summands involving factors such as
(
2n
n

)2
H2n and(

2n

n

)2

H ′2n, (1.2)

letting H ′m denote the alternating harmonic number of order m ∈ N0, with
H ′2n = H2n −Hn.

The integral transform Tln,arcsin introduced in [5] in 2017 is used to
prove new evaluations for series involving factors of the form indicated in
(1.2), such as the series∑

n∈N

( (
2n
n

)
4n(n+ 1)(2n− 1)(2n− 3)

)2

H ′2n

introduced in [5]. In our present article, we introduce an integration-based
method that may be applied to summations of the form∑

n∈N

(
2n

n

)2

H ′2n · gn (1.3)
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for sequences (gn : n ∈ N), with this new technique generalizing and building
upon a number of the results from [5]. Since the integration method from [3]
is used to compute series of the form∑

n∈N

(
2n

n

)2

Hn · gn,

we thus obtain a new approach toward the problem of evaluating series in-
volving even-indexed harmonic numbers.

In [2], it is noted that there appears to be an interesting connection

between series involving
(

1
32

)n (2n
n

)2
Hn and series containing factors of the

form (
− 1

16

)n(
2n

n

)2

H ′2n. (1.4)

It is noted in [2] that the integration method from [3] cannot be applied
directly to evaluate the series

∞∑
n=1

(
1

32

)n (2n
n

)2
Hn

2n− 3
, (1.5)

in the sense that it is unclear how the required integral expression given
by this method may be evaluated. If the Mathematica function Simplify is
applied to this expression, we obtain a complicated expression involving nu-
merous parameter derivatives of 3F̃2(−1) functions. A re-indexing argument
is used in [2] to evaluate (1.5), and this is used, together with the expression

for (1.5) in terms of parametric derivatives on 3F̃2(−1) mappings, to show
that the alternating series

∞∑
n=1

(
− 1

16

)n(
2n

n

)2
(2n+ 3)H ′2n

(2n− 1)(n+ 1)
(1.6)

is equal to

−2

3
+

5(π − 4 ln(2))Γ2
(
1
4

)
12
√

2π3/2
−
√

2π(−20 + 3π + 12 ln(2))

3Γ2
(
1
4

) ,

which motivates the study of summations containing (1.4) as a factor. We
introduce an interesting integration technique in our present article to eval-
uate series of this form, offering something of a partial solution to an open
problem given in [2].

As noted in [2], it is surprising that the fundamental lemma from [3]
can be used to evaluate (1.6), since this lemma is specifically “designed”
for series containing Hn for n ∈ N, as opposed to series involving even-
indexed alternating harmonic numbers. The evaluation of generalizations and
variations of (1.6) is left as an open problem in [2], and serves as a basis for
our present article.
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This article is also inspired by the formula

6 ln(2)− 2

π
=

∞∑
n=1

(
2n
n

)2
H2n

16n(2n− 1)
(1.7)

which was recently proved in [4] through the use of Fourier–Legendre theory.
In [4], it is noted that from the FL expansion

− 3

2
+
∞∑
n=1

(
(−1)n

2

(
1

n
− 1

n+ 1

)
−
(

1

n
+

1

n+ 1

))
Pn(2x− 1) (1.8)

for the expression ln(1−
√
x), together with the formula∫ 1

0

xn ln(1−
√
x) dx = −H2n+2

n+ 1
,

we may evaluate the series in (1.7), by using the formula∫ 1

0

E
(√
x
)

ln(1−
√
x) dx = −π

2

∞∑
n=0

(
2n
n

)2
H2n+2

16n(n+ 1)(1− 2n)

given in [4] and applying the FL series provided in (1.8). It is not clear how
one would go about proving new FL expansion formulas in order to evaluate
more general classes of harmonic-binomial sums of the form noted in (1.3).
This inspires us to construct a simple integration technique that easily allows
us to evaluate series of this form, by analogy with the fundamental lemma
from [3], which is given below. From something of a heuristic perspective, this

lemma shows us that if we apply the binomial expansion for
√

1− x2 and then
multiply the Maclaurin series for this elementary function by the inverse of
this mapping, we can manipulate the resultant equation so as to be able to
express a given harmonic-binomial series in terms of a relatively manageable
integral and the underlying non-harmonic summation of the initial series.

Lemma 1.1. If the series

∞∑
n=0

(−1)n
( 1

2

n

)
f(n)

x2n ln(1− x2)√
1− x2

is integrable on [0, 1] for a sequence (fn)n∈N0
, and if we let gn = fn

16n(2n−1) ,

then
∞∑
n=0

g(n)

(
2n

n

)2

Hn

equals the product of 2
π with the sum of∫ 1

0

( ∞∑
n=0

(−1)n
( 1

2

n

)
f(n)

x2n ln(1− x2)√
1− x2

)
dx

and π ln(2)
∑∞
n=0

(2n
n )

2
f(n)

16n(1−2n) [3].
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As discussed in [3], the above lemma provides us with a useful way of
producing new Ramanujan-like series for 1

π that cannot feasibly be proved
using the generating functions from papers such as [1].

2. Main results

The following lemma may be regarded as a direct analogue of the main tech-
nique from [3].

Lemma 2.1. If we let (fn : n ∈ N0) denote a sequence such that
∞∑
n=0

(−1)nx2n
√

1− x2
(
− 1

2

n

)
fn ln (x) (2.1)

is integrable on [0, 1], writing gn in place of fn
n+1 , we have that the series∑

n∈N0

(
1

16

)n
H ′2n

(
2n

n

)2

gn

is equal to 4
π times the definite integral with respect to x of (2.1) over [0, 1]

plus

1

2

∞∑
n=0

(
1

16

)n (2n
n

)2
(2 ln(2)(n+ 1) + 1)

(n+ 1)2
fn.

Proof. This follows immediately from the identity whereby∫ 1

0

x2n
√

1− x2 ln(x) dx

evaluates as √
π
(
Hn− 1

2
−Hn+1

)
Γ
(
n+ 1

2

)
8Γ(n+ 2)

for <(n) > − 1
2 . �

2.1. A seemingly recalcitrant series containing alternating harmonic num-
bers

As described below, the problem of evaluating the infinite series given in (2.2)
below is very difficult, and gives rise to challenging new problems related to
the subject matter from [2, 3, 5]. The problem of determining the symbolic
value of the infinite series in Question 2.2 below is inspired in part by the
evaluation (1.1) from [5] and the equation (1.7) introduced in [4]. If we apply
partial fraction decomposition in the summand in (1.6), we obtain the series
given below.

Question 2.2. How can the series

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

n+ 1
(2.2)

be evaluated in closed form?
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Since there are known algorithms for computing series of the forms
noted below for z ∈ Z>0 [2, 3], it seems natural to consider the evaluation
of variants of the following series, further motivating the problem given in
Question 2.2.

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 2z + 1)

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 2z + 1)

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)2

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 2z + 1)2

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)2

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 2z + 1)2

Mathematica 11 is not able to evaluate the equivalent formulation

∞∑
n=0

(
− 1

16

)n (2n
n

)2
(H2n −Hn)

n+ 1
(2.3)

of the series in Question 2.2 at all. We remark that it took Mathematica
11 about two straight hours of running time before providing any output
after inputting the expression in (2.3), and only outputted the same symbolic
form in (2.3), without providing any kind of simplification or evaluation. This
illustrates that the problem of evaluating the series in Question 2.2 is highly
nontrivial. Unsurprisingly, Maple 18 cannot evaluate the series in (2.3) at
all. Even if we directly make use of the definition of the term alternating
harmonic number in our attempts to evaluate (2.2) using computer algebra
systems, we find that Mathematica 11 cannot evaluate

∞∑
n=0

(
− 1

16

)n (2n
n

)2∑2n
i=1

(−1)i+1

i

n+ 1
, (2.4)

in that Mathematica 11 is only able to to compute (2.4) as

∞∑
n=0

(
− 1

16

)n (2n
n

)2
(ln(2)− Φ(−1, 1, 2n+ 1))

n+ 1
,

with this evaluation following trivially from the definition of the Lerch tran-
scendent. Maple 18 is only able to provide the redundant evaluation

∞∑
n=0

(
− 1

16

)n (2n
n

)2 ( 1
2Ψ
(
n+ 1

2

)
− 1

2Ψ(n+ 1) + ln(2)
)

n+ 1

of (2.4), letting Ψ denote the digamma function.
Now that we have discussed how current CAS software cannot evaluate

(2.2) directly, we proceed to elaborate on the following claim concerning the
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difficulty of solving Question 2.2: It is not feasible to apply the generating
functions from [1, 7] to evaluate the series in (2.2).

In [7], Chen noted that the power series
∞∑
n=1

(
2n
n

)
H ′2n

n+ 1
xn (2.5)

may be evaluated as

1

2x

((
1−
√

1− 4x
)

+
(
1 +
√

1− 4x
)

ln

(
1 +
√

1− 4x

2

))
, (2.6)

and we remark that Mathematica is able to compute (2.5) directly. However,
there is no known symbolic evaluation for

∞∑
n=1

(
2n
n

)2
H ′2n

n+ 1
xn.

In terms of power series that are known to have closed-form evaluations, it
appears that (2.5) is by far the “closest” or most similar to (2.2), modulo
scalar multiples of the variables involved. There are a number of binomial-
harmonic generating functions that are much less similar to (2.2) computed
in [1, 7], including the generating functions noted below.

G

((
2n

n

)
Hn;x

)
G

( (
2n
n

)
n+ 1

Hn;x

) G

((
2n

n

)
H2n;x

)
G

((
2n
n

)
n

(H2n−1 −Hn) ;x

)
From the evaluation of the ordinary generating function

G

((
2n
n

)
H ′2n

n+ 1
;x

)
given in (2.6), we find that

∞∑
n=1

(
− 1

16

)n (2n
n

)
(H2n −Hn)

n+ 1
xn

is equal to

4
(√
x+ 4−

(√
x+ 4 + 2

)
ln
(
1
4

(√
x+ 4 + 2

))
− 2
)

x
(2.7)

From the above discussion, we see that

G

((
− 1

16

)n (2n
n

)
(H2n −Hn)

n+ 1
;x

)
is the “closest” possible generating function relative to (2.2) that can be
computed in terms of elementary functions. So, given the relatively simple
closed-form evaluation given in (2.7), it would seem as if the summation in
Question 2.2 could be evaluated by making use of an integral formula for
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central binomial coefficients. As discussed below, it appears that this would
not be feasible, which is interesting since many similar series can be computed
directly through the use of Wallis-type integrals.

A standard version of Wallis’s integral formula is given by the identity
whereby (

2n

n

)
=

∫ π
2

0

2(2 cos(t))2n

π
dt

for n ∈ N0. So, we find that the problem of evaluating the series in Question
2.2 is equivalent to the problem of evaluating

2−
4
√

2Γ
(
3
4

)2
π3/2

−

4

π

∫ π
2

0

√
1 + cos2(t) ln

(
1 +

√
1 + cos2(t)

2

)
sec2(t) dt

which cannot be evaluated using Mathematica 11 or Maple 18. It is unclear
as to how the above integral may be evaluated, especially since the two terms
resulting from the expansion of the integrand in∫ π

2

0

√
1 + cos2(t)

(
ln
(

1 +
√

1 + cos2(t)
)
− ln(2)

)
sec2(t) dt

cannot be separately integrated on
[
0, π2

]
. So, we see that the problem of

evaluating the series in Question 2.2 is equivalent to determining a closed-
from for the difficult integral∫ 2

1

√
u ln

(
1+
√
u

2

)
√

2− u(u− 1)3/2
du, (2.8)

which cannot be evaluated by Mathematica 11 or Maple 18. The above in-

tegral cannot be evaluated by rewriting the expression ln
(

1+
√
u

2

)
as ln(1 +

√
u)− ln(2) and expanding the resultant integrand, since the integral∫ 2

1

√
u√

2− u(u− 1)3/2
du

does not converge. It is not at all obvious as to how to evaluate the definite
integral displayed in (2.8). It seems as if it would not be feasible to expand a
given combination of factors in the integrand in (2.8) as a Taylor series and
integrate term-by-term. For example, we have that

1√
2− u(u− 1)3/2

=

∞∑
n=0

(−1)n2n+2

(
u− 3

2

)n( 1
2 (n+ ((n− 1) mod 2))

1
2

)
,

but it seems that this expansion cannot be directly used to evaluate (2.8),
especially since state-of-the-art computer algebra systems cannot evaluate∫ 2

1

(
u− 3

2

)n√
u ln

(
1 +
√
u

2

)
du (2.9)

for a parameter n ∈ N0.



Series containing
(
2n
n

)2
H ′2n 9

If we try to make use of the standard integral formula for the Catalan
sequence whereby (

2n
n

)
n+ 1

=

∫ 4

0

xn
√

4−x
x

2π
dx,

we see that the problem of evaluating the summation in Question 2.2 is
equivalent to the evaluation of

∫ 4

0

−

√
4−x
x ln

(
1
4

(√
x+ 4 + 2

))
π
√
x+ 4

dx,

which cannot be evaluated by Mathematica 11 or Maple 18. Equivalently,
this summation is equal to

− 2

π

∫ 1

0

√
1−x
x ln

(
1 +
√

1 + x
)

√
1 + x

dx− 4
√

2π ln(2)

Γ
(
1
4

)2 +
Γ
(
1
4

)2
ln(2)

√
2π3/2

,

with state-of-the-art computer algebra systems being unable to evaluate the
above integral. The Maclaurin series for ln(1 + y) cannot be used to evaluate

the above integral, as may be verified. Also, the Maclaurin series for
√

1−x
1+x

cannot be used to compute this integral.

Even if we try to make use of non-standard integral formulas for cen-
tral binomial coefficients or Catalan-type sequences as a way of approaching
Question 2.2, we obtain recalcitrant integrals. For example, if we try to apply
the recently-discovered Catalan number formula

Cn =
1

π

∫ ∞
0

√
t(

t+ 1
4

)n+2 dt

given in [12], we find that (2.2) is equal to

∫ ∞
0

−
8
√

2
√
x ln

(
1
2

(√
1

4x+1 + 1 + 1
))

π
√

2x+ 1(4x+ 1)3/2
dx,

with Mathematica 11 and Maple 18 unable to compute the above expression.

If we try to make use of the standard integral formula for the factor 1
n+1

in the summand in (2.2), we find that this would require the evaluation of

∞∑
n=0

(
− 1

16

)n(
2n

n

)2

(H2n −Hn)xn, (2.10)

with Mathematica 11 and Maple 18 being unable to evaluate (2.10) at all.

From the above discussion, it should be clear that we cannot use known
generating functions for harmonic/binomial-type sequence to evaluate the
seemingly recalcitrant series in (2.2). Moreover, it seems that it is not feasible
to use known integral formulas for alternating harmonic numbers to evaluate
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the infinite series in (2.2). For example, if we try to make use of the known
identity ∫ 1

0

ln(x+ 1)x2n dx =
−1 + 2 ln 2 + 4n ln 2

(2n+ 1)2
− H ′2n

2n+ 1

noted in [5], we find that the problem of symbolically computing the afore-
mentioned series is equivalent to the problem of evaluating the difficult inte-
gral ∫ 1

0

ln(x+ 1) (E (ix)−K (ix))

x2
dx,

which cannot be evaluated by Mathematica 11 or Maple 18.
Question 2.2 is also interesting because it is unclear as to how the cor-

responding series
∞∑
n=0

(
− 1

16

)n (2n
n

)2
H2n

n+ 1
(2.11)

with non-alternating harmonic numbers of even index could be computed
symbolically, as a corollary of the following theorem, using the main lemma
from [3].

Theorem 2.3. The series
∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

n+ 1
(2.12)

is equal to

2 +
(4 ln(2)− π)Γ2

(
1
4

)
4
√

2π3/2
−
√

2π(4 + π + 4 ln(2))

Γ2
(
1
4

) .

Proof. This follws immediately from Lemma 2.1 by letting fn = (−1)n. �

It is truly remarkable that the integration technique given by Lemma
2.1 provides such a simple way of evaluating the infinite series in (2.2), since
the problem of determining the symbolic value of the series in Theorem 2.2
may be regarded as being very difficult, as described above.

2.2. Generalizations and variants

Through the use of Lemma 2.1, we also obtain the following extensions of
the above theorem.

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

n+ 2
=

− 8

9
+

√
2π(4 + π + 4 ln(2))

3Γ2
(
1
4

) +
(4(4 + 3 ln(2))− 3π)Γ2

(
1
4

)
108
√

2π3/2

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

n+ 3
=
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128

225
−

(32 + 39π − 156 ln(2))Γ2
(
1
4

)
540
√

2π3/2
−
√

2π(316 + 95π + 380 ln(2))

375Γ
(
1
4

)2
∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

n+ 4
=

√
2π(516 + 145π + 580 ln(2))

875Γ2
(
1
4

) +
(1360− 273π + 1092 ln(2))Γ2

(
1
4

)
20580

√
2π3/2

− 512

1225

Applying partial fraction decomposition to the rational component of
the series in (1.6), we obtain the expression

1

3

∞∑
n=1

(
1

16

)n (−1)n+1
(
2n
n

)2
H ′2n

n+ 1
+

8

3

∞∑
n=1

(
1

16

)n (−1)n
(
2n
n

)2
H ′2n

2n− 1

and in view of Theorem 2.3 this strongly motivates the evaluation of the series
given in the following theorem, since much of our present article is inspired
by the open problem given in [2].

Theorem 2.4. The equality

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

2n− 1
=

(π − 4 ln(2))Γ2
(
1
4

)
8
√

2π3/2
−
√

π
2 (π + 4 ln(2)− 4)

Γ2
(
1
4

)
holds.

Proof. This follows immediately from Lemma 2.1 by letting fn = (−1)n(n+1)
2n−1 .

�

The fundamental lemma introduced in our present article my also be
used to evaluate

∞∑
n=0

(
− 1

16

)n (
2n
n

)2
H ′2n

2n− 2z − 1

for z ∈ Z>0, yielding the following evaluations.

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

2n− 3
=

√
2π(−4 + π + 4 ln(2))

6Γ2
(
1
4

) +
Γ2
(
1
4

)
(16 + 3π − 12 ln(2))

216
√

2π3/2

∞∑
n=0

(
− 1

16

)n (2n
n

)2
H ′2n

2n− 5

(39π − 4(8 + 39 ln(2)))Γ2
(
1
4

)
1080

√
2π3/2

−
√

π
2 (−316 + 95π + 380 ln(2))

375Γ2
(
1
4

)
∞∑
n=0

(
− 1

16

)n H ′2n(2nn )2
2n− 7

=
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(1360 + 273π − 1092 ln(2))Γ2
(
1
4

)
41160

√
2π3/2

+

√
π
2 (−516 + 145π + 580 ln(2))

875Γ2
(
1
4

)
2.3. On the evaluation of series involving even-indexed harmonic numbers

and squared central binomial coefficients

As a way of further demonstrating the utility of Lemma 2.1, we offer a sim-
plified proof of the following result that had been introduced in [4].

Theorem 2.5.
∑∞
n=1

(
1
16

)n (2n
n )

2
H2n

2n−1 = 6 ln(2)−2
π [4].

Proof. Letting fn = n+1
2n−1 , by Lemma 2.1 we have that

∞∑
n=1

(
1

16

)n (2n
n

)2
H ′2n

2n− 1
=

2− 2 ln(2)

π

and from the evaluation of

∞∑
n=1

(
1

16

)n (2n
n

)2
Hn

2n− 1

given in [3] we obtain the desired result. �

Remark 2.6. It is interesting to note that Mathematica is able to evaluate
the series in Theorem 2.5 as

1

2
2F1

(0,0,1,0)

[
− 1

2 ,
1
2

1

∣∣∣∣∣ 1

]
+

2 ln(2)

π

and since
∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 1)
= 2F1

(0,0,1,0)

[
− 1

2 ,
1
2

1

∣∣∣∣∣ 1

]
,

as noted in [3] we thus obtain another proof of the above theorem.

Mimicking the proof of Theorem 2.5 given above, by letting fn =
n+1

2n−(2z−1) for natural numbers z, we obtain the evaluations indicated below.

90 ln(2)− 46

27π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

2n− 3

8010 ln(2)− 4814

3375π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

2n− 5

80010 ln(2)− 52894

42875π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

2n− 7

The series in (1.1) from [5] is a natural extension of Chen’s series for 1
π

from [7], and it is natural to explore new methods of deriving the formula in
(1.1), in the hope of arriving at similar results.
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Theorem 2.7. The series

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

(2n− 1)2
(2.13)

is equal to 6+4G−12 ln(2)
π [5].

Proof. This follows from Lemma 2.1 by letting fn = n+1
(2n−1)2 , using the sym-

bolic form for
∞∑
n=1

(
1

16

)n (2n
n

)2
Hn

(2n− 1)2

given in [3]. �

Remark 2.8. By rewriting the expression H2n in the summand in (2.13)

H2n =

∫ 1

0

1− x2n

1− x
dx

and reversing the order of summation and integration, it can be shown that
the above theorem also follows from Theorem 2.5.

Using the technique given in the proof of Theorem 2.7, we obtain the
following results.

16G+ 36− 44 ln(2)

9π
=

∞∑
n=1

( (
2n
n

)
4n(2n− 3)

)2

H2n

19200G+ 50132− 50820 ln(2)

16875π
=

∞∑
n=1

( (
2n
n

)
4n(2n− 5)

)2

H2n

11289600G+ 32183036− 29233260 ln(2)

13505625π
=

∞∑
n=1

( (
2n
n

)
4n(2n− 7)

)2

H2n

Again through an application of Lemma 2.1 together with the funda-
mental lemma from [3] as in the proof of Theorem 2.7, we obtain the following
evaluations, none of which can be symbolically computed by Mathematica 11
or Maple 18.

92 + 24π − 180 ln(2)

27π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

n+ 2

9628 + 1920π − 16020 ln(2)

3375π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

n+ 3

105788 + 17920π − 160020 ln(2)

42875π
=

∞∑
n=1

(
1

16

)n (2n
n

)2
H2n

n+ 4
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It is interesting to note that the main lemma from [3] cannot be applied
directly to evaluate series of the form

∞∑
n=0

(
1

16

)n (2n
n

)2
H2n

(n+ z)2
(2.14)

for z ∈ Z. A general method for evaluating series of this form is given in [2],
through the use of a clever re-indexing argument.

Theorem 2.9. The infinite series

∞∑
n=1

(
2n
n

)2
H2n

16n(n+ 1)2
(2.15)

is equal to 16G+24−48 ln(2)
π + 4− 8 ln(2).

Proof. Through a direct application of Lemma 2.1 we find that the series

∞∑
n=1

(H2n −Hn)
(
2n
n

)2
16n(n+ 1)2

is equal to

1

2
4F3

[
1
2 ,

1
2 , 1, 1

2, 2, 2

∣∣∣∣∣ 1

]
− 4 +

16 ln(2)

π
.

So, from the evaluation

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 1)2
= 16 +

32G− 64 ln(2)

π
− 16 ln(2)

introduced in [2], we find that the problem of evaluating binomial-harmonic
series in the above theorem reduces to the evaluation of a 4F3(1) series with
parameters in 1

2Z. However, the expression

4F3

[
1
2 ,

1
2 , 1, 1

2, 2, 2

∣∣∣∣∣ 1

]
cannot be evaluated by Mathematica, not even through the use of

FunctionExpand

or through the use of the equivalent hypergeometric form in

∞∑
n=0

(
2n
n

)2
16n(n+ 1)3

, (2.16)

which Maple is only able to evaluate in terms of the Barnes G-function as

1

π
·G4,1

4,4

(
−1
∣∣∣ 1,2,2,2
1,1, 12 ,

1
2

)
.
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However, if we make use of the canonical integral formula(
2i
i

)
i+ 1

=

∫ 4

0

xi
√

4−x
x

2π
dx

for the Catalan sequence, we observe that the problem of finding a sym-
bolc evaluation for the hypergeometric expression in (2.16) is equivalent to
evaluating the seemingly recalcitrant integral

4

π

∫ 4

0

x− 4 + 2
√

4− x
(
1− 2 ln(2) + ln

(
2 +
√

4− x
))

x3/2
dx

which Mathematica, interestingly, is able to directly evaluate, as

16(−2G+ 3 + π(ln(2)− 1))

π
,

thus providing us with the desired result. �

Based on the evaluation provided in the above theorem, through the
use of iterative re-indexing, we obtain the following new evaluations.

64G+ 144− 176 ln(2)

9π
− 8

27
− 32 ln(2)

9

=

∞∑
n=1

( (
2n
n

)
4n(n+ 2)

)2

H2n

76800G+ 200528− 203280 ln(2)

16875π
− 2752

3375
− 512 ln(2)

225

=

∞∑
n=1

( (
2n
n

)
4n(n+ 3)

)2

H2n

45158400G+ 128732144− 116933040 ln(2)

13505625π
− 115456

128625
− 2048 ln(2)

1225

=

∞∑
n=1

( (
2n
n

)
4n(n+ 4)

)2

H2n

The integral transform introduced in our present article, together with
the evaluations presented above, nicely generalize some of the concepts pre-
sented in [5]. Letting Cn denote the Catalan number of order n, we see that
the formula

1500G− 1946 + 2048 ln 2

3375π
− 244

3375
+

8 ln 2

225
=

∞∑
n=1

C2
n

16n(2n− 3)2(2n− 1)2
H ′2n

introduced in [5] follows from some of the main results put forth in the present
section of our article together with some of the main results from [3], by
rewriting the above summand as (

2n
n

)2
16n(n+ 1)2(2n− 3)2(2n− 1)2

H2n



16 John M. Campbell

and applying partial fraction decomposition to the rational component

1

(n+ 1)2(2n− 3)2(2n− 1)2

in the above summand.

3. Conclusion

The main lemma introduced in our article can also be applied to series that
do not involved squared central binomial coefficients. For example, a direct
application of Lemma 2.1 shows that

∞∑
n=1

2−6nH2n

(
2n
n

)(
4n
2n

)
n+ 1

is equal to

8

3
+

8
√

2− 40
√

2 ln(2) + 8 ln
(
1 +
√

2
)

3π
,

and this can also be determined using Chen’s generating function for( (
2n
n

)
n+ 1

H2n : n ∈ N0

)
given in [7], together with a Wallis-type integral. The exploration of further
applications of Lemma 2.1 seems like a worthwhile area to pursue.
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