
HAL Id: hal-01835901
https://hal.science/hal-01835901

Submitted on 22 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of a thermal Reduced Order Model with
explicit dependence on viscosity for a generalized

Newtonian fluid
Manuel Girault, Julien Launay, Nadine Allanic, Pierre Mousseau, Rémi

Deterre

To cite this version:
Manuel Girault, Julien Launay, Nadine Allanic, Pierre Mousseau, Rémi Deterre. Development of a
thermal Reduced Order Model with explicit dependence on viscosity for a generalized Newtonian fluid.
Journal of Non-Newtonian Fluid Mechanics, 2018, 260, pp.26 - 39. �10.1016/j.jnnfm.2018.04.002�. �hal-
01835901�

https://hal.science/hal-01835901
https://hal.archives-ouvertes.fr


1 

 

Development of a thermal reduced order model 

with explicit dependence on viscosity for a 

generalized Newtonian fluid 
 

Manuel Girault1*, Julien Launay2, Nadine Allanic2, Pierre Mousseau2, Rémi Deterre2 

1 Institut P’ CNRS-ENSMA-Université de Poitiers, UPR 3346, Département Fluides, 

Thermique, Combustion. ENSMA - Téléport 2. 1 avenue Clément Ader, BP 40109, F86961 

FUTUROSCOPE CHASSENEUIL Cedex. 

2 GEPEA, UMR CNRS 6144, IUT-Université de Nantes, 2 avenue du Professeur Jean 

Rouxel, 44475 Carquefou Cedex 

*Corresponding Author: manuel.girault@ensma.fr 
 

Abstract 

This work falls within the general framework of melted polymers flows characterization. It deals with the 

development of a thermo-rheological Reduced Order Model (ROM) which could be used in future works for on-

line estimation of viscosity from temperature measurements in the flow, especially in high shear zones. A steady 

incompressible flow of a pseudo-plastic fluid in a circular runner is considered. The dynamic viscosity is thus 

described by a shear rate power law defined by consistency index 𝐾 and flow behavior index 𝑛. An approach is 

developed for building a ROM able to compute a radial temperature profile at the channel outlet for any (𝐾, 𝑛) 

couple in a predefined range. Assuming the temperature field approximation on a reduced set of 𝑚 space 

functions, the general form of the ROM is obtained through a Galerkin projection of the energy equation. The 

ROM constitutive parameters are then identified through an optimization procedure using temperature data for a 

set of (𝐾, 𝑛) couples in the construction ranges 𝐾 𝜖[5000; 20000] and 𝑛 𝜖[0.3; 0.6]. These data are computed by 

a Finite Elements reference model experimentally validated on an instrumented apparatus. A series of ROMs of 

order 𝑚 = 1 to 5 is identified and then tested for a second set of (𝐾, 𝑛) couples. The order 5 ROM is able to 

reproduce the temperature profile computed by the reference model with a r.m.s. error of about 10-2 °C. The 

temperature profile computed with ROMs is also compared to the profile measured for a real flow. 

 

Keywords: pseudoplastic fluid, elastomer, Galerkin projection, Modal Identification Method, 

optimization, intrusive sensor 

 

1 Introduction 

The diversity of natural resources and the increase of biosourced and recycled materials 

involve quality fluctuations of raw materials used in polymer forming process. The 

consequence is a variation of the polymer rheological behavior and thus difficulties during 
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forming. Polymers, and especially elastomers, have a high pseudo-plastic behavior which 

concentrates the high shear rate near to the walls. Thus, the viscous dissipation, which highly 

depends on the material viscosity, is preponderant close to the wall. The resulting thermal 

gradient can be very high in the runners of industrial tools [1–3]. The knowledge of the flow 

rheology variations during forming process should be helpful to define production stability 

criteria.  

Usually, the rheological apparatus used in production, and largely studied in literature, are 

based on the detection of pressure gap in derivation runners of rheometer arrangement [3,4]. 

Such apparatus are only devoted to mechanical parameters (flowrate, pressure) and allow 

measuring an average viscosity if the prerequisite condition of a stationary regime is met. 

Such average viscosity does not take into account the thermal heterogeneity of the material in 

the measurement area [5,6]. Moreover, in most cases, the process conditions lead to unsteady 

flow or thermal regimes, which are hardly suitable for the required stationarity hypothesis 

previously mentioned. 

Another possible way consists in exploiting the intrinsic thermal information of the flow 

(especially viscous heating) in order to estimate viscosity or slight change of viscosity. To 

study this possibility, we want to use the thermal measurements obtained with a cylindrical 

runner specifically equipped. This device has been developed in the context of former works 

[1] and is presented in Figure 1. It is thermally regulated and equipped with two intrusive 

measurement cells called TMC (Thermal Measurement Cell). These innovative sensors with 

an elliptic shape are introduced within the flow and contain 25 thermocouples of 50 µm 

diameter. 

 

  

Figure 1: Experimental device constituted of a cylindrical runner instrumented with two TMC 

(Thermal Measurement Cells). 

 

Despite the perturbations of the flow induced by their invasive nature, these sensors allow to 

measure the temperature profile of elastomer or thermoplastic flows at the inlet and the outlet 
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of the runner. The measurements obtained and numerically checked are sensitive to the 

process parameters and flow conditions, namely the rheological behavior of the material. 

Through the association of these temperature measurements with a numerical procedure for 

parameter estimation, it is possible to consider an on-line indirect measurement of viscosity, 

which is a characteristic quantity of the flow rheological behavior.  

A thermo-rheological model of the flow is required to solve the parameter estimation 

problem. In order to build a device able to perform on-line viscosity estimation, this model 

should be a Reduced Order Model (ROM) allowing fast resolution of the inverse problem. 

Thus, the aim of this numerical preliminary work is to develop a thermo-rheological ROM for 

a steady incompressible viscous flow of a non-Newtonian pseudoplastic fluid. 

 

A ROM is a model involving a small number of degrees of freedom (dof), which mimics the 

behavior of an actual system or a reference model of this system (model with a large number 

of dof sometimes called detailed model), whatever the time-varying boundary conditions 

and/or source terms, or for a range of values of some parameters. A ROM may be obtained by 

transformation of a detailed model or identified from data coming either from simulations of a 

detailed model or from measurements on the real system. 

 

Among methods for building ROMs we may first cite those based on Proper Orthogonal 

Decomposition (POD) followed by a Galerkin projection. As an example, such an approach 

was used in [7] for building a ROM for the Fokker-Planck equation modelling dynamics of 

solute molecules in complex fluids, with an application to the flow of dilute polymeric liquids 

over a cylinder described by the FENE model. POD-Galerkin ROMs were also developed in 

[8] for a vibroacoustic system used for characterizing viscoelastic properties of solids by 

means of an inverse problem. 

The Branch Eigenmodes Reduction Method (BERM) relies on a special spectral problem 

where the eigenvalue of each mode appears in a Steklov boundary condition. The resulting 

branch basis allows handling nonlinear problems. Reduction is then obtained by selecting or 

amalgamating the branch modes. The BERM was used for instance in [9] for an advection-

diffusion problem featuring a rotating disk with variable velocity and multiple time-varying 

loads. 

The Reduced Basis (RB) approximation method [10] allows building ROMs for parametrized 

Partial Differential Equation (PDE). It uses a Greedy algorithm to compute the reduced basis 

thanks to solutions of a reference Finite Element model at optimally selected points in the 
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parameter space. The ROM is then formed by Galerkin projection of PDE onto the reduced 

basis. The RB method provides errors bounds but in turn requires a reference FE model on 

which it relies. Therefore the construction of ROMs from experimental data does not appear 

to be possible with the RB approach. One should note that Greedy sampling methods are 

usually used in parameter domain whereas POD-based approaches are often used in temporal 

domain. Both techniques can be combined for parameter-time problems. 

Both the goal oriented model-constrained approach developed in [11] and the Proper 

Generalized Decomposition (PGD) [12] allow the building of ROMs able to mimic dynamics 

of a system for both a time-varying load and a physical parameter range. 

The former uses an optimization problem for computing the basis of space functions: an 

output error between solutions of the reference model and those of the ROM is minimized, 

assuming that each basis vector can be represented as a linear combination of snapshots. The 

approach has been applied to a compressible flow around a rotor blade, showing that for a 

small number of basis functions (≤10), stable ROMs were obtained whereas POD-Galerkin 

ROMs were unstable [11]. 

The latter (PGD) appears to provide a discrete solution in physical space, time and possibly 

parameters space rather than a continuous ROM. In [12] are gathered applications of PGD to 

some rheology-related problems where the interested reader will find additional references. 

Applying PGD to our steady problem would consist to seek the temperature field as a sum of 

products of functions of physical space coordinates and functions of the rheological 

parameters defining the fluid viscosity. We would then obtain a discrete solution in the 

physical space as well as in the parameters space. Because the ROM we wish to build is 

intended to be used in an inverse problem for the estimation of rheological parameters, we 

have preferred to build a ROM depending explicitly on these parameters, thus allowing for 

direct differentiation with respect to these parameters in order to compute sensitivities. 

 

The Modal Identification Method (MIM) allows the building of ROMs linking the system 

inputs (i.e. the quantities influencing its behavior – external loads and/or internal parameters) 

to the outputs (either the whole fields of the problem variables, like temperature, velocity, 

etc., or their value in some specific locations). ROMs are identified from the knowledge of 

input-output data characterizing the system behavior, through the minimization of a quadratic 

functional based on the residues between reference output data on the one hand and solutions 

of the ROM on the other hand, corresponding to the same inputs. MIM hence uses 

optimization tools (here a Particle Swarm Optimization algorithm) for the identification of 
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ROMs. So far, MIM has been mainly subject to works involving heat conduction [13,14] or 

Newtonian fluid flows in forced convection [15,16] or mixed convection [17] regimes. In 

particular, ROMs built by MIM have been used to solve efficiently inverse problems of heat 

conduction [13] and transport-diffusion [15] and also thermal state-feedback control problems 

[14]. Moreover, until now, inputs considered were mainly time-varying boundary conditions 

[14,16] or internal sources [13,15] rather than parameters. In the frame of heat conduction, an 

extension of MIM to the construction of a ROM having as inputs both a time-varying thermal 

load and a physical parameter in a predefined range (thermal conductivity) was addressed in 

[18]. 

In the present work is presented an extension of the MIM aiming at the construction of a 

parametric thermal ROM for a steady incompressible flow of a non-Newtonian fluid in a 

cylindrical duct. The ROM is explicitly parametrized by two thermo-rheological parameters 

defining the dynamic viscosity of a pseudoplastic fluid: consistency index and power law 

index [4]. The ROM allows the computation of the flow temperature profile at the channel 

outlet whatever the two input parameters in a predefined range of values. Due to the fact that 

an assumption of no thermodependence of viscosity is considered in this first approach, the 

developed model is more adapted to polymers having a low value of the activation energy of 

the viscosity [4]. 

 

The paper is structured as follows. In section 2 are presented the geometry, equations and 

boundary conditions of the problem as well as the numerical reference model developed with 

a finite element software. In section 3 is presented an overview of the approach proposed for 

building a ROM of heat transfer parametrized by viscosity. The development of the ROM 

formulation is described in details in section 4. Only the energy balance equation is concerned 

as the velocity field is obtained by an analytical solution. A Galerkin projection is used for 

defining the ROM equations. Data generation and ROM identification are briefly presented in 

section 5. In section 6 the developed approach is applied to an elastomer cylindrical flow 

corresponding to an experiment performed with the device described in Figure 1. Several 

“viscosity-temperature” datasets are generated with the numerical reference model of the 

flow. Some of them are used to build a series of ROMs. The others are used for the ROMs 

validation: the outlet temperature profile computed with the identified ROMs is compared to 

the one computed with the reference model. Concluding remarks and prospects are given in 

section 7. 
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2 Pseudoplastic fluid flow in a cylindrical channel 

Let us consider the steady incompressible viscous flow of a polymer melt in a channel. The 

polymer melt is considered as a non-Newtonian fluid. The complete domain Ω is composed of 

two sub-domains: Ω𝑓 is the fluid domain inside the channel and Ω𝑤 the solid domain in the 

channel wall. 

2.1  General local governing equations 

Because of the strong viscous nature of polymers, inertia terms are not taken into account and 

the flow is assumed to be steady. Buoyancy effects being also neglected [4,19], equations for 

conservation of mass, momentum and energy in the polymer flow hence write: 

 

∇⃗⃗ . 𝑣 = 0 (1)  

−∇⃗⃗ 𝑝 + ∇⃗⃗ 𝜏 =  0⃗  (2)  

𝜌𝐶𝑝𝑣 . ∇⃗⃗ 𝑇 = ϕ𝑣 + ∇⃗⃗ . (𝑘𝑓 ∇⃗⃗ 𝑇) (3)  

 

where 𝜌, 𝐶𝑝 and 𝑘𝑓 are respectively the density, specific heat capacity and thermal 

conductivity of the fluid. ϕ𝑣 represents the power dissipated by internal forces. By 

considering an incompressible viscous fluid, the power dissipated by pure shear, can be 

expressed by: 

ϕ𝑣 = 𝜏 ∶ 𝜀̇  (4)  

with 𝜀̇ the strain rate tensor.  

The viscous stress tensor 𝜏 depends on the fluid viscosity. In the case of generalized 

Newtonian fluids, the dynamic viscosity 𝜂 depends on the generalized shear rate 𝛾̇̅. This one is 

linked to the second invariant of strain tensor 𝐽2 by [4]: 

𝛾̇̅ = 2√𝐽2 (𝜀̇)    with   𝐽2 (𝜀̇) =
1

2
∑ 𝜀𝑖̇𝑗

2
𝑖,𝑗  (5)  

For polymer flows, the shear rate terms are much more important than the elongation ones in 

most of processes. This leads to the relation 𝛾̇̅ = 𝛾̇ where 𝛾̇ is the shear rate (SI unit s-1). 

Thus, the viscous power can be expressed as: 

ϕ𝑣 = 𝜂𝛾̇
2 (6)  

Moreover in this work, we describe the viscosity of pseudoplastic fluids through a power law: 
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𝜂 = 𝐾𝛾̇𝑛−1 (7)  

where 𝐾 is the consistency index (SI units Pa.sn) and 𝑛 < 1 is the power law index 

(dimensionless). 

For polymers, the quality of viscosity curves fitting by power law depends on polymer 

molecular weight and molecular weight distribution [20] and also on the effect of fillers [21]. 

Concerning the most important industrial processes (e.g. extrusion, injection) the shear rate 

range is mostly located in the pseudoplastic area of viscosity curves [4]. Due to the high 

dependence of viscosity with shear rate (several orders of magnitude), the smaller variation of 

viscosity with temperature, currently expressed by an exponential law [22] was neglected. 

 

In the channel wall depth, diffusion is the lone heat transfer mode. The energy equation then 

comes down to the heat equation: 

∇⃗⃗ . (𝑘𝑤∇⃗⃗ 𝑇) = 0 (8)  

where 𝑘𝑤 is the channel wall thermal conductivity. 

 

2.2  Established flow in a circular channel 

Let us consider the special case of a circular channel as depicted in Figure 2. 

 

 

Figure 2 : Flow in circular channel. Schematic view including boundary conditions 
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2.2.1 Local governing equations 

The flow is assumed to be established in the 𝑧-direction (channel axis) with a symmetry of the 

velocity field with respect to angular coordinate 𝜑. Hence the velocity field has a single non-

zero component 𝑢𝑧 depending on the radial coordinate 𝑟. The dynamic viscosity 𝜂 defined by 

Eq.(7) therefore writes: 

𝜂 = 𝐾 |
𝑑𝑢𝑧
𝑑𝑟
|
𝑛−1

 (9)  

In the present work viscosity is assumed to be independent of temperature. Properties of the 

fluid and of the channel are also assumed to be temperature-independent. In addition 

buoyancy effects are neglected. As a consequence of these hypothesis, the velocity field does 

not depend on temperature. 

Under the previously mentioned assumptions, mass conservation equation (1) and momentum 

conservation equation (2) have an analytical solution. The velocity field writes [4]: 

𝑢𝑧(𝑟) = (
𝑛

𝑛 + 1
) (
∆𝑝

2𝐾𝐿
)

1
𝑛
(𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 ) (10)  

Where ∆𝑝 is the pressure difference between inlet and outlet sections of the channel of length 

𝐿. 

Taking into account the above mentioned assumptions, the energy equation (3) takes the 

following form describing steady heat transfer in the flow [4,19]: 

𝜌𝐶𝑝𝑢𝑧
𝜕𝑇

𝜕𝑧
= ∇⃗⃗ . (𝑘𝑓 ∇⃗⃗ 𝑇) + 𝜂 (

𝑑𝑢𝑧
𝑑𝑟
)
2

 (11)  

Using equations (9) and (10), equation (11) writes: 

𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (
∆𝑝

2𝐾𝐿
)

1
𝑛
(𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )

𝜕𝑇

𝜕𝑧
= ∇⃗⃗ . (𝑘𝑓 ∇⃗⃗ 𝑇) + 𝐾 (

∆𝑝

2𝐾𝐿
𝑟)

𝑛+1
𝑛

 (12)  

 

2.2.2 Thermal boundary conditions 

The boundary of the whole domain Ω is noted Γ. The fluid domain boundary is Γ𝑓 = Γ𝑖𝑛 ∪

Γ𝑓𝑤 ∪ Γ𝑜𝑢𝑡 whereas the solid domain (wall) boundary is Γ𝑤 = Γ𝑤𝑑 ∪ Γ𝑓𝑤 ∪ Γ𝑤𝑛. 

 

Thermal boundary conditions are described in the following and shown in Figure 2. 

At the channel inlet Γ𝑖𝑛, a radial temperature profile is assumed:  

Γ𝑖𝑛    ∶    𝑇(𝑟, 𝑧 = 0) = 𝑇𝑖𝑛(𝑟)     ;     0 ≤ 𝑟 ≤ 𝑅 (13)  
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At the channel outlet Γ𝑜𝑢𝑡, the flow is considered as thermally established, a homogeneous 

Neumann condition is hence applied: 

Γ𝑜𝑢𝑡    ∶     
𝜕𝑇

𝜕𝑧
(𝑟, 𝑧 = 𝐿) = ∇⃗⃗ 𝑇(𝑟, 𝑧 = 𝐿). 𝑒𝑧⃗⃗  ⃗ = 0;     0 ≤ 𝑟 ≤ 𝑅 (14)  

On the channel wall external surface Γ𝑤𝑑, the temperature profile is assumed to be function of 

𝑧: 

Γ𝑤𝑑    ∶   𝑇(𝑟 = 𝑅 + 𝑒, 𝑧) = 𝑇𝑤(𝑧);     0 ≤ 𝑧 ≤ 𝐿 (15)  

On the channel wall boundary Γ𝑤𝑛 (𝑧 = 0 and 𝑧 = 𝐿), homogeneous Neumann conditions are 

assumed: 

{

𝜕𝑇

𝜕𝑧
(𝑟, 𝑧 = 0) = ∇⃗⃗ 𝑇(𝑟, 𝑧 = 0). 𝑒𝑧⃗⃗  ⃗ = 0;        𝑅 ≤ 𝑟 ≤ 𝑅 + 𝑒

𝜕𝑇

𝜕𝑧
(𝑟, 𝑧 = 𝐿) = ∇⃗⃗ 𝑇(𝑟, 𝑧 = 𝐿). 𝑒𝑧⃗⃗  ⃗ = 0;        𝑅 ≤ 𝑟 ≤ 𝑅 + 𝑒

 (16)   

On the channel wall internal surface Γ𝑓𝑤, i.e. the fluid/solid interface, continuity of both 

temperature and heat flux density (perfect contact) are assumed. 

 

2.3  Numerical reference model 

The Ansys Polyflow software [23] has been used to model the system. This proprietary Finite 

Elements software is particularly well suited for viscous fluids flows. This reference model 

will be called Detailed Model (DM) in the following. 

The problem considered is a one-way coupled problem as temperature depends on velocity 

whereas velocity does not depend on temperature because viscosity is assumed to be 

independent of temperature. Hence for the fluid domain, only energy equation (12) has to be 

solved. However doing this with Ansys Polyflow is not convenient. Therefore the system of 

coupled equations (1) and (2) has first been solved for computing the velocity field, which is 

of course equal to the analytical profile (10), and then equations (3) and (8) have been solved 

to compute the temperature field in the fluid and solid domains respectively. The thermal 

boundary conditions (13)-(16) are completed by following boundary conditions for velocity: 

For both inlet and outlet sections, a homogeneous Neumann condition is applied: 

Γ𝑖𝑛    ∶   
𝜕𝑣 

𝜕𝑧
(𝑟, 𝑧 = 0) = 0⃗           (17)  
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Γ𝑜𝑢𝑡    ∶   
𝜕𝑣 

𝜕𝑧
(𝑟, 𝑧 = 𝐿) = 0⃗  (18)  

On the channel wall internal surface Γ𝑓𝑤, a no-slip condition is applied: 

Γ𝑓𝑤    ∶   𝑣 (𝑟 = 𝑅, 𝑧) = 0⃗       (19)  

Gaussian elimination has been used along with an iterative Picard scheme. A geometric mesh 

with 1.1 factor and minimal cell size 0.5 mm has been used to obtain convergence. Thus, the 

number of finite elements is 𝑁𝑚𝑒𝑠ℎ =33322.  

3 Heat transfer Reduced Order Model parametrized by viscosity: overview 

The velocity field being analytically determined by Eq.(10), model reduction is here 

concerned with energy equation only for both the fluid (Eq.(12)) and the solid wall (Eq.(8)) 

domains. Our goal is to build a Reduced Order Model with explicit dependence on the 

parameters governing the dynamic viscosity 𝜂 defined by Eq.(9): consistency index 𝐾 and 

flow behavior index 𝑛. 

The approach used in the present paper is based on the Modal Identification Method (MIM) 

[13–18]. The MIM consists in three main steps: 

1) Defining the structure of the ROM equations able to adequately describe the involved 

physics (see section 4). This is the core of the paper; 

2) Generating some input-output data representative of the system. Those data may come 

from in-situ measurements or, like in the present paper, from numerical simulations (see 

section 5.1 for a brief presentation and section 6.1 for the practical application); 

3) Identifying the fixed constitutive parameters of the ROM equations through the 

minimization of a functional based on the quadratic residuals between the previously 

generated output data of the system on the one hand and the outputs of the ROM on the 

other hand, for the same input data (see section 5.2 for a brief presentation of technical 

aspects and section 6.2 for the practical application). 

The MIM therefore aims to adjust the ROM constitutive parameters using optimization 

techniques, in order for the ROM to mimic the data characterizing the input-output responses 

of the system. Main conceptual differences with POD-G and PGD approaches are highlighted 

in section 5.3. 
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4 Reduced Order Model formulation 

The general form of the ROM equations is given in section 4.1. Then, the Galerkin projection 

of the energy equation (Eq.(12) in Ω𝑓 and Eq.(8) in Ω𝑤), briefly presented in section 4.2, leads 

to a first structure for the ROM equations. An additional hypothesis allowing to separate the 

radial direction 𝑟, intrinsically linked to the flow behavior index 𝑛, from the 𝑧 direction, is 

made in section 4.3. A simplified treatment of diffusion terms is then done in section 4.4. The 

final form of the ROM is given in section 4.5 before some comments in section 4.6. 

 

4.1 General form of ROM equations 

For a steady-state problem, the ROM to be built takes the following general form: 

𝐹𝑘(𝑋, 𝜃,𝐾, 𝑛) = 0            ∀𝑘 ∈ [1;𝑚] (20)  

And: 

𝑌𝑗
𝑜𝑏𝑠 = 𝐺𝑗(𝑋, 𝜃)            ∀𝑗 ∈ [1;𝑁𝑜𝑏𝑠] (21)  

Equation (20), called ROM state equation, is a set of 𝑚 equations (𝑚 ≪ 𝑁𝑚𝑒𝑠ℎ), explicitly 

parametrized by 𝐾 and 𝑛, which allows computing a so-called state vector 𝑋 ∈ ℝ𝑚. This set 

of equations also depends on constitutive fixed parameters gathered in vector 𝜃(𝑚) ∈

ℝ𝑁𝑝𝑎𝑟𝑎𝑚(𝑚) which have to be determined in order to build the ROM. 

Equation (21), called ROM observation equation, is a set of 𝑁𝑜𝑏𝑠 equations allowing to 

compute the outputs of interest 𝑌𝑗
𝑜𝑏𝑠 (some temperatures in our case) once 𝑋 computed. 

𝐹𝑘, 𝑘 ∈ [1;𝑚], 𝐺𝑗 , 𝑗 ∈ [1; 𝑁𝑜𝑏𝑠] as well as vector 𝜃(𝑚) depend on the considered problem 

and on additional hypotheses, as shown in the following sections.  

 

4.2 Galerkin projection of energy equation 

Energy equation (Eq.(12) in Ω𝑓 and Eq.(8) in Ω𝑤), parametrized by 𝐾 and 𝑛, is considered. 

It is here assumed that the temperature field 𝑇(𝑟, 𝑧, 𝐾, 𝑛) can be written as a linear 

combination of some space functions 𝜙𝑖(𝑟, 𝑧), 𝑖 = 1,… ,𝑚: 

𝑇(𝑟, 𝑧, 𝐾, 𝑛) ≈∑𝜙𝑖(𝑟, 𝑧)𝑋𝑖(𝐾, 𝑛)

𝑚

𝑖=1

 (22)  

where space functions 𝜙𝑖(𝑟, 𝑧), 𝑖 = 1,… ,𝑚 are a truncation of a basis of the Hilbert space 

formed by the ℒ2(Ω) space of square integrable functions equipped with the usual inner 

product 〈. , . 〉Ω: 
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〈𝑢, 𝑣〉Ω = ∫𝑢𝑣𝑑Ω

 

Ω

 (23)  

where functions 𝑢 and 𝑣 are defined on Ω. 

The 𝑋𝑖(𝐾, 𝑛), 𝑖 = 1,… ,𝑚 are the coefficients of the approximation. 

Of course, our goal will be to find a ROM, hence corresponding to a small number 𝑚 of 

functions used in the temperature field decomposition. 

Let us call ℛ the residual of energy equation (Eq.(12) in Ω𝑓 and Eq.(8) in Ω𝑤). 

The Galerkin projection consists in forcing the residual ℛ, written with the approximation 

(22), to be orthogonal to each 𝜙𝑘(𝑟, 𝑧), 𝑘 = 1,… ,𝑚, so that the projection of the residual 

onto the subspace of ℒ2(Ω) generated by the 𝜙𝑘 would be null. 

According to the inner product (23), the Galerkin projection of the energy equation writes: 

〈ℛ, 𝜙𝑘〉Ω = ∫ℛ𝜙𝑘(𝑟, 𝑧)𝑑Ω

 

Ω

= 0      ∀𝑘 ∈ [1;𝑚] (24)  

Taking into account the respective forms of energy equation on the fluid domain Ω𝑓 and on 

the solid domain Ω𝑤, Eq.(24) writes: 

〈ℛ, 𝜙𝑘〉Ω = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
∫(𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )

𝜕𝑇

𝜕𝑧
𝜙𝑘𝑑Ω

 

Ω𝑓⏟                              
𝒯

 

−𝐾 (
∆𝑝

2𝐾𝐿
)

𝑛+1
𝑛
∫𝑟

𝑛+1
𝑛 𝜙𝑘𝑑Ω

 

Ω𝑓⏟                  
𝒫

− ∫ ∇⃗⃗ . (𝑘𝑓 ∇⃗⃗ 𝑇)𝜙𝑘𝑑Ω

 

Ω𝑓

− ∫ ∇⃗⃗ . (𝑘𝑤∇⃗⃗ 𝑇)𝜙𝑘𝑑Ω

 

Ω𝑤⏟                            
𝒟

= 0 

∀𝑘 ∈ [1;𝑚] 

(25)  

𝒯,𝒫 and 𝒟 are respectively the transport, production and diffusion terms. 

 

Four steps are successively performed, for which the detailed developments are not given 

here. 

1. Noting that in cylindrical coordinates 
𝜕𝑇

𝜕𝑧
= ∇⃗⃗ 𝑇. 𝑒𝑧⃗⃗  ⃗ in the transport term, both the transport 

term 𝒯 and the diffusion term 𝒟 are integrated by parts using the Green formula: 

∫ 𝑢⃗ . ∇⃗⃗ 𝑓𝑑Ω

 

Ω

= ∫𝑓𝑢⃗ . 𝑛⃗ 𝑑Γ

 

Γ

− ∫𝑓∇⃗⃗ . 𝑢⃗ 𝑑Ω

 

Ω

 (26)  

This makes the boundary terms appear (Dirichlet-type for transport term and Neumann-

type for diffusion term). Further treatment is required in order to make Dirichlet-type 
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boundary conditions on Γ𝑖𝑛 and Γ𝑤𝑑 appear in the diffusion boundary terms. The relation 

∇⃗⃗ (𝑓𝑔) = 𝑓∇⃗⃗ 𝑔 + 𝑔∇⃗⃗ 𝑓 is used for that matter. 

2. The known thermal boundary conditions (13) to (16) are introduced in terms where they 

explicitly appear; 

3. The temperature field approximation (22) is inserted in integral terms on domain Ω and in 

remaining boundary terms; 

4. Finally the resulting equation is written in compact form. 

 

The Galerkin projection (25) can finally be written as follows: 

∑𝒜𝑘𝑖(𝐾, 𝑛)𝑋𝑖(𝐾, 𝑛)

𝑚

𝑖=1

= ℬ𝑘(𝐾, 𝑛)            ∀𝑘 ∈ [1;𝑚] (27)  

Or under matrix-vector form: 

𝒜(𝐾, 𝑛)𝑋(𝐾, 𝑛) = ℬ(𝐾, 𝑛) (28)  

With: 

𝒜𝑘𝑖(𝐾, 𝑛) = 

𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛

(

  
 
∫ (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜙𝑖𝜙𝑘𝑑Γ

 

Γ𝑜𝑢𝑡⏟                  
[𝒜1]𝑘𝑖

− ∫𝜙𝑖∇⃗⃗ . [(𝑅
𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜙𝑘𝑒𝑧⃗⃗  ⃗] 𝑑Ω

 

Ω𝑓⏟                      
[𝒜2]𝑘𝑖 )

  
 

 

+𝑘𝑓 ∫ ∇⃗⃗ 𝜙𝑖. ∇⃗⃗ 𝜙𝑘𝑑Ω

 

Ω𝑓

+ 𝑘𝑤 ∫ ∇⃗⃗ 𝜙𝑖. ∇⃗⃗ 𝜙𝑘𝑑Ω

 

Ω𝑤⏟                        
[𝒜3]𝑘𝑖

−𝑘𝑓 ∫ ∇⃗⃗ (𝜙𝑖𝜙𝑘). 𝑛⃗ 𝑑Γ

 

Γ𝑖𝑛

− 𝑘𝑤 ∫ ∇⃗⃗ (𝜙𝑖𝜙𝑘). 𝑛⃗ 𝑑Γ

 

Γ𝑤𝑑⏟                            
[𝒜4]𝑘𝑖

 

∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

(29)  

 

And: 
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ℬ𝑘(𝐾, 𝑛) = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (
∆𝑝

2𝐾𝐿
)

1
𝑛
∫𝑇𝑖𝑛(𝑟) (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜙𝑘𝑑Γ

 

Γ𝑖𝑛⏟                    
[ℬ1]𝑘

− 𝑘𝑓 ∫𝑇𝑖𝑛(𝑟)∇⃗⃗ 𝜙𝑘. 𝑛⃗ 𝑑Γ

 

Γ𝑖𝑛⏟            
[ℬ2]𝑘

− 𝑘𝑤 ∫ 𝑇𝑤(𝑧)∇⃗⃗ 𝜙𝑘. 𝑛⃗ 𝑑Γ

 

Γ𝑤𝑑⏟            
[ℬ3]𝑘

+ 𝐾 (
∆𝑝

2𝐾𝐿
)

𝑛+1
𝑛
∫𝑟

𝑛+1
𝑛 𝜙𝑘𝑑Ω

 

Ω𝑓⏟        
[ℬ4]𝑘

              ∀𝑘 ∈ [1;𝑚] 

(30)  

 

Equation (27) is a system of 𝑚 algebraic equations for 𝑚 unknowns that are the coefficients 

𝑋𝑖, 𝑖 = 1,… ,𝑚, of the temperature field approximation (22). 

As shown by equations (29) and (30), 𝒜(𝐾, 𝑛) ∈ ℝ𝑚×𝑚 and ℬ(𝐾, 𝑛) ∈ ℝ𝑚 in equation (27) 

both depend on space functions 𝜙𝑖(𝑟, 𝑧), 𝑖 = 1, … ,𝑚. These functions could be defined by 

different means: they might be arbitrarily chosen, obtained by POD or, in the frame of an 

identification method as in the present work, obtained via an optimization algorithm. 

However, in order to simplify the ROM identification procedure, we are going to make an 

additional hypothesis about the form of space functions 𝜙𝑖(𝑟, 𝑧), 𝑖 = 1,… ,𝑚. 

 

4.3 Additional hypothesis: separation of r and z dependencies 

In [18] a heat diffusion ROM explicitly parametrized by thermal conductivity was developed. 

As thermal conductivity was assumed to be uniform throughout the whole domain, it was 

possible to extract it from the integral diffusion term arising in the Galerkin projection. As a 

consequence, all matrices and vectors defined by integrals depending on space functions in 

the Galerkin projection were independent of thermal conductivity. In the frame of the Modal 

Identification Method, the space functions themselves were not identified. The special 

integral form of matrices and vectors arising from the Galerkin projection was not taken into 

account and the components of matrices and vectors in the ROM were identified through an 

optimization problem. 

For the problem studied in the present paper, the flow behavior index 𝑛 of the pseudoplastic 

fluid is intrinsically associated with radial coordinate 𝑟, as shown by heat transport and 

production terms in local energy equation (12) and consequently in equations (29) and (30) 

defining 𝒜(𝐾, 𝑛) and ℬ(𝐾, 𝑛) appearing in equation (27). The flow behavior index 𝑛 cannot 
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therefore be extracted from integral terms [𝒜1]𝑘𝑖 and [𝒜2]𝑘𝑖 in eq.(29) and [ℬ1]𝑘 and [ℬ4]𝑘 

in eq.(30). In order to make further simplifications in the ROM formulation, an additional 

hypothesis is thus made for space functions 𝜙𝑘(𝑟, 𝑧), 𝑘 = 1,… ,𝑚, which are now assumed to 

be written as: 

 

𝜙𝑘(𝑟, 𝑧) = 𝜓𝑘(𝑟)𝜉𝑘(𝑧), 𝑘 = 1,… ,𝑚 (31)  

 

This hypothesis allows to separate the radial direction 𝑟, intrinsically linked to the flow 

behavior index 𝑛, from the 𝑧 direction. 

Using (31) the temperature field approximation defined by eq.(22) is written as: 

 

𝑇(𝑟, 𝑧, 𝐾, 𝑛) ≈∑𝜓𝑖(𝑟)𝜉𝑖(𝑧)𝑋𝑖(𝐾, 𝑛)

𝑚

𝑖=1

 (32)  

 

Injecting additional hypothesis (31) into equations (29) and (30) and taking into account the 

expressions of the divergence of a vector and of the gradient of a scalar in cylindrical 

coordinates, yields the following expressions for 𝒜(𝐾, 𝑛) and ℬ(𝐾, 𝑛): 

 

𝒜𝑘𝑖(𝐾, 𝑛) = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
[𝑀𝑇]𝑘𝑖 ( ∫ (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑖(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

)

+ [𝑀𝐷1]𝑘𝑖 (𝑘𝑓 ∫
𝑑𝜓𝑖
𝑑𝑟

(𝑟)
𝑑𝜓𝑘
𝑑𝑟

(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑤 ∫
𝑑𝜓𝑖
𝑑𝑟

(𝑟)
𝑑𝜓𝑘
𝑑𝑟

(𝑟)𝑑𝑟

𝑟=𝑅+𝑒

𝑟=𝑅

− 𝑘𝑤
𝑑(𝜓𝑖(𝑟)𝜓𝑘(𝑟))

𝑑𝑟
(𝑟 = 𝑅 + 𝑒))

+ ([𝑀𝐷2]𝑘𝑖 + [𝑀𝐷3]𝑘𝑖) 𝑘𝑓 ∫ 𝜓𝑖(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ [𝑀𝐷2]𝑘𝑖  𝑘𝑤 ∫ 𝜓𝑖(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅+𝑒

𝑟=𝑅

            ∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

(33)  
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Where 𝑀𝑇, 𝑀𝐷1, 𝑀𝐷2 and 𝑀𝐷3 are 𝑚 by 𝑚 matrices which depend on space functions 𝜉𝑖(𝑧),

𝑖 = 1, … ,𝑚 and/or on their partial derivatives with respect to 𝑧. Their expressions are given in 

Appendix A. 

 

ℬ𝑘(𝐾, 𝑛) = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
[𝑉𝑇,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟) (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑓[𝑉𝐷,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

− 𝑘𝑤[𝑊𝑤]𝑘
𝑑𝜓𝑘
𝑑𝑟

(𝑅 + 𝑒)

+ 𝐾 (
∆𝑝

2𝐾𝐿
)

𝑛+1
𝑛
[𝑊]𝑘 ∫ 𝑟

𝑛+1
𝑛 𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

           ∀𝑘 ∈ [1;𝑚] 

(34)  

 

Where 𝑉𝑇,𝑖𝑛, 𝑉𝐷,𝑖𝑛, 𝑊𝑤 and 𝑊 are vectors of size 𝑚 which depend on space functions 𝜉𝑖(𝑧),

𝑖 = 1, … ,𝑚 and/or on their partial derivatives with respect to 𝑧. Vector 𝑊𝑤 also depends on 

the wall temperature 𝑇𝑤(𝑧) of Dirichlet boundary condition (15). Their expressions are given 

in Appendix B. 

Matrices 𝑀𝑇 , 𝑀𝐷1, 𝑀𝐷2, 𝑀𝐷3 and vectors 𝑉𝑇,𝑖𝑛, 𝑉𝐷,𝑖𝑛,𝑊𝑤,𝑊 are independent of parameters 𝐾 

and 𝑛. In the frame of an approach such as the MIM based on the identification of a ROM, 

their components are identified using optimization techniques. In fact functions 𝜉𝑖(𝑧), 𝑖 =

1, … ,𝑚 are not computed, they are embedded in these matrices and vectors to be identified. A 

space discretization in direction 𝑧 is hence avoided and a reduction in this direction is 

obtained. 

On the contrary, the 𝑟-dependence needs to be retained in the model because of terms 𝑟
𝑛+1

𝑛  in 

transport and production terms of equations (33) and (34). Considering the physics involved 

and our goal to build a ROM parametrized by the flow behavior index 𝑛, the radial direction 

is in fact “irreducible” due to its intrinsic link to 𝑛. 

Further simplification of the diffusion terms is going to be made in the following. 

 

4.4 Simplified form of diffusion terms 

First derivatives of functions 𝜓𝑘(𝑟), 𝑘 = 1,… ,𝑚 which appear in some diffusion terms in 

equation (33) are sources of numerical errors. Moreover they should be calculated at each 

iteration step of the particle swarm optimization algorithm used for the ROM parameters 
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identification and for each particle of the swarm. Thus their calculation may turn out to be 

time consuming, especially if the derivation is performed with a compact scheme on a fine 

radial mesh. 

In addition, diffusion terms in equation (33) require the identification of three 𝑚 by 𝑚 

matrices  𝑀𝐷1, 𝑀𝐷2, 𝑀𝐷3 to build the ROM. 

In order to reduce the number of parameters to be identified and to avoid numerical 

difficulties involved by the computation of first derivatives of functions 𝜓𝑘(𝑟), we have 

chosen to replace diffusion terms in equation (33) by a unique term [𝑀𝐷]𝑘𝑖 without taking 

into account the particular form of diffusion terms. This is possible since parameters 𝐾 and 𝑛 

do not appear in the diffusion terms of equation (33) which is thus replaced by: 

 

𝒜𝑘𝑖(𝐾, 𝑛) = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
[𝑀𝑇]𝑘𝑖 ( ∫ (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑖(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

)

+ [𝑀𝐷]𝑘𝑖            ∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

(35)  

 

In a similar manner, the diffusion term inside the wall depth in equation (34), that is 

−𝑘𝑤[𝑊𝑤]𝑘
𝑑𝜓𝑘

𝑑𝑟
(𝑅 + 𝑒), is replaced by 𝑘𝑤[𝑉𝐷,𝑤]𝑘. Equation (34) is thus replaced by: 

 

ℬ𝑘(𝐾, 𝑛) = 𝜌𝐶𝑝 (
𝑛

𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
[𝑉𝑇,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟) (𝑅

𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑓[𝑉𝐷,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑤[𝑉𝐷,𝑤]𝑘

+ 𝐾 (
∆𝑝

2𝐾𝐿
)

𝑛+1
𝑛
[𝑊]𝑘 ∫ 𝑟

𝑛+1
𝑛 𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

           ∀𝑘 ∈ [1;𝑚] 

(36)  

 

Therefore, instead of using equations (33) and (34) for which matrices 𝑀𝐷1, 𝑀𝐷2, 𝑀𝐷3 ∈

ℝ𝑚×𝑚 and vector 𝑊𝑤 ∈ ℝ
𝑚 need to be identified and first derivatives of space functions 

𝜓𝑘(𝑟), 𝑘 = 1, … ,𝑚, have to be computed, we have chosen to use equations (35) and (36) for 

which matrix 𝑀𝐷 ∈ ℝ
𝑚×𝑚 and vector 𝑉𝐷,𝑤 ∈ ℝ

𝑚 are going to be identified. 
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Another consequence of these simplifications of diffusion terms is that we do not need to 

evaluate functions 𝜓𝑘(𝑟), 𝑘 = 1,… ,𝑚 in the wall depth (𝑟 ∈ ]𝑅; 𝑅 + 𝑒]) anymore, but only 

inside the channel (𝑟 ∈ [0; 𝑅]). 

 

4.5 Final form of the Reduced Order Model 

Usually the flow rate 𝑄 in the channel is given rather than the pressure difference ∆𝑝. The 

flow rate is defined as: 

𝑄 = ∫𝑣 . 𝑛⃗ 𝑑𝑆

 

𝑆

= ∫ 𝑢𝑧(𝑟)2𝜋𝑟𝑑𝑟

𝑟=𝑅 

𝑟=0

 (37)  

According to the velocity profile (10) in the channel, the flow rate (37) writes: 

𝑄 = 𝜋 (
𝑛

3𝑛 + 1
) (

∆𝑝

2𝐾𝐿
)

1
𝑛
𝑅
3𝑛+1
𝑛  (38)  

 

The Reduced Order Model is composed of two sets of equations. 

The first one is a set of 𝑚 algebraic equations: 

 

∑𝒜𝑘𝑖(𝑛)𝑋𝑖

𝑚

𝑖=1

= ℬ𝑘(𝐾, 𝑛)            ∀𝑘 ∈ [1;𝑚] (39)  

 

Equation (39) allows the computation of the vector 𝑋 ∈ ℝ𝑚 as a function of explicit 

parameters 𝐾 and 𝑛. 

 

According to (35) and taking into account (38), 𝒜𝑘𝑖(𝑛) writes: 

𝒜𝑘𝑖(𝑛) = 𝜌𝐶𝑝 (
3𝑛 + 1

𝑛 + 1
)
𝑄

𝜋

1

𝑅
3𝑛+1
𝑛

[𝑀𝑇]𝑘𝑖 ( ∫ (𝑅
𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑖(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

)

+ [𝑀𝐷]𝑘𝑖            ∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚] 

(40)  

One can notice that since the model is expressed as a function of the flow rate 𝑄, matrix 𝒜 

depends only on the flow behavior index 𝑛. 

 

According to (36) and taking into account (38), ℬ𝑘(𝐾, 𝑛) is given by: 
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ℬ𝑘(𝐾, 𝑛) = 𝜌𝐶𝑝 (
3𝑛 + 1

𝑛 + 1
)
𝑄

𝜋

1

𝑅
3𝑛+1
𝑛

[𝑉𝑇,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟) (𝑅
𝑛+1
𝑛 − 𝑟

𝑛+1
𝑛 )𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑓[𝑉𝐷,𝑖𝑛]𝑘 ∫ 𝑇𝑖𝑛(𝑟)𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

+ 𝑘𝑤[𝑉𝐷,𝑤]𝑘

+ 𝐾((
3𝑛 + 1

𝑛
)
𝑄

𝜋

1

𝑅
3𝑛+1
𝑛

)

𝑛+1

[𝑊]𝑘 ∫ 𝑟
𝑛+1
𝑛 𝜓𝑘(𝑟)𝑑𝑟

𝑟=𝑅

𝑟=0

   ∀𝑘 ∈ [1;𝑚] 

(41)  

 

The second set of equations allows the computation of some temperatures of interest once 

vector 𝑋 has been computed. Here we focus on a particular observable set consisting in 𝑁𝑟 

temperatures referred to as 𝑌𝑗 , 𝑗 = 1,… ,𝑁𝑟, along the radial direction at a given position 𝑧∗. 

Using eq.(32) and setting 𝛼𝑖 = 𝜉𝑖(𝑧
∗), 𝑖 = 1, … ,𝑚, one obtains: 

𝑌𝑗 = 𝑇(𝑟𝑗 , 𝑧
∗) =∑𝜓𝑖(𝑟𝑗)𝜉𝑖(𝑧

∗)𝑋𝑖

𝑚

𝑖=1

=∑𝜓𝑖(𝑟𝑗)𝛼𝑖𝑋𝑖

𝑚

𝑖=1

      𝑗 = 1,… ,𝑁𝑟 (42)  

 

The ROM finally consists in equations (39) and (42) (respectively corresponding to general 

forms (20) and (21)), where 𝒜 and ℬ are defined by (40) and (41) respectively. It is explicitly 

parameterized by 𝐾 and 𝑛 which define the dynamic viscosity. Parameters 𝜌, 𝐶𝑝, 𝑄, 𝑅, 𝑘𝑓 , 𝑘𝑤 

in (40) and (41) are considered as fixed and known in the model. The inlet temperature profile 

𝑇𝑖𝑛(𝑟) is also assumed to be known. Matrices 𝑀𝑇 , 𝑀𝐷 ∈ ℝ
𝑚×𝑚 and vectors 

𝑉𝑇,𝑖𝑛, 𝑉𝐷,𝑖𝑛, 𝑉𝐷,𝑤,𝑊 ∈ ℝ𝑚 need to be identified to build the ROM, as well as coefficients 𝛼𝑖 

and space functions 𝜓𝑖(𝑟), 𝑖 = 1,… ,𝑚 . 

 

In order to ease the estimation of functions 𝜓𝑖(𝑟), 𝑖 = 1,… ,𝑚 , these are written as the linear 

combination of chosen functions which are here Bernstein basis polynomials [24] 𝐵𝑘,𝑁𝑏(𝑟
∗),

𝑘 = 1,… ,𝑁𝑏 with 𝑁𝑏 = 15 and 𝑟∗ = 𝑟 𝑅⁄ ∈ [0; 1]: 

𝜓𝑖(𝑟) = ∑ 𝛽𝑖𝑘𝐵𝑘,𝑁𝑏(𝑟
∗)

𝑁𝑏=15

𝑘=1

      𝑖 = 1,… ,𝑚 (43)  

Coefficients 𝛽𝑖𝑘, 𝑖 = 1,… ,𝑚, 𝑗 = 1, … , 𝑁𝑏 with 𝑁𝑏 = 15 are thus estimated instead of the 

𝜓𝑖(𝑟𝑗), 𝑖 = 1, … ,𝑚, 𝑗 = 1,… ,𝑁𝑟 with 𝑁𝑟 = 100. 

The discrete values 𝜓𝑖(𝑟𝑗) of space functions 𝜓𝑖(𝑟), 𝑖 = 1,… ,𝑚  are computed using (43) 

and used to compute integral terms in (40) and (41) and are also used in (42). 
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4.6 Comments on the Reduced Order Model 

4.6.1 Temperature outputs at other locations 

Equation (42) corresponds to a series of temperatures along the radial direction at a given 

position 𝑧∗. Adding temperatures 𝑌𝑗
′, 𝑗 = 1,… ,𝑁𝑟 at another position 𝑧′ is very simple. Using 

eq.(32) and setting 𝛾𝑖 = 𝜉𝑖(𝑧
′), 𝑖 = 1,… ,𝑚, one would have: 

𝑌𝑗
′ = 𝑇(𝑟𝑗, 𝑧

′) =∑𝜓𝑖(𝑟𝑗)𝜉𝑖(𝑧
′)𝑋𝑖

𝑚

𝑖=1

=∑𝜓𝑖(𝑟𝑗)𝛾𝑖𝑋𝑖

𝑚

𝑖=1

      𝑗 = 1,… , 𝑁𝑟 

It would simply add 𝑚 parameters 𝛾𝑖, 𝑖 = 1,… ,𝑚 to be identified in the ROM. 

 

4.6.2 Known fixed physical and geometrical parameters 

Density 𝜌, specific heat capacity 𝐶𝑝 and thermal conductivity 𝑘𝑓 of the fluid, wall thermal 

conductivity 𝑘𝑤, mass flow rate 𝑄, channel internal radius 𝑅, channel length 𝐿 and wall depth 

𝑒 are all known fixed parameters in the ROM which is then valid only for the values used for 

all simulations of the DM providing the reference temperature data. 𝜌 and 𝐶𝑝 could have been 

embedded in matrix 𝑀𝑇 of (40) and in vector 𝑉𝑇,𝑖𝑛 of (41). 𝑘𝑓 and 𝑘𝑤 could have been 

respectively embedded in vectors 𝑉𝐷,𝑖𝑛 and 𝑉𝐷,𝑤 of (41). However they have been retained 

explicitly in the ROM equations in order to provide a better understanding of the different 

transport and diffusion terms. Due to the simplifications made in sections 4.3 and 4.4, 𝐿 and 𝑒 

do not appear explicitly in the ROM equations. Both are in fact implicitly taken into account 

in the temperature data used for the ROM identification. If one wants to build a ROM for 

other specific values of any of these fixed parameters, the identification procedure has to be 

performed again with temperature data corresponding to the new specific parameter values. 

Building a ROM valid for any value of a third parameter (say 𝑄 for instance) in addition to 𝐾 

and 𝑛 is possible but requires to use temperature datasets for different values of these three 

parameters. 

 

4.6.3 Inlet temperature profile 

As mentioned in section 4.3, because our goal is to build a ROM parametrized by the flow 

behavior index 𝑛, the radial dependence has to be kept in the model because of terms 𝑟
𝑛+1

𝑛 . 

Hence the radial distribution 𝑇𝑖𝑛(𝑟) of the inlet temperature does not involve additional 

difficulties. In this work the developed ROM is valid only for a specific given profile 𝑇𝑖𝑛(𝑟) 
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which is injected in the two first terms of the equation (41) during the ROM construction. 

Building a ROM valid for any distribution 𝑇𝑖𝑛(𝑟) could be possible, for instance by using an 

approximation 𝑇𝑖𝑛(𝑟) = ∑ 𝑐𝑘𝑔𝑘(𝑟)
𝑞
𝑘=1  on a basis of known functions 𝑔𝑘(𝑟) with the 

coefficients 𝑐𝑘 as additional explicit parameters in the ROM. In such case the ROM 

identification would require to use temperature datasets corresponding to several couples 

(𝐾, 𝑛) and several sets (𝑐𝑘, 𝑘 = 1, 𝑞). 

 

4.6.4 Wall temperature profile 

As shown in Appendix B, the wall temperature distribution 𝑇𝑤(𝑧) appears in vector 𝑊𝑤 of 

equation (34): 

[𝑊𝑤]𝑘 = ∫ 𝑇𝑤(𝑧)𝜉𝑘(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0

,        𝑘 = 1,… ,𝑚 

The particular form of vector 𝑊𝑤 is not taken into account in the ROM. In fact the term 

−𝑘𝑤[𝑊𝑤]𝑘
𝑑𝜓𝑘

𝑑𝑟
(𝑅 + 𝑒) in equation (34) is even replaced by 𝑘𝑤[𝑉𝐷,𝑤]𝑘 to get equation (36) 

and finally equation (41). Thus, in this work, the developed ROM is valid for a specific given 

wall temperature distribution 𝑇𝑤(𝑧) which does not appear explicitly in the ROM equations. 

𝑇𝑤(𝑧) is in fact implicitly taken into account in the temperature data used for the ROM 

identification. Building a model valid for any distribution 𝑇𝑤(𝑧) would be conceivable by 

considering approximations of 𝑇𝑤(𝑧) and functions 𝜉𝑘(𝑧) on some bases of known functions, 

at the expense of adding many explicit parameters to the ROM. 

 

4.6.5 Taking into account the dependence on angular coordinate 

The ROM formulation has been developed for the axisymmetric case with no dependence on 

angular coordinate 𝜑. Should the wall temperature distribution be 𝑇𝑤(𝜑, 𝑧), vector 𝑊𝑤 in 

equation (34) would be such as [𝑊𝑤]𝑘 = ∫ ∫ 𝑇𝑤(𝜑, 𝑧)𝜉𝑘(𝜑, 𝑧)𝑑𝜑
𝜑=2𝜋

𝜑=0
𝑑𝑧

𝑧=𝐿

𝑧=0
,     𝑘 = 1,… ,𝑚. 

However, 𝜑 would be handled just as 𝑧. Therefore, except for equation (42) that could take 

into account several angular positions, the final ROM formulation (equations (39), (40) and 

(41)) would be the same as in the axisymmetric case, with functions 𝜉𝑖(𝜑, 𝑧), 𝑖 = 1,… ,𝑚 

embedded in the matrices and vectors to be identified. The ROM constitutive parameters 

would be identified in order to fit the particular non-axisymmetric temperature datasets. 
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5 Data generation and Reduced Order Model identification 

5.1 Data generation 

The ROM parameters identification requires some input-output data, that are a set of 𝑁𝑐
𝑖𝑑 

couples (𝐾, 𝑛)𝑖
𝑑𝑎𝑡𝑎, 𝑖 = 1, … , 𝑁𝑐

𝑖𝑑 in a chosen range of values and the corresponding 

temperatures 𝑌𝑗
𝑑𝑎𝑡𝑎((𝐾, 𝑛)𝑖

𝑑𝑎𝑡𝑎), 𝑖 = 1,… ,𝑁𝑐
𝑖𝑑 , 𝑗 = 1,… ,𝑁𝑟 along the radial direction at the 

chosen position 𝑧∗. In the present work, the temperature datasets are computed with the Finite 

Elements detailed model briefly presented in section 2.3. 

 

5.2 Reduced Order Model identification 

In order to effectively build the ROM consisting of equations (39) and (42) with 𝒜 and ℬ 

defined by (40) and (41) respectively and space functions 𝜓𝑖(𝑟), 𝑖 = 1,… ,𝑚 defined by 

equation (43), components of matrices 𝑀𝑇 , 𝑀𝐷 ∈ ℝ
𝑚×𝑚, vectors 𝑉𝑇,𝑖𝑛, 𝑉𝐷,𝑖𝑛, 𝑉𝐷,𝑤,𝑊 ∈ ℝ𝑚, 

matrix 𝛽 ∈ ℝ𝑚×𝑁𝑏 and vector 𝛼 ∈ ℝ𝑚, need to be identified. Matrix 𝑀𝐷 which corresponds 

to diffusion terms in eq.(40) is symmetric (see term 𝒜3 +𝒜4 in eq.(29) or see eq.(33) along 

with Appendix A), so only 𝑚(𝑚 + 1) 2⁄  components are identified to build 𝑀𝐷. 

The ROM construction is recast into a parameter estimation problem. For a given model order 

𝑚, all parameters to be identified, whose total number is 𝑁𝑝𝑎𝑟𝑎𝑚(𝑚) = 𝑚(𝑚 + (𝑚 + 1) 2⁄ +

5 + 𝑁𝑏) with 𝑁𝑏 = 15, are gathered in vector 𝜃(𝑚) ∈ ℝ𝑁𝑝𝑎𝑟𝑎𝑚(𝑚) and identified through the 

minimization of a functional 𝒥𝑖𝑑(𝜃(𝑚) ) based on the quadratic deviation between 

temperature data computed with the detailed model (see previous section 5.1) on the one hand 

and corresponding temperatures computed with the ROM on the other hand, for all couples 

(𝐾, 𝑛)𝑖
𝑑𝑎𝑡𝑎, 𝑖 = 1,… ,𝑁𝑐

𝑖𝑑: 

𝒥𝑖𝑑(𝜃(𝑚)) =∑∑(𝑌𝑗(𝜃(𝑚), (𝐾, 𝑛)𝑖
𝑑𝑎𝑡𝑎) − 𝑌𝑗

𝑑𝑎𝑡𝑎((𝐾, 𝑛)𝑖
𝑑𝑎𝑡𝑎))

2
𝑁𝑟

𝑗=1

𝑁𝑐
𝑖𝑑

𝑖=1

 (44)  

In order to quantify the global quality of the ROMs identification process, we use the mean 

quadratic deviation 𝜎𝑖𝑑
(𝑚)

 (or root mean square of the residues) between reference data 

computed by the DM and corresponding ROM outputs, defined as: 

𝜎𝑖𝑑
(𝑚)

= √𝒥𝑖𝑑(𝜃(𝑚)) (𝑁𝑐
𝑖𝑑 × 𝑁𝑟)⁄  (45)  

The optimization procedure for a given model order 𝑚 is shown on Figure 3. The 

minimization of 𝒥𝑖𝑑(𝜃(𝑚)) is performed with a Particle Swarm Optimization (PSO) 

algorithm [25]. The stopping criterion is based on the lowest absolute value 
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𝜎𝑖𝑑
(𝑚)
(𝜃𝑏𝑒𝑠𝑡,𝑎(𝑚)) obtained. The process is terminated if either this quantity is not improved 

for a pre-defined number of successive iterations or if the accuracy wished by the user is 

reached: 𝜎𝑖𝑑
(𝑚)
(𝜃𝑏𝑒𝑠𝑡,𝑎(𝑚)) < 𝜀𝑢𝑠𝑒𝑟. A model of order 𝑚 = 1 is first of all identified, 

meaning that a vector 𝜃(1) is obtained by minimizing 𝒥𝑖𝑑(𝜃(1)). Then, a model of order 

𝑚 = 2 is built by minimizing 𝒥𝑖𝑑(𝜃(2)). Models of higher orders are obtained by repeating 

the building process until the accuracy wished by the user is reached or until 𝜎𝑖𝑑
(𝑚+1) ≈ 𝜎𝑖𝑑

(𝑚)
. 

Vector 𝜃(𝑚) of structural parameters of the order 𝑚 model are used as initial guesses for the 

corresponding parameters in vector 𝜃(𝑚 + 1) to be estimated in the order 𝑚 + 1 model. 
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Figure 3: Sketch of optimization procedure for ROM identification, for a given model order 𝑚. 
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5.3 Main conceptual differences with POD-G and PGD approaches 

The POD-G approach [7,8] is a two-step procedure. First space functions 𝜙𝑘(𝑟, 𝑧), 𝑘 =

1, … ,𝑚, would be computed by performing a Proper Orthogonal Decomposition (POD) on 

some temperature datasets corresponding to a set of (𝐾, 𝑛) couples. Functions 𝜙𝑘(𝑟, 𝑧) would 

then be plugged in the Galerkin projection corresponding to equations (27), (29) and (30) to 

form the ROM. In a different way, for the MIM, no POD is performed and the ROM 

parameters (including space functions) are identified simultaneously through an optimization 

procedure. Unlike MIM and POD-G, Proper Generalized Decomposition (PGD) [12] does not 

rely on datasets coming either from measurements or simulations to build the ROM: in PGD, 

space functions and potentially functions of parameters of interest, are found a priori. 

Applying PGD to our steady problem would consist to seek the temperature field as a sum of 

products of functions of physical space coordinates and functions of the rheological 

parameters defining the fluid viscosity. A complete decomposition would write 

𝑇(𝑟, 𝑧, 𝐾, 𝑛) ≈ ∑ 𝜓𝑖(𝑟)𝜉𝑖(𝑧)𝐾𝑖(𝐾)𝑁𝑖(𝑛)
𝑚
𝑖=1  but a decomposition of the form (32) is also 

possible, among others. Whichever decomposition is used, PGD would lead to a discrete 

solution in the physical space as well as in the parameters space. In the present work, MIM 

aims at building equation (39) for the computation of 𝑋 ∈ ℝ𝑚 as a continuous function of 𝐾 

and 𝑛, temperatures being then computed using (42). 

6 Results and discussion 

In this section, the feasibility of the method is presented by considering an elastomer flow 

experimentally tested with the experimental set-up previously described (Figure 1). The flow 

length is 𝐿 = 205 mm and the radius 𝑅 = 5 mm. The die is made of stainless steel,  

(𝑘𝑤 = 49 W.m-1.K-1), its external radius is 15.5 mm thus corresponding to 𝑒 = 10.5 mm. An 

experiment performed with a rotation speed of the extrusion screw of N = 70 RPM 

(corresponding to a mass flowrate of 𝑄𝑚= 41.2 kg.h-1) is retained as an example. The 

temperature profile measured at the outlet section is given in Figure 4. It is compared to the 

numerical outlet temperature profile, obtained with the physical model described in section 

2.1. The inlet temperature profile is also shown in Figure 4. 
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Figure 4: Comparison of experimental and numerical outlet temperature profiles of an elastomer 

flow. The inlet temperature profile is drawn in dashed line. 

 

In the modelling, the thermophysical properties of the elastomer are considered to be 

constant. The average flow temperature is 136°C, one uses the following values: 𝜌 = 1030 

kg.m-3, 𝐶𝑝 = 2015 J.kg-1.K-1 and 𝑘𝑓 = 0.36 W.m-1.K-1. As the device allows measuring the 

pressure drop (∆𝑝) and the mass flowrate (𝑄𝑚) inside a straight cylindrical flow, with known 

dimensions and a precise thermal regulation, it was made possible to use it to determine 

viscosity. Based on the classical procedure [26], we calculate the viscosity through the ratio 

(𝜂 = 𝜏 𝛾̇⁄ ) where 𝜏 is the shear stress calculated with the pressure drop ∆𝑝 in the flow. 𝛾̇ is 

calculated taking into account both flowrate 𝑄 and the Rabinowitsch procedure [27]. 

Experiments with screw rotation speed varying from N = 5 to 70 RPM are investigated to 

estimate by this way the rheological fluid properties. The identified values are 𝐾 = 11618 

Pa.sn and 𝑛 = 0.529. The temperature profiles imposed on the die wall and the channel inlet 

correspond to the measured temperature profiles [28]. As shown in Figure 4, the physical 

model fits well the experimental results, with a root mean square of 𝜎 = 1.4 K. Such 

numerical validation was also obtained with lower flowrates [28].  

As mentioned in section 5.1, the identification of the ROM parameters requires some input-

output data. Thus, in the following work, the physical model is used by keeping this 

experimental configuration (thermal properties and boundary conditions). Only values of 𝐾 

and 𝑛 are modified to provide the datasets necessary to the ROM building. 
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6.1 Input-output data for ROM identification and validation 

Instead of a Cartesian regular mesh of this (𝐾, 𝑛) space, an Improved Hypercube Sampling 

(IHS) approach [29] has been used in order to cover the space with a limited number of (𝐾, 𝑛) 

couples. Using IHS the coordinates in the parameters space are regularly spaced out but the 

set is formed so that any two distinct (𝐾, 𝑛) couples do not share a common 𝐾 or 𝑛 value. 

Chosen ranges of parameter values are 𝐾 ∈ [5000; 20000] and 𝑛 ∈ [0.3; 0.6]. 

The input data for the identification of a series of ROMs are the set of 𝑁𝑐
𝑖𝑑 = 60 couples 

(𝐾, 𝑛) depicted by the blue diamond dots in Figure 5. The output data are the corresponding 

60 temperature profiles along the radial direction (𝑁𝑟 = 100) at the channel outlet (𝑧∗ = 205 

mm), computed with the detailed model. 

Once the ROMs identified, some test cases are conducted for the ROMs validation: a second 

set of 𝑁𝑐
𝑣𝑎𝑙 = 30 couples (𝐾, 𝑛) depicted by the red square dots in Figure 5 is used as input 

data for the ROMs and the resulting 30 outlet temperature profiles are compared with the 

profiles computed with the detailed model for the same couples (𝐾, 𝑛). 

 

 

Figure 5: Sets of (𝐾, 𝑛) couples generated by Improved Hypercube Sampling. The set of blue 

diamond dots is used as input data for ROMs identification. The set of red square dots is used as input 

data for ROMs validation. 
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6.2 Identification of a series of ROMs 

The radial temperature profiles computed by the Detailed Model (DM) for 𝑁𝑐
𝑖𝑑 = 60 (𝐾, 𝑛) 

couples (blue diamond dots cloud in Figure 5) are shown in Figure 6. For a better 

understanding of how the temperature profile depends on parameters 𝐾 and 𝑛, temperature 

profiles for 6 (𝐾, 𝑛) couples among the 60 used for identification are shown in Figure 7. 

Using the 60 input-output data a series of ROMs of order 𝑚 = 1 to 5 has been built by 

minimizing the functional 𝒥𝑖𝑑(𝜃(𝑚)) defined by equation (44). 

The second line of Table 1 shows the value of 𝜎𝑖𝑑
(𝑚)

 defined by equation (45) as a function of 

the ROM order 𝑚. As expected, 𝜎𝑖𝑑
(𝑚)

 decreases with respect to order 𝑚, from 1.5878 °C for 

the order 1 ROM to 9.5 10-3 °C for the order 5 ROM. 

The mean quadratic error 𝜎𝑖𝑑,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚) (𝑟𝑗), 𝑗 = 1,… , 𝑁𝑟, for which the mean is made only on 

the 𝑁𝑐
𝑖𝑑 = 60 (𝐾, 𝑛) couples, is also defined: 

𝜎𝑖𝑑,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚) (𝑟𝑗) = √∑(𝑌𝑗(𝜃(𝑚), (𝐾, 𝑛)𝑖

𝑑𝑎𝑡𝑎) − 𝑌𝑗
𝑑𝑎𝑡𝑎((𝐾, 𝑛)𝑖

𝑑𝑎𝑡𝑎))
2

𝑁𝑐
𝑖𝑑

𝑖=1

𝑁𝑐
𝑖𝑑⁄  (46)  

Figure 8 shows the value of 𝜎𝑖𝑑,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚)

 as a function of 𝑟, for model order 𝑚=1 to 𝑚=5. It 

can be observed that: 

• For a given model order 𝑚, the error is of the same order of magnitude along the radius. 

• The error tends however to be higher close to the duct wall, which is logical since 

temperature gradient is much higher close to the wall than elsewhere in the duct. 

• For almost all positions, the error decreases with model order 𝑚, however slightly from 

𝑚=3 to 𝑚=5. This is consistent with the global error 𝜎𝑖𝑑
(𝑚)

 shown in Table 1. 

Whereas 𝜎𝑖𝑑
(𝑚)

 is a global quantity, Figure 9 shows the difference between radial temperature 

profiles computed by the DM on the one hand and by the order 5 ROM on the other hand, for 

each of the 60 (𝐾, 𝑛) couples: for all couples, residues are comprised between ± 0.025°C for 

0 ≤ 𝑟 ≤ 4 mm and almost never exceed ± 0.05°C except in the very near wall zone where 

shear is maximal and temperature gradients are the largest. 
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Figure 6: Outlet temperature profile computed by 

DM for 60 (𝐾, 𝑛) couples used for ROMs 

identification. 

Figure 7: Outlet temperature profile computed by 

DM for 6 (𝐾, 𝑛) couples among the 60 used for 

ROMs identification. 

 

ROM order 𝑚 ⇨ 1 2 3 4 5 

𝜎𝑖𝑑
(𝑚)

   (°C) 1.5878 8.02x10-2 1.34x10-2 1.11x10-2 9.5x10-3 

𝜎𝑣𝑎𝑙
(𝑚)

   (°C) 1.7155 7.67x10-2 1.38x10-2 1.13x10-2 9.7x10-3 

Table 1: Identification and validation of ROMs. Values of 𝜎𝑖𝑑
(𝑚)

 and 𝜎𝑣𝑎𝑙
(𝑚)

 as functions of ROM 

order 𝑚. 

 

  

Figure 8: ROMs identification. Mean quadratic 

error between ROM and DM as a function of 𝑟 

(mean on 60 data (𝐾, 𝑛) couples), for model 

order 𝑚=1 to 𝑚=5. 

Figure 9: ROMs identification. Difference 

between outlet temperature profiles computed by 

DM and order 5 ROM for 60 (𝐾, 𝑛) couples. 

 

6.3 Numerical validation of the identified ROMs 

Once identified, the ROMs are tested with the 𝑁𝑐
𝑣𝑎𝑙 = 30 (𝐾, 𝑛) couples (red square dots 

cloud in Figure 5) as inputs. The radial temperature profiles computed by the DM for these 30 

(𝐾, 𝑛) couples are shown in Figure 10. As examples, temperature profiles for 6 (𝐾, 𝑛) couples 

among them are also shown in Figure 11. 
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Similarly to 𝜎𝑖𝑑
(𝑚)

 and 𝜎𝑖𝑑,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚) (𝑟𝑗), 𝑗 = 1,… ,𝑁𝑟, mean quadratic deviations 𝜎𝑣𝑎𝑙

(𝑚)
 and 

𝜎𝑣𝑎𝑙,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚) (𝑟𝑗), 𝑗 = 1,… , 𝑁𝑟 between temperatures computed by the DM and corresponding 

ROM outputs are respectively defined for these 30 couples. The last line of Table 1 shows the 

value of 𝜎𝑣𝑎𝑙
(𝑚)

 as a function of ROM order 𝑚. Just as 𝜎𝑖𝑑
(𝑚)

, 𝜎𝑣𝑎𝑙
(𝑚)

 decreases with respect to 

order 𝑚, from 1.7155 °C for the order 1 ROM to 9.7 10-3 °C for the order 5 ROM. As 

expected for this set of (𝐾, 𝑛) couples which had not been used for the construction of the 

ROMs, 𝜎𝑣𝑎𝑙
(𝑚)

 is slightly higher than 𝜎𝑖𝑑
(𝑚)

 for a given order 𝑚, except for 𝑚 = 2. 

Figure 12 shows the value of 𝜎𝑣𝑎𝑙,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚)

 as a function of 𝑟, for model order 𝑚=1 to 𝑚=5. 

The observations corresponding to Figure 8 can also be made for Figure 12. Values of error 

𝜎𝑣𝑎𝑙,𝑔𝑙𝑜𝑏(𝐾,𝑛)
(𝑚) (𝑟) are also very close to those of 𝜎𝑖𝑑,𝑔𝑙𝑜𝑏(𝐾,𝑛)

(𝑚)
. 

In order to add insight to the global quantity 𝜎𝑣𝑎𝑙
(𝑚)

, Figure 13 shows the difference between 

radial temperature profiles computed by the DM on the one hand and by the order 5 ROM on 

the other hand, for each of the 30 (𝐾, 𝑛) couples: as for the models identification, residues for 

all couples are comprised between ± 0.025°C for 0 ≤ 𝑟 ≤ 4 mm and almost never exceed ± 

0.05°C except in the very near wall zone. 

The results of these validation tests allow us to conclude that the identified ROMs may be 

used for any (𝐾, 𝑛) couple in the construction ranges 𝐾 ∈ [5000; 20000] and 𝑛 ∈ [0.3; 0.6] 

with a good knowledge about their accuracy with respect to the DM. In particular, the order 5 

ROM is able to reproduce the temperatures computed by the DM within ± 0.05°C maximum 

except in the very near wall zone. 

 

  

Figure 10: Outlet temperature profile computed 

by DM for 30 (𝐾, 𝑛) couples used for ROMs 

validation. 

Figure 11: Outlet temperature profile computed 

by DM for 6 (𝐾, 𝑛) couples among the 30 used 

for ROMs validation. 
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Figure 12: ROMs validation. Mean quadratic 

error between ROM and DM as a function of 𝑟 

(mean on 30 test (𝐾, 𝑛) couples), for model order 

𝑚=1 to 𝑚=5. 

Figure 13: ROMs validation. Difference between 

outlet temperature profiles computed by DM and 

order 5 ROM for 30 (𝐾, 𝑛) couples. 

 

6.4 Asset of using ROM in parameter estimation problem 

Assumed values for the real flow 𝐾 = 11618 Pa.sn and 𝑛 = 0.529, which were deduced from 

measurement of pressure drop at several flowrates with the experimental device, have been 

used to compute the outlet temperature profile with both DM and order 5 ROM. The root 

mean square of the residues between both models is 𝜎 = 9.1 10-3 °C for these parameters, 

showing again that the ROM provides results very close to those of the reference model. 

However Figure 4 shows that the temperature profile given by DM (and consequently ROM) 

is not in full agreement with the profile measured on the experiment, especially at the location 

where temperature is maximal. Considering the simple geometry of the system and all 

precautions taken to properly handle experimental boundary conditions, we may assume that 

the DM built with the Ansys Polyflow software should be a good model of the experiment. 

The discrepancy between simulated and measured outlet temperature profiles could thus be 

due to the fact that actual values of 𝐾 and 𝑛 for the real flow are different of the estimated 

values 𝐾 = 11618 Pa.sn and 𝑛 = 0.529. Better estimates for 𝐾 and 𝑛 could possibly be 

obtained from temperature measurements through an inverse problem, which would be solved 

efficiently thanks to the ROM, for which the computing time is less than 1 s compared to 390 

s for the DM. 

 

7 Conclusion 

An approach based on the Modal Identification Method has been developed to build a thermo-

rheological Reduced Order Model (ROM) for a steady incompressible flow of a pseudo-
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plastic fluid in a circular runner. The dynamic viscosity has thus been described by a shear 

rate power law defined by two parameters: consistency index 𝐾 and flow behavior index 𝑛. 

Dependence of viscosity on temperature has not been taken into account and the analytical 

expression of the velocity field has been used. The aim was to build a ROM able to compute 

the radial temperature profile at the channel outlet for any (𝐾, 𝑛) couple in a predefined range. 

Thus the ROM had to be explicitly parametrized by 𝐾 and 𝑛. 

An approximation of the temperature field on a reduced set of 𝑚 space functions has been 

considered. In a first step a Galerkin projection of the energy equation has led to a first 

formulation of the ROM equations. In a second step an additional hypothesis about the form 

of space functions, consisting in separating the radial direction 𝑟, intrinsically linked to the 

flow behavior index 𝑛, from the 𝑧 direction, has allowed simplifying the ROM formulation. In 

a third step, a simplification of some diffusive terms has been made, allowing to reduce the 

number of fixed parameters to be identified during the ROM construction. 

A numerical example has then been proposed. The fixed constitutive parameters of the ROM 

have been identified through an optimization procedure using temperature data for a set of 60 

(𝐾, 𝑛) couples in the construction ranges 𝐾 ∈ [5000; 20000] and 𝑛 ∈ [0.3; 0.6]. These data 

were computed by a Finite Elements reference model experimentally validated on an 

instrumented apparatus. A series of reduced models of order 𝑚 = 1 to 5 has been identified 

and then tested for a second set of 30 (𝐾, 𝑛) couples. The order 5 ROM has been able to 

reproduce the radial outlet temperature profile computed by the reference model with a r.m.s. 

error of about 10-2 °C. The good quality of the obtained results allows us to expect that such 

ROMs can be used for estimating 𝐾 and 𝑛 from temperature measurements. Moreover, thanks 

to their small number of degrees of freedom, ROMs allow fast resolution of the inverse 

problem for parameters estimation and hence can be used for on-line estimation of viscosity. 

An intermediate step could consist in improving developments by taking into account the 

thermodependence of the viscosity in the establishment of the ROM model. 

 

Appendices 

Appendix A: matrices in Eq.(33) 

Matrices in Eq.(33) have the following expressions: 

∀𝑘 ∈ [1;𝑚], ∀𝑖 ∈ [1;𝑚]: 
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[𝑀𝑇]𝑘𝑖 = 𝜉𝑖(𝑧 = 𝐿)𝜉𝑘(𝑧 = 𝐿) − ∫ 𝜉𝑖(𝑧)
𝜕𝜉𝑘
𝜕𝑧
(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0

 

[𝑀𝐷1]𝑘𝑖 = ∫ 𝜉𝑖(𝑧)𝜉𝑘(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0

 

[𝑀𝐷2]𝑘𝑖 = ∫
𝜕𝜉𝑖
𝜕𝑧
(𝑧)

𝜕𝜉𝑘
𝜕𝑧
(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0

 

[𝑀𝐷3]𝑘𝑖 =
𝜕(𝜉𝑖(𝑧)𝜉𝑘(𝑧))

𝜕𝑧
(𝑧 = 0) 

 

Appendix B: vectors in Eq.(34) 

Vectors in Eq.(34) have the following expressions: 

∀𝑘 ∈ [1;𝑚]: 

[𝑉𝑇,𝑖𝑛]𝑘 = 𝜉𝑘
(𝑧 = 0) 

[𝑉𝐷,𝑖𝑛]𝑘 =
𝜕𝜉𝑘(𝑧)

𝜕𝑧
(𝑧 = 0) 

[𝑊𝑤]𝑘 = ∫ 𝑇𝑤(𝑧)𝜉𝑘(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0

 

[𝑊]𝑘 = ∫ 𝜉𝑘(𝑧)𝑑𝑧

𝑧=𝐿

𝑧=0
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