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This study proposes a new enriched finite element method to handle vibrations of rods (traction-compression) and beams (bending) with varying cross-sections. In time-harmonic domain, closed-form analytical solutions for Timoshenko beams exist only for exponential cross-sections [1], and we therefore focus on finite elements enriched with such solutions. More precisely, for a given beam or rod with varying section, we use the enrichment corresponding to an optimal approximation by an exponential-by-parts beam or rod. The best approximation is established using an energetic criterion. Thereafter, the proposed method is presented for a rod whose section is approximated by a unique exponential profile, and extensions are then briefly discussed.

Approximation by an exponential rod. Working with non-dimensional quantities, the longitudinal displacement u(x) in a rod made of an homogeneous material obeys the wave equation (Au ) +Aω 2 u = f , where A(x) is the cross-section, ω is the considered frequency and f represents distributed forces. Given a rod with a given cross-section A, we define its optimal exponential approximation as the rod of section A δ (x) = A 0 e 2δx (where A 0 > 0 and δ ∈ R) which has the closest total energy (kinetic plus elastic) under any kind of boundary excitations (i.e. for f = 0). This criterion can be written in terms of (i) the solutions u corresponding to A, and (ii) the solutions u δ corresponding to the sought A δ , which are of the form:

u δ (x) = e -δx (c + e i kx + c -e -i kx ), with k = ω 2 -δ 2 . ( 1 
)
Preliminary results are obtained for linear and quadratic rods, for which there also exist analytical solutions [3]. The optimality condition can therefore be expressed explicitly, resulting in semi-analytical determination of optimal (A 0 , δ). For an arbitrary cross-section A, an analysis of the error u -u δ must be conduced.

Enriched finite elements. To address the case f = 0, and foreseeing an extension to the time domain, a finite element discretization is studied. The variable ũ defined by ũ(x) = u(x)e δx is used instead of u, where δ is determined as described above. Following e.g. [2], the considered finite element basis (e.g. P 1 basis) is then enriched by the basis {e ±i kx } of solutions corresponding to the exponential approximation.

For linear and quadratic rods, using a regular mesh of element length h, this enrichment brings significant improvements of the FE solution, reaching O(h 4 ) convergence rate for enriched P 1 basis (instead of the well-known O(h 2 ) rate for P 1 elements).

Extensions. To address rods with roughly varying cross-section, such rod is divided into subdomains, and the optimal approximation procedure is then applied to each subdomain, obtaining an exponentialby-parts rod. Finally, the whole method is transposed to beams modeled by the Timoshenko system.
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