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This study proposes a new enriched finite element method to handle vibrations of rods (traction-compres-
sion) and beams (bending) with varying cross-sections. In time-harmonic domain, closed-form analytical
solutions for Timoshenko beams exist only for exponential cross-sections [1], and we therefore focus on
finite elements enriched with such solutions. More precisely, for a given beam or rod with varying section,
we use the enrichment corresponding to an optimal approximation by an exponential-by-parts beam or
rod. The best approximation is established using an energetic criterion. Thereafter, the proposed method
is presented for a rod whose section is approximated by a unique exponential profile, and extensions are
then briefly discussed.

Approximation by an exponential rod. Working with non-dimensional quantities, the longitudinal
displacement u(x) in a rod made of an homogeneous material obeys the wave equation (Au′)′+Aω2u = f ,
where A(x) is the cross-section, ω is the considered frequency and f represents distributed forces.
Given a rod with a given cross-section A, we define its optimal exponential approximation as the rod
of section Aδ(x) = A0e

2δx (where A0 > 0 and δ ∈ R) which has the closest total energy (kinetic plus
elastic) under any kind of boundary excitations (i.e. for f = 0).
This criterion can be written in terms of (i) the solutions u corresponding to A, and (ii) the solutions uδ
corresponding to the sought Aδ, which are of the form:

uδ(x) = e−δx(c+e
ik̃x + c−e

−ik̃x), with k̃ =
√
ω2 − δ2. (1)

Preliminary results are obtained for linear and quadratic rods, for which there also exist analytical
solutions [3]. The optimality condition can therefore be expressed explicitly, resulting in semi-analytical
determination of optimal (A0, δ). For an arbitrary cross-section A, an analysis of the error u− uδ must
be conduced.

Enriched finite elements. To address the case f 6= 0, and foreseeing an extension to the time domain,
a finite element discretization is studied. The variable ũ defined by ũ(x) = u(x)eδx is used instead of u,
where δ is determined as described above. Following e.g. [2], the considered finite element basis (e.g. P1

basis) is then enriched by the basis {e±ik̃x} of solutions corresponding to the exponential approximation.
For linear and quadratic rods, using a regular mesh of element length h, this enrichment brings significant
improvements of the FE solution, reaching O(h4) convergence rate for enriched P1 basis (instead of the
well-known O(h2) rate for P1 elements).

Extensions. To address rods with roughly varying cross-section, such rod is divided into subdomains,
and the optimal approximation procedure is then applied to each subdomain, obtaining an exponential-
by-parts rod. Finally, the whole method is transposed to beams modeled by the Timoshenko system.
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