
HAL Id: hal-01835860
https://hal.science/hal-01835860

Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

pyGDM-A python toolkit for full-field electro-dynamical
simulations and evolutionary optimization of

nanostructures
Peter Wiecha

To cite this version:
Peter Wiecha. pyGDM-A python toolkit for full-field electro-dynamical simulations and evolution-
ary optimization of nanostructures. Computer Physics Communications, 2018, 233, pp.167-192.
�10.1016/j.cpc.2018.06.017�. �hal-01835860�

https://hal.science/hal-01835860
https://hal.archives-ouvertes.fr

pyGDM – A python toolkit for full-field electro-dynamical simulations and
evolutionary optimization of nanostructures

Peter R. Wiechaa,∗

aCEMES-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract

pyGDM is a python toolkit for electro-dynamical simulations in nano-optics based on the Green Dyadic Method (GDM).
In contrast to most other coupled-dipole codes, pyGDM uses a generalized propagator, which allows to cost-efficiently
solve large monochromatic problems such as polarization-resolved calculations or raster-scan simulations with a focused
beam or a quantum-emitter probe. A further peculiarity of this software is the possibility to very easily solve 3D problems
including a dielectric or metallic substrate. Furthermore, pyGDM includes tools to easily derive several physical quantities
such as far-field patterns, extinction and scattering cross-section, the electric and magnetic near-field in the vicinity of
the structure, the decay rate of quantum emitters and the LDOS or the heat deposited inside a nanoparticle. Finally,
pyGDM provides a toolkit for efficient evolutionary optimization of nanoparticle geometries in order to maximize (or
minimize) optical properties such as a scattering at selected resonance wavelengths.

Keywords: electrodynamical simulations; green dyadic method; coupled dipoles approximation; nano-optics; photonic
nanostructures; nano plasmonics

PROGRAM SUMMARY
Program Title: pyGDM
Licensing provisions: GPLv3
Programming language: python, fortran
Nature of problem:
Full-field electrodynamical simulations of photonic
nanostructures. This includes problems like optical scattering,
the calculation of the near-field distribution or the interaction
of quantum emitters with nanostructures. The program
includes a module for automated evolutionary optimization
of nanostructure geometries with respect to a specific optical
response.
Solution method:
The optical response of photonic nanostructures is calculated
using field susceptibilities (“Green Dyadic Method”) via a
volume discretization. The approach is formally very similar
to the coupled dipole approximation. Additional comments
including Restrictions and Unusual features (approx. 50-250
words):
Only 3D nanostructures. The volume discretization is limited
to about 10000 meshpoints.

Full-field electro-dynamical simulations are used in
nano-optics to predict the optical response of small
(often sub-wavelength) particles by solving the Maxwell’s
equations [1]. Examples are either the scattering or
the confinement of an external electro-magnetic field
by dielectric [2] or metallic [3] nano-structures, the

∗Corresponding author.
E-mail address: peter.wiecha@cemes.fr

appearance of localized surface plasmons [4] or the
interaction of nano-structures with quantum emitters
placed in their vicinity [5]. Nano-optics governs manifold
effects and applications. Examples are phase control
or polarization conversion either at the single particle
level [6, 7] or from metasurfaces [8], shaping of the
directionality of scattering [9], thermoplasmonic heat
generation with sub-micrometer heat localization [10] or
nonlinear nano-optics [11, 12]. It is of great importance
to be able to calculate optical effects occurring in
sub-wavelength small structures in order to predict or to
interpret experimental findings.

In this paper, we present the python toolkit
“pyGDM” for full-field electro-dynamical simulations of
nano-structures. Below we list the key-features and aims
of pyGDM which we will explain in detail in the following.

• Easy to use. Easy to install: Fully relying on freely
available open-source python libraries (numpy, scipy,
matplotlib).

• Fast: Performance-critical parts are implemented in
fortran and are parallelized with openmp. Efficient
and parallelized scipy libraries are used whenever
possible. Spectra can be calculated very rapidly via
an MPI-parallelized routine.

• Electro-dynamical simulations including a substrate.

• Different illumination sources such as plane wave,
focused beam or dipolar emitter.

Preprint submitted to Computer Physics Communications June 11, 2018

ar
X

iv
:1

80
2.

04
07

1v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 8
 J

un
 2

01
8

• Efficient calculation of large problems such as
raster-scan simulations.

• Provide tools to rapidly post-process the simulations
and derive physical quantities such as

– optical near-field inside and around
nanostructures.

– extinction, absorption and scattering
cross-sections.

– polarization- and spatially resolved far-field
scattering.

– heat generation, temperature distribution
around nano-objects.

– photonic local density of states (LDOS).

– modification of the decay-rate of dipolar emitters
in the presence of a nanostructure.

• Evolutionary optimization of the nano-particle
geometry with regards to specific optical properties.

• Easy to use visualization tools including animations
of the electro-magnetic fields.

We will start with a brief introduction to the Green
Dyadic Method (GDM), the numerical discretization
scheme and the renormalization of the Green’s dyad. We
will also compare the GDM to other frequently used
numerical techniques. In the second part, we will explain
in more detail the main features and tools provided by
pyGDM. We start by explaining the general structure
of pyGDM and the ingredients to setup a simulation.
Then we describe how the main simulation routines work.
This part is followed by descriptions of the pyGDM-tools
for simulating different optical effects, post-processing,
data-analysis and visualization. Subsequently we will
illustrate the capabilities of pyGDM by some example
simulations and benchmarks. In particular, we will
compare pyGDM-simulations to Mie theory. Finally, we
will give an overview on the evolutionary optimization
submodule of pyGDM, accompanied by several examples.
In the appendix we provide details concerning more
technical tools and aspects of pyGDM as well as
instructions for the compilation, installation and use of
pyGDM.

1. The Green dyadic method

In the following we will give a brief introduction to the
basic concepts of the Green dyadic method, implemented
in pyGDM. Before we begin with this short overview,
we want to note that the GDM is a frequency domain
technique, solving Maxwell’s equations for monochromatic
fields (oscillating at fixed frequency ω).

E0

B0 εenv(ω)

εr(r, ω)

ρ(r, ω), j(r, ω)

Figure 1: Electromagnetic wave impinging on a nanostructure of
arbitrary shape, placed in a homogeneous environment.

Note:. We use cgs (centimeter, gram, second) units in
pyGDM which results in simpler terms for most of the
equations. This is first of all helpful for the derivation of
the main equations and has no impact on the simulation
results. The post-processing routines return values
conform with SI units such as cross-sections (units of
nm2), powers in Watt or unit-less values (e.g. relative
field intensities such as |E|2/|E0|2).

1.1. From Maxwell’s equations to Lippmann-Schwinger
equation

All electromagnetic phenomena can be entirely
described by the four Maxwell’s equations, which in the
frequency domain write as follows (cgs units):

∇ ·E(r, ω) =
4π

εenv
ρ(r, ω) (1a)

∇×E(r, ω) = ik0B(r, ω) (1b)
∇ ·B(r, ω) = 0 (1c)

∇×B(r, ω) = −ik0εenvE(r, ω) +
4π

c
j(r, ω) (1d)

where the charge density ρ and the current density j are
associated with an arbitrary nanostructure, placed in an
environment of permittivity εenv (c.f. Fig. 1). k0 = ω/c is
the wavenumber of light in vacuum, c the speed of light and
the symbol × is the rotational. εr and µr are the relative
dielectric permittivity and magnetic permeability of the
nanostructure, respectively. For dispersive media, εr and
µr are functions of the frequency ω. They are defined as
the ratios of the material’s permittivity and permeability
relative to the vacuum values ε0 and µ0. They can be
related to the electric and magnetic susceptibilities as χe =
(εr − εenv)/4π and χm = (µr − µenv)/4π, respectively. In
general, χe(r, ω) and χm(r, ω) are functions of frequency
and space. In pyGDM we assume non-magnetic media,
hence µr = µenv = 1.

It is possible to derive a wave-equation for the electric
field from Maxwell’s equations (see e.g. Ref. [13], chapter 9
or Ref. [14]):

(∆ + k2)E(r, ω) = − 4π

εenv

(
k2 +∇∇

)
P(r, ω). (2)

2

Where ∇ and ∆ are the nabla- and Laplace operator,
respectively, P = χe · E is the electric polarization and
k the wavenumber in the environment medium with k =√
εenv k0.

Note:. The dielectric function is in general a tensor of rank
2. In pyGDM, an isotropic susceptibility χe,iso is assumed,
hence the susceptibility tensor χe is defined as

χe(r, ω) =

χe,iso(r, ω) 0 0
0 χe,iso(r, ω) 0
0 0 χe,iso(r, ω)

 . (3)

In future versions of pyGDM anisotropic polarizabilities
might be supported.

From the wave-equation Eq. (2) one can derive a
vectorial Lippmann-Schwinger equation for the electric
field (see e.g. Ref. [14]):

E(r, ω) = E0(r, ω) +

∫
GEE

tot(r, r
′, ω) ·χe ·E(r′, ω)dr′ (4)

which relates in a self-consistent manner the incident
(or “zero order”, “fundamental”) electric field E0 with
the total field E inside the structure of susceptibility
χe. The integral in Eq. (4) runs over the volume of
the structure. GEE

tot is the Green’s dyad, describing the
environment in which the structure is placed (see also
section 12). The Green’s dyadic tensors G are also called
field susceptibilities and were originally introduced by G.
S. Agarwal. [15]. For an object in vacuum GEE

tot = GEE
0 ,

which writes [14, 16]

GEE
0 (r, r′, ω) =

1

εenv

(
k2 I +∇∇

)
G0(r, r′, ω)

=
eikR

εenv

(
− k2T1(R)− ikT2(R) + T3(R)

)
. (5)

I is the Cartesian unitary tensor, ∇ the nabla operator
acting along r and G0 the scalar Green’s function (see
equation (16)). The superscript “EE” indicates that
the Green’s function accounts for an electric-electric
interaction. Furthermore we used the abbreviations R =
r− r′ and

T1(R) =
RR− IR2

R3
(6)

T2(R) =
3RR− IR2

R4
(7)

T3(R) =
3RR− IR2

R5
. (8)

RR is the tensorial product of R with itself and R
represents its modulus. T1 describes far-field effects while
T2 and T3 account for the near-field.

In pyGDM an additional non-retarded Green’s dyad is
used which allows to include a substrate and a cladding
layer (see Fig. 2):

GEE
tot = GEE

0 + G3-layer . (9)

spacing

n1

n2

n3

substrate

environment

cladding

discretized
nano-object(s)

Figure 2: Geometry of the reference system described by the Green’s
dyad used in pyGDM: The discretized nano-structure is placed in
the environment layer with (complex) refractive index n2 and of
thickness spacing. It is sandwiched between a substrate (n1) and a
cladding layer (n3).

Such dyadic functionG3-layer for a layered reference system
can be derived in an asymptotic form using the image
charges method (see also section 12). The derivation
of a retarded Green’s dyad for multi-layered systems is
explained in detail e.g. in Refs. [17, 18]. For a derivation
of the Lippmann-Schwinger equation in SI units, see e.g.
Ref. [19].

1.2. Volume discretization

For arbitrarily shaped objects, the integral in the
Lippmann-Schwinger equation (4) can generally not be
solved analytically. In the following we describe a
numerical approach which requires the discretization of
the integral into a sum over finite size volume elements
(see also Ref. [14]). For reasons of clarity the dependency
on the frequency ω will be omitted in the following. We
discretize the nano-object using N cubic volume elements
centered at positions ri, as illustrated in figure 3. The
cube side lengths d and thus Vcell = d3 are constant on the
mesh.

E(ri, ω) = E0(ri, ω)+

N∑
j=1

GEE
tot(ri, rj , ω) · χe(rj , ω) ·E(rj , ω)Vcell. (10)

We can rewrite eq. (10) as follows

E0(ri) = E(ri)−
N∑
j=1

GEE
tot(ri, rj) · χe(rj) ·E(rj)Vcell

=

N∑
j=1

(
δijI− χe(rj) · VcellGEE

tot(ri, rj)
)
·E(rj) (11)

where δij is the Kronecker symbol.

3

Figure 3: Arbitrary nanostructure composed of multiple elements lying on a substrate (left) and its volume discretization on a cubic lattice
(right).

Let us now define two 3N -dimensional vectors
containing the ensemble of all electric field vectors in the
discretized nano-object

E0,obj. =
(
E0,x(r1), E0,y(r1), E0,z(r1),

E0,x(r2), . . . , . . . , E0,z(rN)
)

Eobj. =
(
Ex(r1), Ey(r1), Ez(r1),

Ex(r2), . . . , . . . , Ez(rN)
)
.

Together with the 3N × 3N matrix M composed of 3× 3
sub-matrices

Mij = δijI− χe(rj) · VcellGEE
tot(ri, rj) (12)

we obtain a coupled system of 3N linear equations

E0,obj. = M ·Eobj. . (13)

If we inverse the matrix M defined by eq. (12), we can
calculate the field Eobj. inside the structure for all possible
incident fields E0,obj. (at frequency ω) by means of a simple
matrix-vector multiplication:

Eobj. = K ·E0,obj. , (14)

where we used the symbol K for the inverse matrix

K(ω) = M−1(ω) . (15)

K is called the generalized field propagator, as introduced
by Martin et al. [20].

Note:. In our notation, K represents the full 3N ×
3N matrix, describing the response of the entire
nanostructure. This matrix is composed of 3 × 3
sub-tensors K(ri, rj) for the couples of ith and jth
meshpoint.

Note:. After equation (10), we can use the Green’s dyad
of the reference system with the field inside the particle
in order to calculate the total electric field at any point ri
outside the nanostructure.

1.3. Renormalization of the Green’s dyad
When integrating the polarization distribution in

equation (4) over the volume of the nanostructure, we
integrate scalar Green’s functions of the form

G0(r, r′) =
eik |r−r

′|

|r− r′| . (16)

Obviously, G0 diverges if r = r′, which occurs when the
field of a point dipole pδ(r− r′) is being evaluated at the
dipole’s position r′ itself. As a consequence, in order to
remove this singularity, we need to apply a regularization
scheme [21]. For a three dimensional cubic mesh, a simple
renormalization rule for the free-space Green’s dyad has
been proposed (see Ref. [22], section 4.3):

GEE
0,cube(ri, ri) = − 4π

3εenvd3
I (17)

with d the stepsize of the volume discretization.
The choice of an appropriate mesh can be crucial for

the convergence of the method. While structures with
flat surfaces and right angles (e.g. cuboids) can be
accurately discretized using a cubic mesh, particles with
3-fold symmetry (e.g. prisms) or curved structures like
wires of circular section or spherical particles are better
described using a hexagonal mesh. A 3D hexagonal
compact mesh can be regularized with (see Ref. [16],
section 3.1)

GEE
0,hex(ri, ri) = − 4π

√
2

3εenvd3
I . (18)

While a cubic mesh cell has a volume of Vcell = d3, in
the hexagonal compact case, the volume of a cell equals
Vcell = d3/

√
2 and also must be accordingly adapted in

Eq. (12).

4

Other geometries like cuboids [23] or tetrahedrons [24]
can be used for the mesh as well, but are not implemented
in pyGDM so far. Because it accounts for the field of
a point dipole at the location of the dipole itself, the
sub-matrix Mii is also called “self-term”.

1.4. Multiple monochromatic simulations on the same
nanostructure

Once the generalized propagator K is known, we
can calculate the response of the system to arbitrary
monochromatic incident fields (e.g. plane waves, focused
beams or even fast electrons) by means of a simple
matrix-vector multiplication. This can be used for
instance to do raster-scan simulations at low numerical
cost, by raster-scanning a light source such as a
focused incident beam or a dipolar emitter step-by-step
over the nano-object, while calculating and eventually
post-processing the field at each position [25].

2. Comparison to other electro-dynamical
simulation techniques

Before proceeding with a detailed introduction to
the pyGDM toolkit, we want to give a non-exhaustive
overview of other methods commonly used for solving
electro-dynamical problems in nano-optics.

A widely used frequency domain solver is the open
source software DDSCAT [26], which implements a
frequency domain technique analog to the GDM. It
is usually called the “Coupled” or “Discrete Dipole
Approximation” (CDA or DDA, respectively). However,
there exist two main differences to GDM as used
in this work. First, the renormalization problem is
circumvented by setting the self-terms to zero and
including the corresponding contributions using a physical
polarizability for each dipole. Using such physical
polarizabilities (usually of spherical entities) for each
mesh-cell however leads generally to a worse convergence
for larger step-sizes. The second difference is more
technical. In the DDSCAT implementation of DDA,
the matrix MDDSCAT is not stored in memory (c.f.
Eq. (12)). The resolution of the inverse problem is
done by the conjugate gradients method, where the
elements MDDSCAT,ij are computed on-demand during
the calculation of the vector-matrix products MDDSCAT ·
x = E. To speed up these matrix-vector multiplications,
a scheme involving fast Fourier transformations (FFT)
is used [27]. A drawback is that without storing
M, efficient preconditioning is very difficult (see also
appendix 15). Convergence of the DDSCAT conjugate
gradient iterative scheme is therefore relatively slow and
only obtained for very fine discretization meshes, further
slowing down the computation due to the large size
of the coupled dipole matrix MDDSCAT. An obvious
advantage of DDSCAT is, that large problems with
huge numbers of mesh points can be treated, since the

matrix coupling all dipoles is not stored in memory.
However, the advantage of the generalized propagator is
lost. The calculation of different incident fields at a
fixed wavelength (such as raster-scan simulations) requires
to re-run the time-consuming conjugate gradients solver
for each configuration. Another free implementation
of the DDA with particular focus on electron energy
loss spectroscopy (EELS) simulations is the DDEELS
package [28].

Maxwell’s equations can be reformulated as a set
of surface-integral equations. It is therefore possible
to develop a similar formalism as the above explained
volume integral method in which only the surfaces of a
nanostructure are discretized instead of the volume [29].
A great advantage of this so-called Boundary Element
Method (BEM) is the smaller amount of discretization
cells, which however comes at the cost of a more complex
mathematical framework and numerical implementation.
With MNPBEM an open-source BEM-implementation for
MATLAB exists which allows also the consideration of
layered environments [30, 31].

Another very popular and flexible technique for
electrodynamical simulations is the Finite-Difference
Time-Domain (FDTD) method [32, 33, 34]. As the
name suggests, the calculation is performed in the
time domain, which means that Maxwell’s equations
are iteratively evolved by small time increments. The
problem is discretized in both, space and time. An
incoming wave travels time-step by time-step across the
region of interest and when the wave-packet has passed
or turn-on effects have fully decayed (e.g. for plane
wave illumination), the actual numerical measurement
is performed. With respect to computational time, a
disadvantage is the additional dimension (time) that
needs to be discretized. Furthermore, a fraction of the
environment around the object of interest has to be
included in the discretization space, which is why FDTD is
called a “domain discretization technique”. Particularly in
3D problems, this can lead to very high computational
costs. Another drawback of FDTD can be the low
accuracy for near-field intensities if very strong field
enhancements occur (e.g. in plasmonics) [35]. However,
the simplicity and the robustness of the method are
great advantages of FDTD. Furthermore, using temporally
short and therefore spectrally broad illumination pulses,
a large frequency spectrum can be obtained in a single
simulation run. Frequency domain techniques on the other
hand require each wavelength to be calculated separately.
Provided an accurate analytical model for the material
dispersion exists, this advantage can compensate the larger
discretization domain in spectral simulations, compared to
frequency domain methods like the GDM. A powerful open
source implementation that comes with a rich toolbox is
the software “MEEP” [36]. For a general introduction
on finite difference methods, see for example Ref. [37],
chapter 17.

Finally, a very popular domain discretization technique

5

incident field config
(wavelength(s) & other

parameters such as
polarization)

incident field type
(generator functions,

fields module)

environment
(index of substrate

& environment)

material
(classes in

materials module)

geometry
(list of coordinates,
structures module)

e-field object
(fields.efield)

structure object
(structures.struct)

simulation object
(core.simulation)

post-processing

graphical representation

visualizations
(module visu or visu3d)

simulation definition

scattered fields
(core.scatter)

main simulation

linear effects
(module linear)

dipolar emitter decay
(core.decay_rate)

nonlinear effects
(module nonlinear)

Figure 4: Structure of the pyGDM package and workflow of a typical simulation: (1) Setup of the geometry, environment and incident electric
field. This is bundled in an instance of the simulation object. (2) Main GDM simulation. (3) Possible post-processing (e.g. calculation of
extinction cross-sections). (4) Visualization of the results.

in the frequency domain is the Finite Element Method
(FEM, e.g. implemented in the commercial software
“COMSOL Multiphysics”). Due to its adjustable mesh-size
it is particularly apt for plasmonic problems, where
extremely localized fields can occur at sharp extremities.
However, it suffers from the same drawback as FDTD
since a certain volume around the nano-object needs to be
discretized and included in the calculation, often leading
to high memory and CPU-time requirements.

A review including benchmarks for different numerical
techniques in nano-optics can be found in Ref. [38]. An
extensive discussion of different DDA variants including a
detailed review on their accuracies is given in Ref. [39].

3. Setting up a pyGDM simulation

The structure of the pyGDM package and the main steps
to setup and run a simulation are schematically depicted
in figure 4. The heart of pyGDM is the simulation
object which contains the information about the structure,
its environment and the incident electro-magnetic field(s)
used in the simulation:

core.simulation
(class)

A minimal example of a pyGDM python script is provided
in section 12.

3.1. Geometry and material dispersion
The geometry of the nanostructure and the dielectric

constant of both its constituent material and the
environment are stored in an instance of

structures.struct
(class)

which contains the geometry as a list of mesh-point
coordinates and the material dispersion via an instance
of some materials.dispersion_class.

3.2. Excitation fields
The second key-ingredient of a pyGDM-simulation is the

incident (illuminating) electro-magnetic field.
The fields in the GDM are time-harmonic, oscillating

at frequency ω. We describe these fields using the phasor
description with complex amplitudes in which we include
the phase information:

Ẽ(r, ω, t) = Ê(r, ω) e−iωt eiϕ = E(r, ω) e−iωt. (19)

Ẽ is the electric field including the time-dependence.
We assume time-harmonicity, thus the time-dependence
is expressed by the term e−iωt. Ê is the real valued
amplitude, E the complex amplitude (the “phasor”) which
includes the phase-factor eiϕ in its imaginary part.

The information about the incident field is provided to
pyGDM via

fields.efield
(class)

6

Illustrations of the below listed incident fields available in
pyGDM are shown in figure 5.

3.2.1. Plane wave

fields.planewave
(function)

The probably most common fundamental field is
the plane wave, which is in many cases a sufficient
approximation. Its complex amplitude can be expressed
as

E0(r, ω) = E0 eik·r. (20)

3.2.2. Focused plane wave

fields.focused_planewave
(function)

The simplest approximation for a focused beam is a
plane wave with a Gaussian intensity profile. For incidence
along Z (k ‖ ez) this writes:

E0(r, ω) = E0 eik·r exp

(
(x− x0)2 + (y − y0)2

2w2
spot

)
(21)

The beam propagates along (x0, y0, z). The full width at
half maximum (FWHM) can be obtained via

wFWHM = wspot · 2
√

2 ln 2 . (22)

A focused plane wave is often a sufficient approximation
(see e.g. Ref. [40]) and can be particularly useful if the
divergence of the radius of curvature at the origin of the
paraxial Gaussian becomes problematic.

3.2.3. Paraxial Gaussian beam

fields.gaussian
(function)

arguments:
• paraxial: True (default: False)

Often, lasers are used as sources of monochromatic,
coherent light with high intensity. Light emitted from a
laser-cavity is however not propagating like a plane wave,
but as a Gaussian beam. The intensity profile differs
significantly from the focused plane wave so the use of
a model for Gaussian beams may become necessary –
particularly in larger objects, where the “curved” intensity
profile of such a beam induces important field gradients
along the propagation direction and the particle. A
popular approximation to a real Gaussian beam is the
so-called paraxial approximation, where all k-vectors are
parallel to one single propagation direction. It can be

calculated using the following formula (propagation along
Z-axis)

E0(r, ω) = E0
w0

w(z)
exp

(−r2
w(z)2

)
× exp

(
−i

(
k

(
z +

r2

2R(z)

)
− ζ(z)

))
(23)

with the beam width or “waist” w0 and the squared
distance to the beam axis r2 = (∆x2 + ∆y2). ∆x and ∆y
are the distances to the beam axis in X and Y direction,
respectively. In equation (23) we introduced furthermore
the z-dependent beam waist

w(z) = w0

√
1 +

(
zλ

πw2
0

)2

(24)

the radius of curvature

R(z) = z

(
1 +

(
πw2

0

zλ

)2
)

(25)

and the Gouy phase [41]

ζ(z) = arctan

(
zλ

πw2
0

)
. (26)

3.2.4. Tightly focused Gaussian beam

fields.gaussian
(function)

arguments:
• paraxial: False (=default)

Under tight focusing conditions an additional
component E0,z parallel to the wave-vector (again
assuming k ‖ ez) can gain a substantial magnitude,
which can be explained by the divE Maxwell’s equation.
This can be accounted for by adding the following
correction term to the paraxial Gaussian (again assuming
propagation along Z) [42]

E0,z(x, y, z) =
−2i

kw(z)2
(∆xE0,x + ∆y E0,y) . (27)

3.2.5. Dipolar emitter

fields.dipole_electric
(function)

An electric dipole p placed in a homogeneous
environment at r0 and oscillating at frequency ω creates
an electric field at r which writes [15]

Ep(r, r0, ω) =
1

εenv

(
I k2 +∇∇

)
G0(r, r0, ω) · p(ω) (28)

where ∇ acts along r, I is the unitary tensor, k the
wavenumber and G0 the scalar vacuum Green’s function
(see Eq. (16)).

7

k0

λ/2

-E0 E0Ex

k0

λ/2

-E0 E0Ex

k0

λ/2

-E0 E0Ex

k0

λ/2

-E0 E0Ex

λ/2

-E0 E0Ex

Figure 5: Real part of Ex for (from left to right): A plane wave, a “focused plane wave”, a paraxial Gaussian beam, a tight-focus corrected
paraxial Gaussian beam (all X-polarized, k ‖ −ez) and a dipole emitter along X (indicated by a white arrow).

3.2.6. Magnetic dipole emitter

fields.dipole_magnetic
(function)

Analogously, a magnetic dipole emitter m at r0 is the
source of an electric field [15, 43]

Em(r, r0, ω) = ik0∇×G0(r, r0, ω) ·m(ω). (29)

4. Solver

4.1. Internal fields

Solving the primary scattering problem is usually the
root of a GDM simulation. The self-consistent calculation
of the fully retarded (complex) electric field inside the
nano-structure is done by inversion of equation (13) via

core.scatter
(function)

Usually, the underlying scipy libraries used for inversion
are multi-thread parallelized, making use of all processors
on multi-core CPUs.

For distributed systems like most modern computing
clusters, also a multi-processing parallel version of
core.scatter is implemented in pyGDM, which uses
MPI to simultaneously calculate several wavelengths of a
spectrum on parallel processes:

core.scatter_mpi
(function)

Note:. Each MPI process calculates a single wavelength
using the parallelized scipy-routines. In this
double-parallelized way, spectral simulations can be
carried out very rapidly on multi-node computing
clusters. core.scatter_mpi requires the “mpi4py”
package.

4.1.1. Direct inversion
• argumentmethod : “lu” (default), “scipyinv”, “superlu”,
“pinv2” (all require scipy), “numpyinv” or “dyson”
(only numpy)

In pyGDM the inversion of M (eq. (12)) is by
default performed with LU-decomposition (using the
implementation in scipy). This should be the fastest
solver for full inversion (see Fig. 6a) and has furthermore
an excellent multi-threaded parallelization scaling, as
can be seen in figure 7. An extensive explanation of
LU-decomposition and details on its implementation can
be found for example in Ref. [37] (chapter 2.3). Other scipy
solvers can be used in pyGDM, and, if for any reason scipy
is not available, the “numpyinv” and “dyson” methods are
alternatives which do not require scipy.

The solver “dyson” uses a sequence of Dyson’s
equations [20] and comes with pyGDM. Since it does not
depend on any libraries it should work in every case,
however it will usually be significantly slower than the
third-party solvers. An advantage of “dyson” can be
the memory requirement which is relatively low, because
the Dyson sequence allows an in-place inversion of the
matrix (see figure 6b). A detailed description of the latter
algorithm can be found in Ref. [44] (chapter 2.4).

We note that LU inversion (or in some cases conjugate
gradients, e.g. for dense spectra on single-core systems, see
below and appendix) is the preferred technique in pyGDM
due to its high efficiency (see Fig. 6a).

4.1.2. Conjugate gradients
• argument method : “cg” or “pycg”

Sometimes it is not necessary to calculate the full
structure of the inverse of matrix M. Often it is sufficient
to only know the result of the matrix-vector product
M−1E0. It turns out that under certain circumstances,
iterative approaches such as the "conjugate gradients"
method lead to very accurate approximations of this
matrix/vector product in significantly less time compared
to the inversion of M. For a detailed description and
informations related to the conjugate gradients solver, see
appendix 15.

8

103 104

meshpoints

10−1

100

101

102

103

ti
m
e
p
er

w
a
ve
le
n
g
th

(s
)

(a)

lu, p=2.9

cg, p=2.1

dyson, p=3.0

scipyinv, p=3.0

numpyinv, p=3.0

pinv2, p=2.9

superlu, p=2.9

103 104

meshpoints

102

103

104

p
ea
k
m
em

or
y
(M

B
)

(b)

lu

cg

dyson

scipyinv

numpyinv

pinv2

superlu

Figure 6: (a) Timings of a pyGDM-simulation of a spherical dielectric particle as a function of the number of meshpoints for the different
available solvers. Solid lines are power-law fits, confirming p = 3 for full inversion methods and p = 2 for CG (the fitted power p is given in
the legend). (b) Memory requirement (in megabytes) as function of the number of meshpoints for the different solvers. All benchmarks were
performed on a single core of an AMD FX-8350 CPU.

2 3 4 5 6 7 8 9 10
Nthreads

1

2

3

4

5

6

7

8

9

sp
ee

d-
up

fa
ct

or

lu
cg
dyson
scipyinv

numpyinv
pinv2
superlu

Figure 7: Speedup of the GDM-calculation using the multi-threaded
parallelization capability of the available solvers. Benchmark
performed on an Intel E5-2680 10-core CPU.

4.2. Decay-rate of dipolar emitters

core.decay_rate
(function)

The Green’s Dyadic formalism can be used not only to
obtain scattered electro-magnetic fields. It gives also direct
access to the modification of the decay rate of electric
or magnetic dipolar transitions due to the presence of
polarizable materials in their vicinity.

Note: . The decay rates are proportional to the photonic
LDOS [45], hence the values obtained from the calculation
of the relative decay rates Γ/Γ0 are identical to the
relative LDOS (specifically to the partial LDOS, meaning
its electric or magnetic component and / or partial for
specific dipole orientations).

4.2.1. Electric dipole
The effect is intuitively understandable for an electric

dipole transition p, as a consequence of the enhancement

(or weakening) of the electric near-field because of the
dielectric contrast and the resulting back-action of the
radiated field on the dipole itself. It is possible to derive
an integral equation describing the decay rate Γe of the
dipole transition [45, 43]:

Γe(r0, ω) = Γ0
e(ω)

×
(

1 +
3

2k30
u · Im

(
GEE

p (r0, r0, ω)
)
· u
)
, (30)

where

GEE
p (r, r0, ω) =

∫
V

dr′
∫
V

dr′′GEE
0 (r, r′, ω)

· χe(r
′, ω) ·K(r′, r′′, ω) ·GEE

0 (r′′, r0, ω) (31)

and Γ0
e(ω) = 4k30p

2/3~ is the decay rate of the electric
dipole transition in vacuum. r0 is the location of
the dipolar transition (outside the nanostructure). u
denotes the dipole orientation, p its amplitude. K is the
generalized propagator (see Eq. (14) or Ref. [20]). For
the numerical implementation, the integrals in Eq. (31)
become sums over the mesh-points of the discretized
nano-object(s).

The propagator GEE
0 can be found by identification

using Eq. (28) and following equation for the field of an
electric dipole p at r0 [15]

E0(r, ω) = GEE
0 (r, r0, ω) · p(ω) , (32)

Note:. GEE
0 is given for particles in a homogeneous

environment by the Green’s Dyad of equation (5). In
analogy to the scattering simulations it can be easily
extended for more complex environments, such as an
infinite substrate (see section 1).

4.2.2. Magnetic dipole
Also the decay rate of a magnetic dipole transition close

to non-magnetic materials is influenced by the presence of

9

the structure. Such magnetic-magnetic response function
associated to a structure with no direct magnetic response,
arises from the electric field emitted by the magnetic
dipole, interacting with the material and finally again
inducing a magnetic field via the curl of the electric
field. In metallic nanostructures, circular plasmonic
currents can also lead to significant magnetic near-field
enhancements [46]. In complete analogy to equation (30),
the magnetic decay rate Γm writes

Γm(r0, ω) = Γ0
m(ω)

×
(

1 +
3

2k30
u · Im

(
GHH

p (r0, r0, ω)
)
· u
)
, (33)

where

GHH
p (r, r0, ω) =

∫
V

dr′
∫
V

dr′′GHE
0 (r, r′, ω)

· χe(r
′, ω) · K(r′, r′′, ω) ·GEH

0 (r′′, r0, ω) (34)

and Γ0
m(ω) = 4k30m

2/3~ is the decay rate of the magnetic
transition in vacuum. u and m are the magnetic dipole
orientation and amplitude, respectively, and K is again
the generalized propagator.

In the same way as for the electric dipole, GHE
0 and

GEH
0 can be found using Eq. (29) with the electric field of

a magnetic dipole m at r0

E0(r, ω) = GEH
0 (r, r0, ω) ·m(ω) (35)

and
GHE

0 (r, r′, ω) = GEH
0 (r′, r, ω) . (36)

For a detailed derivation of the formalism see
reference [43]. For a comparison of our code with
experimental results, see reference [47].

4.2.3. LDOS inside a nanostructure
The decay rate (and hence the LDOS) at a position r0,s

inside the structure can also be obtained via equation (30)
(for the electric case), using the field susceptibility GEE

p,s

inside the structure. It is related to the generalized
propagator (assuming an isotropic medium with χe =
Tr (χe)/3), by

GEE
p,s(ri, rj , ω) =

K(ri, rj , ω)− I

χe Vcell
, (37)

where ri and rj are positions of nano-particle meshpoints.
For the case of the magnetic LDOS inside the structure,

an “electric-magnetic” mixed generalized propagator needs
to be calculated. This propagator relates any incident
electric field to the scattered magnetic field inside the
structure. This is not implemented in pyGDM so far, but
could easily be made available using the mixed tensorGEH

0

instead of the electric-electric Green’s Dyadic function in
the inversion problem, defined by equation (10).

Note:. The frequency shift of the emitter due to the
presence of a nano-structure (“Lamb shift”) can be
obtained in analogy to the decay rate, via the real part
of the field susceptibility [48]. This is however not (yet)
implemented in pyGDM.

5. Post-Processing

5.1. Linear effects

After the main simulation (calculation of the fields
inside the structure, decay rate), the information can
be further processed to obtain experimentally accessible
physical quantities.

5.1.1. Near-field outside the nanostructure

linear.nearfield
(function)

Electric field:. Via Eq. (10) the electric field induced at
any point r at the exterior of the particle can be calculated
from the electric polarization inside the structure.

Magnetic field:. The propagator GHE
0 (see also

equation (35)) can be used to obtain the magnetic field
outside the source region [49]. linear.nearfield returns
both, the electric and the magnetic field amplitudes
for the scattered as well as for the total near-field
(Etot = Escat + E0).

Note:. Alternatively, the B-field may be calculated via
finite differentiation: After Faraday’s induction law from
Maxwell’s equations (Eq. (1b)), the magnetic field writes
(for time-harmonic fields)

B(r, ω) =
∇×E(r, ω)

ik0
. (38)

5.1.2. Extinction, absorption and scattering cross-sections

linear.extinct
(function)

The linear response in the farfield can be characterized
by the scattered and absorbed light intensity, the sum
of which is called the “extinction”. Usually these values
are given as cross sections σscat., σabs. and σext. which
have the unit of an area. The extinction and absorption
cross sections can be calculated from the near-field in the
discretized structure [50]

σext =
4πk

|E0|2
Ncells∑
i=1

Im
(
E∗0,i ·Pi

)
(39)

10

and

σabs =
4πk

|E0|2
Ncells∑
i=1

(
Im (Pi ·E∗i)− 2

3
k3|Pi|2

)
. (40)

Ei and Pi are the electric field and polarization at
meshpoint i, respectively, induced by an excitation field
E0,i. k is the wavenumber in the particle’s environment.
Complex conjugation is indicated with a superscript
asterisk (∗).

The scattering cross section finally is the difference of
extinction and absorption

σscat = σext − σabs. (41)

5.1.3. Far-field pattern of the scattered light

linear.farfield
(function)

The complex electric field in the far-field, radiated from
an arbitrary polarization distribution can be calculated
using a corresponding Green’s Dyad Gff (assuming a
dipolar emission from each of the N meshpoints):

Eff(r) =

Ncells∑
i

Gff(ri, r) ·P(ri). (42)

In vacuum, using equation (5) with only the far-field term
T1, we can calculate the electric field at any point r far
enough from the scatterer.

A substrate can be included in the asymptotic tensor
by means of an appropriate dyadic Green’s function.
An analytic approximation of a farfield-propagator for a
layered system has been derived e.g. by Novotny [51].
Making use of the superposition principle, the radiation of
single dipoles via the propagator Gff can be generalized
to the total far-field radiation of an ensemble of N
dipole-emitters by simple summation of all meshpoints’
contributions (see Eq. (42)).

Note that the presence of the illuminated nano-structure
is fully taken into account also in this scattering formalism,
thanks to the self-consistent nature of the Green’s method.

Particularly in nano-structures with high absorption,
equation (41) requires a high accuracy of the extinction
and absorption cross-sections, hence small discretization
steps, which can be practically not feasible [50]. In such
case, equation (42) offers a more precise alternative to
determine the scattering cross-section. A further drawback
of the calculation of the scattering spectra from the
near-field via Eq. (41) is obvious: These spectra do not
contain any information about the directionality of the
scattering. Using Eq. (42) on the other hand, the spatial
distribution and polarization of scattered light in the
far-field and can be obtained.

In pyGDM, linear.farfield implements a Green’s
dyad including the contribution of an optional dielectric
substrate (in a non-retarded approximation [51]).

5.1.4. Heat generation
Having calculated the electric fields inside a nano-object,

it is possible to compute the heat deposited inside the
nanoparticle by an optical excitation as well as the
temperature rise in the vicinity of the structure [52].

linear.heat
(function)

The total heat generated inside the nanoparticle is
the product of the imaginary part of the material’s
permittivity and the electric field intensity:

Q(ω) =

∫
V

q(r, ω)dr

=
ω

8π

∫
V

Im
(
ε(r)

)
|E(r, ω)|2 dr.

(43)

linear.temperature
(function)

The temperature rise at position rprobe outside the
nanoparticle can be approximated with the heat q(r, ω),
generated at each meshpoint (located at r) via the thermal
Poisson’s equation [53, 25]

∆T (rprobe, ω) =
1

4πκenv

∫
V

(
q(r, ω)

|rprobe − r|

+

(
κsub − κenv
κsub + κenv

)
q(r, ω)

|rprobe − r|

)
dr

(44)

where κenv and κsub are the heat conductivities of the
environment and substrate, respectively. The second term
in the integrand can be derived through a formalism
similar to image charges in electro-dynamics and accounts
for heat reflection at the interface of the substrate [53].
Eqs. (43) and (44) can be for example used to calculate
raster-scan mappings of the deposited heat or the
temperature increase as function of a focused beam’s focal
spot position. Eq. (44) can also be used to compute
maps of the temperature increase above a nanostructure,
by raster-scanning rprobe under constant illumination
conditions.

Note:. Equation (44) assumes that the heat q generated
by the optical excitation at each meshpoint induces
a static heat distribution inside the nanoparticle.
This approximation might become inaccurate in large
nanoparticles of material with high heat conductivity (e.g.
metals), leading to a rapid redistribution of the heat inside
the nanostructure [52]. If the temperature increase is
evaluated at sufficiently large distances to the nano-object,
Eq. (44) is usually a good approximation also for larger
metallic nano-objects [54]. “Sufficiently large distances”

11

could mean comparable to, or larger than the size of the
nanoparticle.

5.1.5. Dipolar emitter decay rate

linear.decay_eval
(function)

The decay rate of magnetic or electric dipole emitters
can be calculated within the GDM as described in
section 4.2. Via equation (30), the tensor SEEp (or SHHp

using Eq. (33)) can be used to calculate the decay rate of
the transition for arbitrary orientations of the dipole.
core.decay_rate calculates the tensor SEEp or SHHp

(for an electric, respectively magnetic dipole emitter)
at each user-defined dipole position and wavelength.
The final evaluation of the decay rate is done using
linear.decay_eval for a given dipole orientation and
amplitude. The advantage of this two-step approach is
that the generalized propagator needs to be computed
only once, and the results of this expensive part of the
simulation can be re-used for multiple dipole orientations
and/or amplitudes.

5.2. Non-linear effects

5.2.1. Two-photon photoluminescence / surface LDOS

nonlinear.tpl_ldos
(function)

Having calculated the electric field distribution inside
a nanoparticle, a simple model allows to calculate the
two-photon photoluminescence (TPL) signal generated by
the excitation: We assume that the TPL is proportional to
the square of the electric field intensity. We furthermore
consider each meshpoint (at position r) as an incoherent
source of TPL, contributing to the total TPL with an
intensity proportional to |E(r, ω)|4. Integration over
the nano-particle volume V results in the total TPL
intensity [25]:

ITPL(rfocus, ω) ∝
∫
V

|E(r, rfocus, ω)|4 dr. (45)

Here we added a further parameter, the focal spot
position rfocus of a focused illumination. By performing a
raster-scan over the nano-structure with the focal position
coordinate, we can calculate 2D scanning TPL-maps.

This approach allows also to approximate the photonic
local density of states at the surface of the nanostructure
ρsf(r, ω) on which the focused spot impinges (surface
LDOS), using an unphysically tightly focused beam. In
the case of a circularly polarized excitaiton, it is possible

to rewrite the TPL intensity of Eq. (45) [25, 40, 55]:

ITPL(rfocus, ω) ∝∫
V

∣∣Eœ
0 (r, rfocus, ω)

∣∣4 ρ2sf,‖(r, ω)dr (46)

where Eœ
0 is the incident electric field and ρsf,‖ is the

component of the LDOS in the plane parallel to the
incident electric field vector. Let us now decrease the waist
of the focused beam: In the limit of a spatial profile of Eœ

0

corresponding to a Dirac delta function, the square root
of the TPL intensity Eq. (46) becomes proportional to the
LDOS at the position of the focal spot

ITPL(rfocus, ω) ∝ ρ2sf,‖(rfocus, ω). (47)

In consequence, a 2D map of the LDOS can be calculated
via a raster-scan simulation, which can be done very
efficiently in pyGDM thanks to the generalized propagator.
By using a linear polarized incident field, it is furthermore
possible to extract partial contributions to the LDOS for
the corresponding polarization.

Note:. The “surface”-LDOS is reproduced by Eq. (47)
for a contraction of Eœ

0 towards a Dirac delta function.
However, due to the finite stepsize in the GDM, the beam
waist cannot be reduced to an infinitely small value, hence
this method remains approximative. Practical values for
the waist must be at least as large as a few times the
discretization stepsize. To obtain the exact LDOS, the
calculation of the decay-rate is the method of choice (see
also section 4.2).

6. Visualization

pyGDM includes several visualization tools for simple
and rapid plotting of the simulation results. They
are divided into functions for the visualization of 2D
representations and functions for 3D plots.

6.1. 2D visualization tools
The available visualization functions are explained in

the following, examples are given in Fig. 8 using a
simulation of a 450 nm × 90 nm large gold rod with
stepsize d = 15nm, excited with a plane wave at λ0 =
600 nm, linearly polarized along X and incident from the
reader towards the paper (k = −ez k). The plots show
projections on the XY plane.

6.1.1. Structure geometry

visu.structure
(function)

Plot a 2D projection of the simulated nano-particle
geometry (see figure 8a, meshpoints in golden color).

12

−300 −200 −100 0 100 200 300
−80

−40

0

40

80

Y
(n
m
)

(a) geometry (XY -projection)

−300 −200 −100 0 100 200 300

X (nm)

−80

−40

0

40

80
(b) E-field vectors inside (real part)

−300 −200 −100 0 100 200 300
−80

−40

0

40

80
(c) E-field intensity inside

0.6 1.2 1.8 2.4

|E|2/|E0|2

(d) E-field vectors (real part) (e) E-Field isolines (real part) (f) E-Field intensity

0.5 1.0 1.5 2.0

|E|2/|E0|2

(g)

200nm

B-Field intensity

1.6 2.4 3.2 4.0

|B|2/|B0|2

Figure 8: Visualization tools available in pyGDM on the example of a 450 × 90 × 45nm3 (L ×W ×H) gold-rod placed in vacuum. Plane
wave illumination incident along −Z, linear polarization along X, λ = 600 nm. All plots show projections on the XY -plane. (a) the geometry
(gold) and its surface contour (dashed blue), (b) the real part of the internal electric field and (c) the internal electric field intensity at the
bottom of the rod. (d-g) show external fields, calculated on an 800× 800nm2 large area, 30nm below the structure using linear.nearfield:
(d) E-field real part, (e) isolines of E-field, (f) electric field intensity and (g) magnetic field intensity.

visu.structure_contour
(function)

Plot a contour around a 2D projection of the
nano-particle, in other words drawing the outer surface of
the structure (see figure 8, dashed blue line in (a), dashed
white lines in (f-g)).

6.1.2. Plot field vectors
2D projections of the real or imaginary part of

vector-fields (see figure 8d) can be plotted using

visu.vectorfield
(function)

Alternatively, the function can be called using:

visu.vectorfield_by_fieldindex
(function)

The intention of the latter is to be used for direct
plotting of fields inside the simulated particle via the
core.simulation object (see figure 8b).

6.1.3. Field lines (“stream-plot”)
Isolines of the field amplitude can be plotted using

visu.vectorfield_fieldlines
(function)

For an example, see figure 8e.

6.1.4. Scalar field representation (color-plot)
Color-plots are well suited to illustrate a scalar

representation of the electric- or magnetic-field. This can
be used to represent either the real/imaginary part of
an individual field component (such as Ex), or the field
intensity (|E|2, |B|2). In pyGDM, such a plot can be drawn
using

visu.vectorfield_color
(function)

By default, the electric field intensity is plotted, as
shown in figure 8f-g. Alternatively, to easily plot the field
inside the nanoparticle (see figure 8c), the same type of
color-plots can be generated by calling

visu.vectorfield_color_by_fieldindex
(function)

The above functions are actually plotting scalar fields,
the function names “vectorfield. . . ” refer to the fact that
vectorial data is taken as input. If the data is available
as scalar field (i.e. in tuples (x, y, z, S) with S being

13

(a)

(b)

(c)

Figure 9: Examples illustrating the pyGDM 3D visualization tools
on the same data as shown in figure 8a-c. (a) structure geometry,
(b) electric field (real part) and (c) intensity of the electric field |E|2
inside the gold nanorod.

a scalar value), one can use the following wrapper to
visu.vectorfield_color

visu.scalarfield
(function)

6.1.5. Farfield backfocal plane image
Plot the “backfocal plane” image scattered to the

farfield from the results obtained by linear.farfield (see
section 5.1.3)

visu.farfield_pattern_2D
(function)

An example illustrating the output of the farfield plotting
function is shown in figure 13.

6.1.6. Animate fields
The time-dependence of time-harmonic fields is

expressed by harmonic oscillations at the fixed frequency
ω. After equation (19) we can directly calculate the
time-dependent field Ẽ(r, ω, t) at time t from the complex
fields E(r, ω) obtained by the GDM. pyGDM provides
a function for simple animations of the electromagnetic

fields, which allows to visualize the time-dependent optical
response of nanostructures.

visu.animate_vectorfield
(function)

Quiver-plots of the field vectors, the real/imaginary part
of individual field components or the field intensity (as
color-plots for the latter two) may be animated.

6.2. 3D visualization tools

Similar tools as for two-dimensional data visualization
are available in the visu3d module for generating
3D figures. The convention for the function names
is the same as in the 2D visualization module
in order to make switching between 2D and 3D
representations as easy as possible. Available plotting
functions are structure, vectorfield, vectorfield_by_
fieldindex, vectorfield_color, vectorfield_color_
by_fieldindex and scalarfield. For a short explanation,
see the equivalent 2D-plotting functions, described
above. Examples demonstrating the visual output of the
3D-plotting functions are shown in figure 9 (on the same
data as in figure 8a-c).

Finally, also 3D-animations of the time-harmonic fields
can be generated. This can be done using visu3d.
animate_vectorfield.

7. Tools

Apart from visualization, pyGDM includes also several
tools to render post-processing as simple as possible.

7.1. 2D-projections of nano-structures

In order to calculate a two-dimensional projection of a
nano-structure, use

tools.get_geometry_2d_projection
(function)

7.2. Geometric cross-section

The geometric cross-section of a nano-structure is the
area occupied by its projection onto a specific plane (i.e.
its “footprint”). It is often used as a reference value, for
example for the scattering efficiency. It can be calculated
using (in units of nm2)

tools.get_geometric_cross_section
(function)

By default, the projection on the XY plane is used, this
can be changed via the parameter “projection”.

14

(a) N=171
s=46.9nm

N=305
s=37.5nm

N=619
s=30.0nm

N=1021
s=25.0nm

N=1551
s=21.4nm

(b) N=195
s=50.0nm

N=425
s=37.5nm

N=763
s=31.2nm

N=1111
s=27.2nm

N=1531
s=24.2nm

300 400 500 600 700 800 900 1000

wavelength (nm)

0.1

0.2

0.3

0.4

σ
ex
t.
(µ
m

2
)

N=171

N=305

N=619

N=1021

N=1551

Mie theory

300 400 500 600 700 800 900 1000

wavelength (nm)

0.1

0.2

0.3

0.4

σ
ex
t.
(µ
m

2
)

N=195

N=425

N=763

N=1111

N=1531

Mie theory

Figure 10: Comparison of the extinction cross-section of a dielectric sphere (nsphere = 2.0) of diameter D = 300 nm, placed in vacuum and
illuminated by a linearly polarized plane wave. Calculated either using pyGDM with different numbers of meshpoints (blue lines) or Mie
theory (dashed red line). (a) cubic mesh, (b) hexagonal compact mesh. At the top the number of meshpoints N , the nominal stepsize s and
an illustration of the discretization are given, the latter showing XY -slices through the sphere’s center.

7.3. Surface of a nano-structure
For surface-effects like surface second-harmonic

generation (surface SHG), the meshpoints on the surface
of a nanostructure are of particular interest. They can be
obtained using

tools.get_surface_meshpoints
(function)

The function also returns the surface-normal unit vectors
for each surface-meshpoint.

7.4. Calculating spectra
Calculating spectra of different physical quantities is

a very common task in nano-optics. pyGDM therefore
provides tools to render this task very simple. Each
field-configurations in a simulation-object, which is
available for several wavelengths, can be obtained via

tools.get_possible_field_params_spectra
(function)

These configurations can then be used together with
post-processing routines (such as linear.extinct for the
extinction cross-section) to calculate a spectrum for some
physical quantity. This can be done using

tools.calculate_spectrum
(function)

7.5. Calculating raster-scans
Because pyGDM uses the concept of a generalized

propagator, it is particularly suited for application

0.000

0.001

0.002

0.003

0.004

(a)

D=50 nm Au sphere - step=4.5 nm

ext.

abs.

scat.

GDM

Mie

400 500 600 700 800

wavelength (nm)

0.00

0.05

0.10

0.15

0.20

σ
ex
t.
,
σ
ab

s.
,
σ
sc
at
.
(µ
m

2
)

(b)

D=150 nm Si sphere - step=7.0 nm

Figure 11: Comparison of the extinction, absorption and scattering
cross-sections of (a) a gold sphere of diameter D = 50nm and
(b) a silicon sphere of diameter D = 150nm. Both spheres are
placed in vacuum and illuminated by a linearly polarized plane wave.
Calculated either using pyGDM (solid lines) or by Mie theory (dotted
lines). In both cases, a hexagonal compact mesh is used.

15

400 500 600 700 800

wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
a
li
ze
d
I s
ca
t.
(a
.u
.)

D=150 nm Si sphere - step=7.0 nm

FW

BW

FW/BW

10−1

100

101

F
W

/
B
W

ra
tio

FW/BW=1

Figure 12: Forward (FW, red) and backward (BW, blue) scattering
spectra and FW/BW ratio (green dotted) for a silicon sphere of
diameter D = 150nm in vacuum. A hexagonal compact mesh is
used.

(a)

100nm

structure (b) p ‖ X

0.0 0.5 1.0

|E|2 (a.u.)

(c) p ‖ Y

0.00 0.05 0.10 0.15

|E|2 (a.u.)

Figure 13: (a) sketch of the simulation geometry: A dipolar emitter,
radiating at λ = 1 µm is placed in the center of a gold split-ring
resonator (in vacuum). (b-c) qualitative far-field patterns (backfocal
plane images) of the scattering of the quantum emitter coupled to
the plasmonic structure for dipole orientations along X and Y in (b),
respectively (c).

in monochromatic problems with varying illumination
conditions, such as raster-scan simulations (varying beam
position). If a simulation with a large number of focused
beam-positions has been performed, the available incident
field configurations (e.g. wavelengths or polarizations)
corresponding to full raster-scan maps can be obtained
using

tools.get_possible_field_params_
rasterscan
(function)

Like in the case of a spectrum, a scalar mapping can
be computed from a raster-scan simulation, where each
raster-scan position will be attributed a value, according to
an evaluation function (like linear.extinct, linear.heat,
. . .). Such maps can be obtained using

tools.calculate_rasterscan
(function)

600 800 1000 1200 1400

wavelength (nm)

0

20000

40000

60000

80000

σ
sc
at
.
(n
m

2
)

tot. scat.

in X , out X

in X , out Y

Ein

Figure 14: Polarization filtered scattering spectra from symmetric
L-shaped plasmonic antenna (arm length L = 210 nm, width and
height W = H = 45nm). A sketch of the geometry is shown as
inset. The total scattering (dashed black line) as well as the X
and Y polarization filtered scattering contributions (blue and red,
respectively) are shown.

8. Examples

In the following section, we show several examples of
pyGDM simulations. In the examples we try to reproduce
analytical Mie theory, results from selected publications or
we simply intend to demonstrate pyGDM features.

8.1. Comparison to Mie theory
Curved surfaces are generally demanding if it comes

to discretization. A popular benchmark problem for
electro-dynamical numerical methods is therefore the
sphere, for which an analytical solution is given by Mie
theory. In the first examples we thus compare pyGDM
simulations to Mie theory.

8.1.1. Dielectric nano-sphere
Using linear.extinct, we calculate the extinction

cross-section σscat of a dielectric sphere of diameter D =
300 nm in vacuum with fixed, purely real refractive index
n = 2. Results are shown in figure 10 for different stepsizes
and for (a) a cubic mesh as well as (b) a hexagonal compact
lattice.

In comparison with Mie theory, we find that the GDM
offers a very good approximation already using rather
coarse meshing. Furthermore we note, that the case of
a spherical particle seems to be better described using
a hexagonal mesh: The agreement with the analytical
solution is slightly better for comparable numbers of
meshpoints.

8.1.2. Dispersive nano-spheres (Au, Si)
In figure 11 we compare spherical particles of dispersive

materials. Fig. 11a shows spectra corresponding to a
D = 50 nm gold nano-sphere in vacuum, figure 11b gives
spectra for aD = 150nm silicon sphere. Simulated spectra
are calculated using linear.extinct and compared to Mie
theory. The resonance positions from Mie theory are
reproduced with excellent agreement.

16

500 600 700 800 900 1000

wavelength (nm)

0

10

20

30

40

50

Q
(µ

W
)

Figure 15: Spectrally resolved heat generation within a gold prism of
side length L = 115 nm and height H = 12nm. Incident polarization
along one edge of prism.

8.2. Other examples

8.2.1. Forward / backward scattering spectra
The far-field propagation routine linear.farfield can

be used to calculate directionality resolved scattering
spectra. This can be done by integrating the intensity
in the far-field over limited solid angles. In figure 12,
the example of a Si sphere with diameter D = 150 nm is
used again. This time, we calculate the scattering via the
linear.farfield routine (instead of using linear.extinct).
The forward (FW) and backward (BW) scattering spectra,
as well as the FW/BW ratio are in excellent agreement
with the results of reference [56].

8.2.2. Far-field radiation pattern
The function linear.farfield can also be used to

obtain the far-field intensity distribution, comparable to
experimental backfocal plane images. In an attempt
to reproduce results published in reference [57], we
put a dipolar emitter (λ0 = 1 µm) in the center of
a gold split-ring resonator and calculate the scattering
to the far-field of the coupled system (for simplicity
we consider vacuum as environment). The geometry
of the considered arrangement is depicted in Fig. 13a.
The dipole is oriented either along X (red) or along Y
(blue), the corresponding radiation patterns are shown
in figures 13b and c, respectively. We can indeed
reproduce the dipole-orientation dependent directionality
of the scattering from the coupled system.

8.2.3. Polarization conversion
Also the polarization of the scattered light can

be analyzed using linear.farfield. In figure 14 we
demonstrate polarization conversion from an L-shaped
gold antenna with perpendicular arms of equal dimensions
(c.f. Refs. [6, 7]). An L-shaped plasmonic antenna
(in vacuum) with arm dimensions L = 210nm, W =
H = 45 nm (see inset in figure 14) is illuminated by a
plane wave of linear polarization along one antenna arm
(here along X). The scattered intensity is shown for two

different output polarizations in blue (Escat ‖ X) and red
(Escat ‖ Y), the latter corresponding to a polarization
converted scattered field, which is highest if the incident
wavelength is spectrally inbetween the pure modes (the
pure modes correspond to polarization angles of ±45◦, see
e.g. Ref. [6]).

8.2.4. Heat generation
To demonstrate the capabilities to model nano-optical

thermal effects in pyGDM, we reproduce results published
in Ref. [52]. A gold prism of side length L = 115nm and
height H = 12nm is illuminated by a plane wave, linearly
polarized along a side of the prism. The prism is placed
on a glass substrate (nsubst = 1.45) and is surrounded by
water (nenv = 1.33). The total deposited heat Q from an
incident power density of 1mW/µm2 is shown in figure 15
as function of the wavelength.

8.2.5. Decay rate of dipole transition
The modification of the decay rate of an electric and a

magnetic dipolar transition close to a very small dielectric
nano-particle is demonstrated in figure 16 (compare also
with Ref. [43]). The dipolar emitter (λ0 = 500nm) is
raster-scanned in the XY plane at ∆z = 15 nm above a
dielectric nano-cube (n = 2) of side-length D = 21nm,
placed in vacuum. At each position in the raster-scan,
the relative decay rate modification with respect to the
vacuum value Γ0 is calculated.

A noteworthy observation is the much narrower
confinement of the features in the case of an electric dipole
compared to the magnetic transition. Furthermore, also
the magnitude of the decay rate variation is much stronger
for the electric dipole. Both phenomena can be attributed
to the more “direct” interaction of an electric dipole with
the nano-structure, compared to the “indirect” magnetic
response of the itself non-magnetic nano-particle (see also
section 4.2).

8.2.6. Rasterscan simulation: TPL / heat / temperature
To demonstrate a rasterscan simulation, we calculate

as function of a focused beam’s focal spot position and
for several incident linear polarizations: the two-photon
photoluminescence (TPL) signal, the total deposited heat
Q and the temperature rise at 150 nm above the center of
a flat gold rhombus. The object is assumed to lie in water
with nwater = 1.33 and a thermal conductivity of κwater =
0.6W/mK. The temperature rise is calculated either for
the rhombus in a homogeneous water environment, or in
water lying on a glass substrate (using nglass = 1.5, κglass =
0.8W/mK). The rhombus dimensions are defined by a side
length of L = 500nm, a height of H = 20nm and a top
(and bottom) angle of 60◦. A linearly polarized focused
plane wave (λ0 = 750nm) of spotsize w = 200nm is used,
setting the power density to 1mW/µm2. The rasterscans
consisting of 50 × 50 focal spot positions are shown in
figure 17 for different angles of the linear polarization of the
fundamental field. We can clearly observe the correlation

17

(a)

200 nm

electric dipole ‖ (1,0,0)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Γ
e /
Γ
0

(d)

magnetic dipole ‖ (1,0,0)

1.000

1.001

1.002

1.003

1.004

1.005

1.006

1.007

Γ
m
/
Γ
0

(b)

electric dipole ‖ (0,1,0)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Γ
e /
Γ
0

(e)

magnetic dipole ‖ (0,1,0)

1.000

1.001

1.002

1.003

1.004

1.005

1.006

1.007

Γ
m
/
Γ
0

(c)

electric dipole ‖ (0,0,1)

1.00

1.05

1.10

1.15

1.20

1.25

Γ
e /
Γ
0

(f)

magnetic dipole ‖ (0,0,1)

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

1.0030

Γ
m
/
Γ
0

Figure 16: Decay rate of an electric (a-c) and a magnetic (d-f) dipole transition close to a small dielectric nano-cube (n = 2, side length 21nm,
in vacuum) relative to their respective vacuum decay rate Γ0. The dipoles emit at λ0 = 500nm, are scanned in a 500× 500nm2 large plane
15 nm above the particle. Dipole orientations along 0X (a,d), 0Y (b,e) and 0Z (c,f). Scale bar is 100nm.

between TPL and the heat and temperature mappings.
We also see that the temperature rise is slightly stronger
if a glass substrate is present. This is a result of heat
reflection at the glass surface.

8.2.7. Rasterscan simulation: LDOS
In figure 18 we show rasterscan simulations of the

photonic LDOS above a U-shaped dielectric planar
structure. The length is 800 nm in theX-direction, 400 nm
in the Y direction, its height is 60 nm and the bar width is
180 nm. Fig. 18a) shows the partial LDOS for X-oriented
dipole emitters, (b) the case of Y orientation and (c) the
total LDOS in the structure plane. From left to right is
shown the LDOS at decreasing distance to the structure
(60 nm, 30 nm and 0nm to the top surface). In the very
right column the surface LDOS is calculated using the
“TPL”-method (using a spotsize of w = 100nm, see also
section 5.2). Comparing the LDOS at the top surface layer
with the TPL-method, the general trends are reproduced.
The differences are not very surprising, since the calculated
quantities are not exactly the same. The TPL method
gives a measure of the energy that can be coupled into the
structure at the respective surface position using a focused
beam. It is therefore only non-zero if the focused beam
intersects with the structure. The LDOS corresponds to
the efficiency of the radiative coupling between a dipolar
emitter and the structure and is non-zero also outside the
structure.

9. Evolutionary optimization of nanostructure
geometries

9.1. Evolutionary optimization
A peculiarity of pyGDM is the EO module, provided

together with the main pyGDM toolkit. The purpose

of the EO module is to find nanostructure geometries
that perform a certain optical functionality in the best
possible way. This is also known as the “inverse problem”
[58, 59]. We try to achieve this goal by formulating the
optical property as an optimization problem which takes
the geometry of the particle as input. Such problem will
usually result in a complex, non-analytical function and
hence cannot be solved by classical optimization methods
like variants of the “Newton-Raphson method”.

In our approach we therefore optimize the problem using
evolutionary optimization (EO) algorithms. The latter
mimic natural selection to find ideal solutions to complex
(often non-analytical) problems. The initial step is to
define a “population” of random parameter-sets for the
problem. These “individuals” are then evolved through
a cycle of “reproduction” (mixing parameters between
the individuals and application of random changes)
and “selection” (problem evaluation and discarding weak
solutions). After a sufficient number of iterations,
hopefully an optimum parameter-set for the problem
has been found. The evolutionary optimization cycle is
depicted in figure 19a. Unfortunately, convergence can
in principle never be guaranteed in EO. Convergence is
therefore probably the most critical point in evolutionary
optimization strategies. To ensure the credibility of the
optimization results, a good stop-criterion and/or careful
testing of the convergence and reproducibility of the
solution for different initializations are crucial. For details
on EO, we refer to the related literature, e.g. Ref. [60].

9.2. EO in pyGDM

pyGDM can be used to optimize particle geometries for
nano-optical problems via evolutionary optimization. Our
approach consists of three main ingredients:

18

200 nm

(a)

ϑ = 0◦

two-photon
photoluminescence

total deposited
heat Q

∆T at Z = 150 nm
no substrate

∆T at Z = 150 nm
with glass substrate

(b)

ϑ = 30◦

(c)

ϑ = 60◦

(d)

ϑ = 90◦

min. max.
TPL

0 6 12 18 24 30

total heat (µW)

0 5 10 15 20 25

∆T (Kelvin)

0 5 10 15 20 25

∆T (Kelvin)

Figure 17: Thermoplasmonic rasterscan simulations. From left to right: TPL; total deposited heat; temperature rise 150nm above the
center of a gold rhombus (side length 500nm, top angle 60◦) as function of the focal spot position of the incident beam. For the first three
columns, the rhombus lies in homogeneous water. The right column shows the temperature rise for the structure in water, but lying on a glass
substrate (used heat conductivities are κwater = 0.6, κglass = 0.8W/mK). The incident wavelength is λ0 = 750 nm, the linear polarization
angle is (a) ϑ = 0◦, (b) ϑ = 30◦, (c) ϑ = 60◦ and (d) ϑ = 90◦. Scalebar in (a) is 200nm, the position of the gold rhombus is indicated by a
white dashed contour line (plotted using visu.structure_contour).

1. The structure-model: Constructs a particle
geometry as function of a set of input-parameters
which will be the free parameters for the optimization
algorithm. It furthermore contains the simulation
setup (via an instance of core.simulation). It is
defined by a class inherited from

EO.models.BaseModel
(class)

2. The problem: Defines the optimization target. This
will usually be an optical property of the particle
such as the scattering cross-section or its near-field
enhancement. It is defined by a class inherited from

EO.problems.BaseProblem
(class)

3. The EO algorithm: Finally the algorithm to solve
the optimization problem

For (3.) we use the PyGMO / paGMO toolkit [61].
PyGMO not only offers a large spectrum of EO algorithms.
It can furthermore distribute the population of solutions
on several “islands” within the so-called “Generalized island
model”. This allows for a very easy scaling of the
evolutionary optimization on multi-processor architectures
[62].
Note: In this context, the use of the generalized

propagator in pyGDM is a clear asset. Optimization
problems with the incident field shape and/or polarization
as variable and a fixed structure geometry can be solved
very efficiently. This includes problems like near-field
shaping in adaptive optics [63].

9.3. Multi-objective optimization

pyGDM’s EO-module is also capable of treating
multi-objective optimization problems, by internally
addressing pyGMO’s according API. In other words, it is

19

(a)
ϑ = 0◦

LDOS via Γe
at ∆Z = 60 nm

(b)
ϑ = 90◦

(c)
total

in-plane

LDOS via Γe
at ∆Z = 30 nm

LDOS via Γe
at top surface layer

200 nm

surface LDOS
via TPL-method

min. max.
LDOS

Figure 18: LDOS rasterscan simulations: Partial LDOS above a planar U-shaped dielectric structure (n = 2.0, H = 60 nm), calculated using
the imaginary part of the field susceptibility (via the decay-rate of a dipolar emitter) or a raster-scanned focused beam (“TPL-method”).
From left to right: At ∆Z = 60 nm and ∆Z = 30 nm above the structure surface, at the height of the top-most mesh-point layer inside the
structure and using the focused-beam approximation technique (see section “TPL”). The wavelength is λ0 = 600nm, the partial LDOS is
shown for (a) ϑ = 0◦ (X-direction), (b) ϑ = 90◦ (Y -direction) and (c) the total LDOS in the structure plane. The scale bar is 200nm, the
position of the structure is indicated by white dashed contour lines (plotted using visu.structure_contour).

possible to search for nano-structure geometries optimizing
multiple target properties simultaneously.

Such evolutionary multi-objective optimization (EMO)
can in principle be done in two ways: The first approach
consists in summarizing the multiple target values in one
single fitness function, hence capturing the problem into
a single objective optimization. In this case, the critical
part is the construction of an appropriate fitness-value,
which is usually not trivial at all. In the second approach,
one searches for the set of “non-dominated” or “Pareto
optimum” solutions, which is often called the “Pareto
front”. It consists of solutions that are all optimal in the
sense that an improvement in one of the target functions
necessarily leads to a decrease in at least one of the other
optimization targets. The obvious advantage is, that
the individual objectives can be used as-is without the
need to fiddle them into a single fitness-function. On
the other hand, the latter approach additionally requires
the selection of a single optimum solution from the set of
Pareto optimum solutions. For a detailed introduction to
EMO, see e.g. Ref. [64].

9.4. EO-Examples

We demonstrate the evolutionary optimization toolkit
“EO” on some simple but illustrative problems.

9.4.1. Maximize scattering cross-section or scattering
efficiency

For a first demonstration, we want to optimize the shape
of a rectangular gold-antenna in order to obtain maximum

scattering at a certain wavelength and for a fixed angle of
the linear incident polarization. The free parameters are
the length L and width W of the plasmonic rectangle (see
Fig. 19b). The position of the rectangle (∆x = ∆y = 0),
the stepsize (s = 15nm) of the cubic mesh and the height
of the antenna (H = 45nm) are fixed.

We run the EO of the rectangular shape with different
optimization targets, the respective final best solutions
are shown in figure 20: In (a) the scattering efficiency
Qscat (i.e. the scattering cross-section σscat divided by
the geometrical cross-section σgeo) is maximized for an
incident plane wave with wavelength λ0 = 800nm and
linear polarization of E0 along X. In (b) maximum Qscat
is searched for λ0 = 1000 nm and E0 ‖ X. In (c) Qscat
is again maximized for λ0 = 1000 nm but a perpendicular
polarization angle, hence E0 ‖ Y . Finally, (d) shows and
optimization of the scattering cross-section σscat (instead
of Qscat), with otherwise equal configuration as in (c).

The first observation is, that the optimization is indeed
capable of adjusting the size of the antenna such that the
surface plasmon resonance occurs at the target wavelength.
We also observe that while the optimization of the
scattering efficiency (Qscat given at the right of each plot)
leads to thin rectangles with low geometric cross section,
the optimization of the scattering cross section (σscat given
at the left of each plot) leads to a structure of maximum
allowed dimensions. This leads to a cross-section σscat
about twice as large as for the other antennas. The
scattering efficiency Qscat on the other hand is significantly
lower (about a factor 5) compared to the optimizations

20

WL

ΔxΔy

(c)(b)(a)

W2

L1

L2

W1

selection

reproduction

evaluation

stop-
criterion

met?

quit cycle, take
best solution

random
initialization

Figure 19: (a) Illustration of the evolutionary optimization scheme. (b-c) sketches of the gold antenna geometry models used for the
evolutionary optimization examples. Free parameters for the rectangular geometry (b) are the length L and width W of the rectangle and
an offset (∆x,∆y) for the structure position with respect to the origin (indicated by a small red cross). Free parameters for the cross-like
geometry (c) are the lengths L1, L2 and widths W1,W2 of the two rectangular components, forming the cross.

600 800 1000 1200 1400

wavelength (nm)

0.0

0.2

0.4

0.6

σ
sc
at
.
(µ
m

2
)

E0 ‖ X

E0 ‖ Y

0

27

54

81

600 800 1000 1200 1400

wavelength (nm)

0.0

0.2

0.4

0.6

0

20

40

59

600 800 1000 1200 1400

wavelength (nm)

0.0

0.2

0.4

0.6

0

20

40

59

600 800 1000 1200 1400

wavelength (nm)

0.0

0.2

0.4

0.6

0

2.2

4.4

6.7

Q
scat.

(a)

E0 ‖ X

target: Qscat(800 nm)

(b)

E0 ‖ X

target: Qscat(1000 nm)

(c)
E0 ‖ Y

target: Qscat(1000 nm)

(d)
E0 ‖ Y

target: σscat(1000 nm)

Figure 20: Evolutionary optimization of the dimensions of a rectangular plasmonic gold antenna for different optimization targets. The
optimum geometry is shown in the top panels (showing 400 × 400nm2 large areas). The corresponding scattering spectra are shown in the
bottom panels for plane wave illumination with X and Y linear polarization (blue, respectively red lines). The left ticks in each spectrum
denote the scattering cross section σscat, the ticks on the right hand side give the corresponding scattering efficiency (Qscat = σscat/σgeo). (a)
maximization of Qscat for X polarized illumination at λ = 800 nm. (b) maximization of Qscat for X polarized illumination at λ = 1000 nm.
(c) maximization of Qscat for Y polarized illumination at λ = 1000 nm. (c) maximization of σscat for Y polarized illumination at λ = 1000 nm.

shown in figure 20a-c.

9.4.2. Maximize electric field intensity
In a second example we want to find a structure to

maximize the electric field intensity at a specific point
rtarget, 30 nm above the structure surface.

As structure to be optimized, we use again the
rectangular gold-antenna of variable length and width
with the same configuration as in the first example.
Additionally we introduce as free parameters the offsets
∆x and ∆y, shifting the rectangle with respect to the
origin of the coordinate system (see Fig. 19b). The
structure is illuminated by a plane wave (λ0 = 800nm),
linearly polarized along X.

We run the optimization for two different rtarget. The
results are shown in figure 21. In both runs, the
optimization found a plasmonic dipole antenna, resonant
at the incident wavelength and shifted its position such

that the hot-spot of maximum field enhancement lies at
rtarget.

9.4.3. EMO: Double resonant plasmonic antenna
In a last example, we show how multiple objectives

can be optimized concurrently in a single optimization,
by calculating the Pareto-front. For the demonstration,
we try to obtain structures that scatter light at two
different wavelengths for perpendicular polarization angles
of the incident plane wave. We choose a simple cross-like
geometry model (structure placed in vacuum), consisting
of the four free parameters L1, L2 and W1,W2 (see
Fig. 19c).

The optimization goal is to simultaneously maximize
Qscat for (1) a wavelength λ0 = 800nm and an incident
polarization alongX and (2) λ0 = 1200nm and an incident
polarization along Y . The Pareto-front obtained by the
evolutionary optimization is shown in figure 22. Scattering

21

−300−150 0 300150

X (nm)

−300

−150

0

300

150

Y
(n

m
)

rtarget = (0, 0)

0 3 6 9 12 15 18 21 24

|E|2/|E0|2

−300−150 0 300150

X (nm)

−300

−150

0

300

150

rtarget = (−100, 150)

0 3 6 9 12 15 18 21 24

|E|2/|E0|2

Figure 21: Evolutionary optimization of the dimensions and the
position of a rectangular plasmonic gold antenna for maximum
E-field intensity enhancement at the location (a) rtarget = (0, 0) [nm]
and (b) rtarget = (−150, 100) [nm]. The z-coordinate of rtarget is
fixed to 30 nm above the upper surface of the structure. Shown
areas are 600× 600nm2.

0 2 4 6 8 10 12 14

Qscat.(λ = 800 nm, E ‖ X)

0

5

10

15

Q
sc

at
.(λ

=
12

00
nm

,E
‖

Y
)

(1)

(2)

(3)

400 800 1200 1600
λ (nm)

(3)

800 1200
λ (nm)

(2)

400 nm

400 800 1200 1600
λ (nm)

0

5

10

15

20

Q
sc

at
.

(1)

Figure 22: Multi-objective optimization of double-resonant
plasmonic antennas made from gold. Large plot: Pareto front
found from a concurrent maximization of Qscat at λ1 = 800nm
and λ2 = 1200 nm, for polarizations along X and Y , respectively
(Qscat = σscat/σgeo). Top: Spectra for X (blue) and Y -polarized
(red) illumination of three selected structures on the Pareto front,
shown as insets (labeled by numbers 1-3).

spectra of selected structures are shown in the top, their
geometries are illustrated in the insets, labeled (1)-(3).

The optimization indeed found structures which
maximize either one of the scattering-targets ((1) and
(3)), or scatter light similarly strong for both target
configurations (structure (2)). Note that the Pareto-front
is not very smooth. In addition, the model seems not to be
sufficiently sophisticated in order to obtain structures with
equal Qscat for both target conditions. A more general
structure model could probably provide better solutions
for the problem.

Note:. Further nano-photonic EO problems tackled using
the pyGDM toolkit, can be found in Refs. [43, 19, 65, 66,
67].

10. Conclusion

In conclusion, we presented a python toolkit for
electro-dynamical simulations in nano-optics, based on
a volume discretization approach, the Green dyadic
method. While other techniques like FEMmay offer better
accuracy, the main strength of pyGDM is the efficient
treatment of large monochromatic problems with many
illumination configurations, like raster-scan simulations.
Such calculations can be solved very efficiently in pyGDM
thanks to the concept of the generalized propagator.
Furthermore, its simplicity is a great advantage of
pyGDM. The high-level python API as well as many
tools for rapid data analysis and visualization render
standard nano-optical simulations very easy. Finally, the
evolutionary optimization submodule is a unique feature,
which allows to optimize nanostructure geometries for
specific target optical properties. Scripts to reproduce all
above shown examples, can be found online together with
further, extensive documentation.

Acknowledgments

I gratefully thank Christian Girard and Arnaud Arbouet
for their advise, help with the theory, careful proof-reading
and for the fortran routines. I also want to thank
Gérard Colas des Francs for helpful discussions and
his contributions to the fortran code to which also
Renaud Marty contributed. I finally thank Vincent
Paillard and Aurélien Cuche for many inspiring discussions
and proof-reading of the manuscript. This work
was supported by Programme Investissements d’Avenir
under the program ANR-11-IDEX-0002-02, reference
ANR-10-LABX-0037-NEXT, and by the computing
facility center CALMIP of the University of Toulouse
under grant P12167.

Conflicts of interests

The author declares no competing financial interest.

22

11. Appendix – Accuracy, possible system size and
limitations

Limitations. The limit for the number N of discretization
meshpoints depends mainly on the amount of RAM
available in the machine. The memory requirement rises
with 3N2 (figure 6b). The computation time rises even
proportional to N3 (see also figure 6a), so at some point,
the speed will be limiting as well. This effectively limits
the number of meshpoints to ≈ 10000− 15000.

Accuracy, large systems. To yield a reasonable accuracy,
the discretization stepsize has to be sufficiently small (in
the order of ≈ 10 nm for plasmonics and dielectrics of
refractive index n . 3). For dielectrics with higher
refractive index, the discretization should be further
refined to yield accurate results. However, if the
user is aware of the fact that the agreement will be
only qualitative, approximative simulations are possible
with larger discretization. In consequence, the memory
requirement limits the applicability of pyGDM to the
amount of material that can be simulated with good
accuracy to (very rough estimation) ≈ 10000× 103 nm3).

Small systems. When the size of the system is reduced, the
discretization can be finer within the limit of the feasible
10-15k meshpoints. Hence, the accuracy becomes better.
One must only be aware, that pyGDM is a purely classical
Maxwell solver. Therefore, the size of the system should
not be reduced down to scales where quantum effects
would occur (usually . 1− 2 nm).

12. Appendix – Technical details

12.1. Reference system in pyGDM simulations

In pyGDM an asymptotic Green’s dyad is used which
describes not only a substrate (“layer 1”, refractive
index n1), but also an additional cladding layer at a
variable height above the substrate (“layer 3”, n3). The
nanoparticle is placed in the sandwich layer (“layer 2”,
n2), i.e. in-between layers 1 and 3. The distance between
the substrate and the cladding layer can be specified by a
spacing parameter. By default, n3 = n2, so if the index
of the cladding layer “3” is not specified in the constructor
of structures.struct, a reference system composed of a
homogeneous environment above a dielectric substrate is
assumed. To run a simulation without a substrate it is
sufficient to simply set n1 = n2. The geometry of the
pyGDM reference system is illustrated in figure 2.

The non-retarded Dyad used in pyGDM can be
derived using the image charges method and gives good
approximations for dielectric interfaces of low refractive
index. A fully retarded Dyad for the 3-layer environment
can also be calculated, which becomes necessary for
instance at metallic interfaces [17, 68]. This might be
implemented in future versions of pyGDM.

12.2. Structure geometry
The structure geometry in pyGDM is defined as a list

of (x, y, z) tuples, defining the positions of the meshpoints
on either a cubic, or a hexagonal compact, regular grid.

pyGDM comes with some generators for common
structures in nano-photonics. These geometries are
available in the structures submodule. An overview of
the available structures is shown in figure 23. Additional
structures can easily be implemented at the example
of the available generator functions. We suggest
using the mesher-routines structures._meshCubic and
structures._meshHexagonalCompact.

Additionally, planar structures can be generated from
the brightness contrast of an image file, using

structures.image_to_struct
(function)

This may be used to create structures from a
lithography-mask layout or also from scanning electron-
or atomic force-microscopy images, to simulate “real”
geometries from an experimental sample.

Finally, structure-geometries can be manipulated
(rotated, “center of gravity” shifted to the origin) using

structures.rotate_XY
(function)

structures.center_struct
(function)

12.3. Material dispersion
pyGDM provides some basic dispersion models in its

materials submodule:
materials.dummy generates a material object which

returns a constant dielectric function. “silicon”, “gold”
and “alu” provide the commonly used dispersion data for
the respective materials.

However, usually one would use tabulated data for the
dispersion. This can be done in pyGDM via

materials.fromFile
(class)

All dispersion containers “materials.class” provide an
epsilon(wavelength) attribute, which is a function that
returns the (complex) permittivity at wavelength (in nm).

By default, the tabulated data is interpolated
linearly using numpy ’s “interp”. Optionally, higher
order spline interpolation is supported (based on
scipy.interpolate.interp1d). Note that the latter may cause
problems with python’s “pickling” technique, particularly
in combination with the EO module.

23

rect wire nanorod sphere nanodisc prism hexagon

split ring rect split ring rect dimer lshape rect lshape round lshape rect nonsym

Figure 23: Top view of some geometries available in the structures submodule. The corresponding generator function names are given on
top of the example plots.

12.4. Minimum working example script

1 from pyGDM2 import structures
2 from pyGDM2 import materials
3 from pyGDM2 import fields
4 from pyGDM2 import core
5 from pyGDM2 import visu
6
7 ## --- simulation setup ---
8 ## structure: sphere of 120nm radius ,
9 ## constant dielectric function (n=2),

10 ## placed in vacuum
11 step = 20 # nm
12 geometry = structures.sphere(step , R=6, mesh=’cube’)
13 material = materials.dummy (2.0)
14 norm = structures.get_normalization(mesh=’cube’)
15 n1 = n2 = 1.0
16
17 struct = structures.struct(step , geometry , material ,
18 n1,n2, norm)
19
20 ## incident field: plane wave , 500nm , lin. pol. || x
21 field_generator = fields.planewave
22 wavelengths = [500] # nm
23 kwargs = dict(theta =[0.0] , kSign =[-1])
24 efield = fields.efield(field_generator ,
25 wavelengths=wavelengths , kwargs=kwargs)
26
27 ## create simulation object
28 sim = core.simulation(struct , efield)
29
30
31 ## --- run the simulation ---
32 core.scatter(sim)
33
34
35 ## --- plot the near -field inside the sphere ---
36 ## using first (of one) field -config (=index 0)
37 visu.vectorfield_by_fieldindex(sim , 0, projection=’XY’)
38 visu.vectorfield_by_fieldindex(sim , 0, projection=’XZ’)
39 visu.vectorfield_by_fieldindex(sim , 0, projection=’YZ’)

Listing 1: Minimum example script. The plots generated by the
script are shown in Fig. 24.

12.5. Further tools available in pyGDM

12.5.1. Save and load simulations
To save and reload pyGDM simulations, the following

functions are available. Saving and loading relies on
python’s “pickle” technique:

tools.save_simulation
(function)

tools.load_simulation
(function)

12.5.2. Show information about simulations
To print detailed information about a pyGDM

simulation, the following function can be used

tools.print_sim_info
(function)

alternatively, simply use “print sim_object”.

12.5.3. Generate coordinate list for 2D map
To calculate 2D data in pyGDM (e.g. near-field maps,

c.f. figure 8d-g), we provide a tool to easily generate the
2D grid (in cartesian 3D space) for such data:

tools.generate_NF_map
(function)

12.5.4. Get index of specific field configuration
pyGDM uses keyword dictionaries to store multiple

configurations of the incident field (such as several
wavelengths, polarizations, focused beam positions). All
possible permutations of the given keywords are stored in
the core.simulation object and are attributed an index,
by which they can unambiguously identified. In order to
get the index of the field parameters that closest match
specific search values (like a wavelength), one can use:

tools.get_closest_field_index
(function)

24

All field-configurations available in a simulation, sorted
by their field-index, can be obtained by

tools.get_field_indices
(function)

12.5.5. Cubic stepsize from discretized structure
If the particle discretization is generated with another

program then the pyGDM meshing functions (available
in the structures submodule), it might be helpful to
determine the stepsize of the structure. We provide a
function, that computes the stepsize of a cubic mesh
by calculating the closest distance between any two
meshpoints (using scipy.spatial.distance.pdist).

tools.get_step_from_geometry
(function)

12.5.6. Get complex field as list of coordinate/field tuples
After running core.scatter, pyGDM stores the fields

inside the particle in the core.simulation object as
lists of the complex field components (Ex,i, Ey,i, Ez,i).
The (xi, yi, zi) geometry coordinates are stored separately
in the structures.struct object within the simulation
description object. To generate complete field-lists of
tuples (xi, yi, zi, Ex,i, Ey,i, Ez,i), pyGDM provides the
following functions:

tools.get_field_as_list
(function)

tools.get_field_as_list_by_fieldindex
(function)

Both return the complex field for a selected illumination
configuration as list of coordinate / field tuples
(xi, yi, zi, Ex,i, Ey,i, Ez,i), either from the raw field-object
or from the simulation object and a field-index,
respectively.

12.5.7. Generate 2D map from coordinate list
To map spatial data available as list of (coordinate-)

tuples onto a plot-able 2D grid (e.g. for plotting a mapping
with matplotlib.imshow), pyGDM provides

tools.map_to_grid_XY
(function)

12.5.8. Raster-scan field configurations
If a simulation with a large number of focused

beam-positions has been performed, the available incident

field configurations corresponding to full raster-scan maps
can be obtained using

tools.get_possible_field_params_
rasterscan
(function)

Analogously, the set of indices referring to the fields
in the simulation.E which correspond to a particularly
configured raster-scan, can be obtained via

tools.get_rasterscan_field_indices
(function)

Alternatively, the full set of fields inside the particle for a
raster-scan with particular illumination-configuration can
be obtained via

tools.get_rasterscan_fields
(function)

12.6. Dependencies
The core functionalities of pyGDM depend only on

numpy. The compilation of the fortran parts require a
fortran compiler such as gcc’s gfortran.

12.6.1. Dependencies: visu
All 2D visualization tools require matplotlib.

12.6.2. Dependencies: visu3D
All 3D visualization tools require mayavi.

12.6.3. Dependencies: tools
Several tools require scipy.

12.6.4. Dependencies: structures
Several structure-tools require scipy. image_to_

struct requires PIL.

12.6.5. Dependencies: core.scatter: Solver (parameter
“method”)

pyGDM includes wrappers to several scipy solvers
but also other methods are supported. Below is given
an exhaustive list of the available solvers and their
dependencies. For benchmarks, see figure 6.

• “lu” (default) scipy.linalg.lu_factor (LU
decomposition)

• “numpyinv” numpy.linalg.inv (if numpy is
compiled with LAPACK: LAPACK’s “dgesv”, else a
slower fallback routine)

• “dyson”: Own implementation, no requirements
(sequence of Dyson’s equations [20])

• “scipyinv” scipy.linalg.inv (LAPACK’s “dgesv”)

25

−150 −100 −50 0 50 100 150

X (nm)

−150

−100

−50

0

50

100

150

Y
(n

m
)

−150 −100 −50 0 50 100 150

X (nm)

0

50

100

150

200

250

Z
(n

m
)

−150 −100 −50 0 50 100 150

Y (nm)

0

50

100

150

200

250

Z
(n

m
)

Figure 24: Plots generated by the demonstration script shown in listing 1. From left to right: XY , XZ and Y Z projections of the real part
of the electric field inside a dielectric nanosphere (n = 2) with radius R = 120 nm placed in vacuum. Linear polarized (along X) plane wave
illumination with λ = 400 nm, incident from positive Z (k = −êzk).

• “pinv2”: scipy.linalg.pinv2 (singular value
decomposition, SVD)

• “superlu”: scipy.sparse.linalg.splu (superLU [69])

• “cg”: scipy conjugate gradient iterative
solver (scipy.sparse.linalg.bicgstab), by
default preconditioned with scipy’s incomplete
LU decomposition (superLU [69] via
scipy.sparse.linalg.spilu)

• “pycg”: pyamg’s implementation of the bicgstab
algorithm, optionally preconditioned with scipy’s
incomplete LU decomposition. Recommended
if multi-threading problems are encountered with
scipy’s bicgstab implementation, which is not
threadsafe

12.7. Compiling, installation

We provide a script for the easy compilation and
installation via python’s “distutils” functionality. For this,
simply run in the pyGDM root directory

python setup.py install

Alternatively, pyGDM can be compiled locally without
installation via

python setup.py build

Or it may be installed to a user-defined location using
the “--prefix=...” option.

Note:. The “setup.py” script requires numpy as well as a
fortran compiler (tested with gfortran).

12.8. Possible future capabilities

The GDM can be used for manifold further calculations,
which are to be included in future versions of pyGDM. A
non-exhaustive list of possible future features includes

• 2D structures (assuming infinite length along one
coordinate)[70]

• Coherent nonlinear effects like (surface-) second or
third harmonic generation[19, 71]

• Electron energy loss / gain spectroscopy (EELS,
EEGS) or cathodoluminescence (CL) simulations[28,
72]

• more environment choices (surface propagator
including retardation effects[73, 49], multi-layer
stratified environments[18, 17] or magnetic decay
rate calculation including a substrate[49, 74])

• cuboidal[23] or non-regular meshes[24]

• materials with anisotropic susceptibility, e.g.
birefringent media

• periodic structures[75, 76]

• quantum corrected model for plasmonic tunneling
currents via junctions of inhomogeneous permittivity
[77]

• SNOM image calculation/interpretation[78, 79]

• memory-efficient conjugate gradients solver including
FFT-accelerated matrix-vector multiplications for
large problems [27]

13. Appendix – Keyword arguments of the most
important classes and functions

Most important classes

For a detailed explanation of the physical information
contained by the below classes, see section 3.

core.simulation
(class)

constructor arguments:
• struct: instance of structures.struct
• efield: instance of fields.efield

26

structures.struct
(class)

constructor arguments:
• step: discretization stepsize (in nm)
• geometry: list of meshpoint coordinates

(x, y, z) (in nm)
• material: structure material dispersion,

instance of materials.CLASS
• n1, n2: ref. index of substrate (n1) and

environment (n2)
• normalization (optional): mesh-type

dependent factor, default: “1” (cubic mesh)
• n3 (optional): ref. index of cladding
• spacing (optional): distance between

substrate and cladding. default: “5000”
(nm)

fields.efield
(class)

constructor arguments:
• field_generator: field generator function

(e.g. from fields module)
• wavelengths: list of wavelengths at which to

do the simulation (in nm)
• kwargs (optional): dict (or list of dict) with

further kwargs for the field generator

Most important functions

For a detailed explanation of the calculations performed
by the below functions, see sections 4-6.

pyGDM core

core.scatter / core.scatter_mpi
(function)

arguments:
• sim: instance of core.simulation
• method (optional): inversion method,

default: “lu”
• multithreaded (optional): default: “True”

core.decay_rate
(function)

arguments:
• sim: instance of core.simulation
• method (optional): inversion method,

default: “lu”

Post-processing

linear.extinct
(function)

arguments:
• sim: instance of core.simulation
• field_index : index of field-configuration

linear.nearfield
(function)

arguments:
• sim: instance of core.simulation
• field_index : index of field-configuration
• r_probe : list of (x, y, z) coordinates at which

to evaluate the near-field

Visualization

visu.structure
(function)

arguments:
• sim: instance of core.simulation
• projection (optional): default: “XY”
• color (optional): optional, matplotlib

compatible color, default: “auto”
• scale (optional): scaling, default: “0.5”

visu.vectorfield
(function)

arguments:
• NF : list containing the complex field (list of

6-tuples (xi, yi, zi, Ex,i, Ey,i, Ez,i). See also
section 12.5.6: tools.get_field_as_list)

• projection (optional): default: “XY”
• slice_level (optional): using only fields at
specific height. default: “none” → superpose
all vectors

visu.scalarfield
(function)

arguments:
• NF : list of 4-tuples containing the

coordinates and scalar-field values
((xi, yi, zi, Si))

27

14. Appendix – GDM in the SI unit system

In order to facilitate the conversion between SI and cgs
unit systems, in this section, we introduce the main GDM
equations in SI units.

The Fourier transformed Maxwell equations are then:

∇ ·D(r, ω) = ρ(r, ω) (48a)
∇×E(r, ω) = iωB(r, ω) (48b)
∇ ·B(r, ω) = 0 (48c)
∇×H(r, ω) = −iωD(r, ω) + j(r, ω) (48d)

From which the following wave equation can be derived:

(∆ + k2)E = − 1

ε0εenv

(
k2 +∇∇

)
P. (49)

This leads to the vectorial Lippmann-Schwinger equation
in SI units (here for a vacuum reference system):

E(r, ω) = E0(r, ω)+

∫
GEE

0 (r, r′, ω)·χe ·E(r′, ω)dr′ (50)

with the Green’s Dyad

GEE
0 (r, r′, ω) =

eikR

4πε0εenv

(
− k2T1(R)

− ikT2(R) + T3(R)
)
, (51)

where the definitions of T1, T2 and T3 given in
equations (6)-(8) are still valid.

In Eq. (50) and its volume discretization

E(ri, ω) = E0(ri, ω)+

χe

N∑
j=1

GEE
0 (ri, rj , ω) ·E(rj , ω)Vcell (52)

one has to use the susceptibility χe = (εr − εenv). For
simplicity here we assumed a scalar χe.

Finally, the renormalization tensors Eqs. (17) and (18)
have to be divided by a factor 4π.

Post-processing routines

Concerning the post-processing routines, some of the
pre-factors need to be adapted. For instance, the factor
before the sums of equations (39) and (40) writes in SI
units:

2πn

λ0|E0|2
(53)

with the refractive index n.
The equations (43) and (44) for heat-generation,

respectively the local temperature increase have to be
multiplied by a factor 4π.

Note:. In pyGDM the post-processing routines internally
convert the results to SI compatible units. The “extinct”
function for instance returns the cross sections in units
of nm2, “heat” returns nano Watts and “temperature”
returns ◦K. For the respective returned units, see the
technical documentation of the routines in the online
documentation of the API e.g. at https://wiechapeter.
gitlab.io/pyGDM2-doc/apidoc.html.

15. Appendix – Conjugate gradients

The following applies to all pyGDM functions which
solve the main GDM inversion problem. The conjugate
gradients solver provides an alternative to full inversion
of the coupled dipole problem which can – under
circumstances – be preferable to complete matrix
inversion.

• argument method : “cg” (requires scipy) or “pycg”
(requires pyamg)

If we have a closer look at the matrix M (see Eq. (12)),
we can make an interesting observation: While M is
not exactly sparse, most of the entries have significantly
smaller absolute values than very few large matrix
elements. In Fig. 25 we show plots of the population
of matrix M for some selected nano-structures. These
population plots work as illustrated in the following
examples: 1 0 0

0 1 0
0 0 1

 =

2 1 0
1 2 1
0 1 2

 =

1 2 3
4 5 6
7 8 9

 =

M contains also phase-information and is therefore
complex, hence we use the absolute values of the matrix
elements for the population patterns. In addition, the
maximum of the color-code in Fig. 25 is clipped to 10%
of the maximum absolute value in the matrix to increase
the contrast. Clearly, the matrices contain very few entries
with values of more than some % of the overall maximum
and yet > 60% of all elements are generally non-zero.

It turns out, that such matrices are good candidates
for iterative solving using so-called “Krylow-subspace
methods”. The most popular algorithm of this class is
the conjugate gradients (CG) method and its derivations
like biconjugate gradients (for non-symmetric problems)
or complex CG [80]. A detailed description of the method
can be found in Ref. [37] (chapter 2.7). The main idea of
these iterative methods is, that the inverse of the matrix
is in many cases not actually required. For simulations

28

https://wiechapeter.gitlab.io/pyGDM2-doc/apidoc.html
https://wiechapeter.gitlab.io/pyGDM2-doc/apidoc.html

0
1
0
%

o
f
m
a
x.

Figure 25: Population patterns of matrices M at λ = 1 µm for a selection of structures (stepsize 10nm, same scale for all sketches). Cubic
meshes for the first three structures, hexagonal compact mesh for the structure on the right. For illustrative purposes the structures are
only one layer of mesh-points high (small matrix size). White corresponds to an absolute value of 0, black to ≥ 10% of the matrix’s largest
element.

that massively make use of the generalized propagator (like
raster-scan simulations), the CG technique is therefore not
the method of choice. It may be on the other hand an
advantageous approach, if we search a solution for E(ω)
that satisfies

M(ω) ·E(ω) = E0(ω) (54)

for one single or only few incident field E0(ω). During
the CG-iterations, matrix-vector multiplications M · x
are performed following a minimization scheme in which
M · x converges eventually to E0. Theoretically, for a
N × N matrix CG converge to the exact solution after
N iterations and each iteration itself has a computational
cost ∝ N2. In reality, the convergence is often very rapid
in the beginning, and a solution with sufficient precision
can be obtained after very few iterations, yielding a total
computational cost ∝ N2 instead of a N3 scaling for exact
inversion for example with LU-decomposition. Indeed, we
find a N3-scaling for complete inversion by LU or Dyson’s
sequence and a N2 dependence when using conjugate
gradients (Fig. 6a). Particularly for larger numbers of
meshpoints, this allows a reduction of the simulation time,
as shown in Fig. 6a.

15.1. Preconditioning

• argument pc_method : “ilu”, “lu” (both require
scipy), “amg” (requires pyamg) or “none” (no
preconditioning)

The speed of the convergence of conjugate gradients
is crucially dependent on the condition of the matrix
M and generally can be massively improved by doing a
preconditioning step before starting the actual iterative
scheme. Let’s assume, A of the equation system

A · x = b (55)

would be the identity matrix I. Then CG would have
converged within the first iteration. A possible approach

10 20 30 40 50 60 70 80 90 100

number of wavelengths in spectrum

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

sp
ee

du
p

w
ith

P
C

-r
ec

yc
lin

g

Figure 26: Speedup of the GDM-calculation of a spectrum
(2000 meshpoints Si nanowire, step of 10nm, λ from 500nm to
1500nm) as function of the number of wavelengths, if recycling of
the preconditioner is enabled. The narrower the wavelengths in the
spectrum, the higher the possible gain of PC-recycling.

for preconditioning is therefore to reshape the problem
using a matrix P

A · (P · x̂) = b. (56)

If P is a close approximation to A−1, A ·P will be close to
the identity I and the system would converge very quickly
under conjugate gradients iterations. Eq. (56) is called
a right-preconditioned system. Consequently, a good
preconditioner for our problem is a close approximation
to the inverse of M. Several algorithms exist to search
pseudo-inverse matrices for preconditioning. A very
popular one is the incomplete LU-decomposition (ILU)
[81] that scales with N2 and which is the default method
in pyGDM.

15.2. Preconditioner recycling
• argument cg_recycle_pc: “True” (=default)

When calculating spectra using the GDM, the electric
field in a particle is usually calculated for a large number
of closely spaced wavelengths, at each of which the matrix

29

M is (incompletely) inverted. Most often, the electric field
distribution changes only marginally for slightly different
wavelengths and so does the matrix M. Unfortunately, a
very similar matrix is of little use for exact calculations,
but we have seen in the preceding section that an
approximation to the exact inverse M−1 can be a good
preconditioner P for CG.

When calculating dense spectra (i.e. many points on the
wavelength axis), we can use this fact and significantly
accelerate the calculation with conjugate gradients by
recycling the preconditioner matrix until a certain lower
limit for the speedup factor is reached. In other words,
we will be using the same P repeatedly for several
consecutive wavelengths and only if the acceleration is
below a speed-up limit, a new preconditioner is calculated
and subsequently re-used for the following wavelengths.
As shown in Fig. 26, this technique can divide the total
calculation time easily by more than a factor 2.

Another possible application when preconditioner
recycling may be beneficial is in series of simulations with
many very similar or slowly transformed nano-structures
like antennas of gradually increasing size.

Note:. The conjugate gradients solver is not very efficient
for the moment and will be improved in future versions
of pyGDM. In particular, in the specific case of the
coupled dipole approximation it is possible to do very
efficient vector/matrix multiplications by applying a fast
Fourier transformation (FFT) scheme [27]. This is not yet
implemented in pyGDM. The currently used third-party
sparse-matrix solvers are not ideally suited regarding the
dense matrix problem in pyGDM.

References

[1] J. C. Maxwell, A Dynamical Theory of the Electromagnetic
Field, Philosophical Transactions of the Royal Society of
London 155 (1865) 459–512. doi:10.1098/rstl.1865.0008.

[2] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma,
Y. S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric
nanostructures, Science 354 (6314). doi:10.1126/science.
aag2472.

[3] P. Bharadwaj, B. Deutsch, L. Novotny, Optical Antennas,
Advances in Optics and Photonics 1 (3) (2009) 438. doi:
10.1364/AOP.1.000438.

[4] S. Maier, Plasmonics: Fundamentals and Applications, Springer
US, 2010.

[5] C. Girard, O. J. F. Martin, A. Dereux, Molecular Lifetime
Changes Induced by Nanometer Scale Optical Fields, Physical
Review Letters 75 (17) (1995) 3098–3101. doi:10.1103/
PhysRevLett.75.3098.

[6] L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, O. L.
Muskens, Optimal Polarization Conversion in Coupled Dimer
Plasmonic Nanoantennas for Metasurfaces, ACS Nano 8 (6)
(2014) 6390–6399. doi:10.1021/nn501889s.

[7] P. R. Wiecha, L.-J. Black, Y. Wang, V. Paillard, C. Girard,
O. L. Muskens, A. Arbouet, Polarization conversion in
plasmonic nanoantennas for metasurfaces using structural
asymmetry and mode hybridization, Scientific Reports 7 (2017)
40906. doi:10.1038/srep40906.

[8] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric
metasurfaces for complete control of phase and polarization with

subwavelength spatial resolution and high transmission, Nature
Nanotechnology 10 (11) (2015) 937–943. doi:10.1038/nnano.
2015.186.

[9] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer,
R. Quidant, N. F. van Hulst, Unidirectional Emission of a
Quantum Dot Coupled to a Nanoantenna, Science 329 (5994)
(2010) 930–933. doi:10.1126/science.1191922.

[10] G. Baffou, R. Quidant, Thermo-plasmonics: Using metallic
nanostructures as nano-sources of heat, Laser & Photonics
Reviews 7 (2) (2013) 171–187. doi:10.1002/lpor.201200003.

[11] M. Kauranen, A. V. Zayats, Nonlinear plasmonics, Nature
Photonics 6 (11) (2012) 737–748. doi:10.1038/nphoton.2012.
244.

[12] J. Butet, P.-F. Brevet, O. J. F. Martin, Optical Second
Harmonic Generation in Plasmonic Nanostructures: From
Fundamental Principles to Advanced Applications, ACS Nano
13 (4) (2015) 10545–10562. doi:10.1021/acsnano.5b04373.

[13] D. Griffiths, Introduction to Electrodynamics, Prentice-Hall
International, 1989.

[14] C. Girard, Near fields in nanostructures, Reports on Progress
in Physics 68 (8) (2005) 1883–1933. doi:10.1088/0034-4885/
68/8/R05.

[15] G. S. Agarwal, Quantum electrodynamics in the presence of
dielectrics and conductors. I. Electromagnetic-field response
functions and black-body fluctuations in finite geometries,
Physical Review A 11 (1) (1975) 230–242. doi:10.1103/
PhysRevA.11.230.

[16] C. Girard, E. Dujardin, G. Baffou, R. Quidant, Shaping
and manipulation of light fields with bottom-up plasmonic
structures, New Journal of Physics 10 (10) (2008) 105016.
doi:10.1088/1367-2630/10/10/105016.

[17] G. Colas des Francs, D. Molenda, U. C. Fischer, A. Naber,
Enhanced light confinement in a triangular aperture:
Experimental evidence and numerical calculations, Physical
Review B 72 (16) (2005) 165111.

[18] M. Paulus, P. Gay-Balmaz, O. J. F. Martin, Accurate and
efficient computation of the Green’s tensor for stratified media,
Physical Review E 62 (4) (2000) 5797–5807. doi:10.1103/
PhysRevE.62.5797.

[19] P. R. Wiecha, Linear and nonlinear optical properties of
high refractive index dielectric nanostructures, PhD thesis,
Université de Toulouse, Université Toulouse III - Paul Sabatier
(Sep. 2016).

[20] O. J. F. Martin, C. Girard, A. Dereux, Generalized
Field Propagator for Electromagnetic Scattering and Light
Confinement, Physical Review Letters 74 (4) (1995) 526–529.
doi:10.1103/PhysRevLett.74.526.

[21] A. Yaghjian, Electric dyadic Green’s functions in the source
region, Proceedings of the IEEE 68 (2) (1980) 248–263. doi:
10.1109/PROC.1980.11620.

[22] C. Girard, A. Dereux, Near-field optics theories, Reports on
Progress in Physics 59 (5) (1996) 657. doi:10.1088/0034-4885/
59/5/002.

[23] Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, G. C.
des Francs, Near-Field Properties of Plasmonic Nanostructures
with High Aspect Ratio, Progress In Electromagnetics Research
146 (2014) 77–88. doi:10.2528/PIER14012904.

[24] J. Kottmann, O. Martin, Accurate solution of the volume
integral equation for high-permittivity scatterers, IEEE
Transactions on Antennas and Propagation 48 (11) (2000)
1719–1726. doi:10.1109/8.900229.

[25] A. Teulle, R. Marty, S. Viarbitskaya, A. Arbouet, E. Dujardin,
C. Girard, G. Colas des Francs, Scanning optical microscopy
modeling in nanoplasmonics, Journal of the Optical Society of
America B 29 (9) (2012) 2431. doi:10.1364/JOSAB.29.002431.

[26] B. T. Draine, P. J. Flatau, Discrete-dipole approximation
for scattering calculations, Journal of the Optical Society of
America A 11 (4) (1994) 1491. doi:10.1364/JOSAA.11.001491.

[27] J. J. Goodman, B. T. Draine, P. J. Flatau, Application
of fast-Fourier-transform techniques to the discrete-dipole
approximation, Optics Letters 16 (15) (1991) 1198. doi:10.

30

http://dx.doi.org/10.1098/rstl.1865.0008
http://dx.doi.org/10.1126/science.aag2472
http://dx.doi.org/10.1126/science.aag2472
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1364/AOP.1.000438
http://dx.doi.org/10.1103/PhysRevLett.75.3098
http://dx.doi.org/10.1103/PhysRevLett.75.3098
http://dx.doi.org/10.1021/nn501889s
http://dx.doi.org/10.1038/srep40906
http://dx.doi.org/10.1038/nnano.2015.186
http://dx.doi.org/10.1038/nnano.2015.186
http://dx.doi.org/10.1126/science.1191922
http://dx.doi.org/10.1002/lpor.201200003
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1021/acsnano.5b04373
http://dx.doi.org/10.1088/0034-4885/68/8/R05
http://dx.doi.org/10.1088/0034-4885/68/8/R05
http://dx.doi.org/10.1103/PhysRevA.11.230
http://dx.doi.org/10.1103/PhysRevA.11.230
http://dx.doi.org/10.1088/1367-2630/10/10/105016
http://dx.doi.org/10.1103/PhysRevE.62.5797
http://dx.doi.org/10.1103/PhysRevE.62.5797
http://dx.doi.org/10.1103/PhysRevLett.74.526
http://dx.doi.org/10.1109/PROC.1980.11620
http://dx.doi.org/10.1109/PROC.1980.11620
http://dx.doi.org/10.1088/0034-4885/59/5/002
http://dx.doi.org/10.1088/0034-4885/59/5/002
http://dx.doi.org/10.2528/PIER14012904
http://dx.doi.org/10.1109/8.900229
http://dx.doi.org/10.1364/JOSAB.29.002431
http://dx.doi.org/10.1364/JOSAA.11.001491
http://dx.doi.org/10.1364/OL.16.001198

1364/OL.16.001198.
[28] N. Geuquet, L. Henrard, EELS and optical response of a

noble metal nanoparticle in the frame of a discrete dipole
approximation, Ultramicroscopy 110 (8) (2010) 1075–1080. doi:
10.1016/j.ultramic.2010.01.013.

[29] F. J. García de Abajo, A. Howie, Retarded field calculation
of electron energy loss in inhomogeneous dielectrics, Physical
Review B 65 (11) (2002) 115418. doi:10.1103/PhysRevB.65.
115418.

[30] U. Hohenester, A. Trügler, MNPBEM – A Matlab toolbox for
the simulation of plasmonic nanoparticles, Computer Physics
Communications 183 (2) (2012) 370–381. doi:10.1016/j.cpc.
2011.09.009.

[31] J. Waxenegger, A. Trügler, U. Hohenester, Plasmonics
simulations with the MNPBEM toolbox: Consideration
of substrates and layer structures, Computer Physics
Communications 193 (Supplement C) (2015) 138–150. doi:
10.1016/j.cpc.2015.03.023.

[32] U. S. Inan, R. A. Marshall, Numerical Electromagnetics: The
FDTD Method, Cambridge University Press, 2011.

[33] F. Baida, A. Belkhir, Finite difference time domain method
for grating structures, in: Gratings: Theory and Numeric
Applications, popov, e. Edition, Presses Universitaires de
Provence, 2013, pp. 333–366.

[34] Y. Cao, A. Manjavacas, N. Large, P. Nordlander, Electron
Energy-Loss Spectroscopy Calculation in Finite-Difference
Time-Domain Package, ACS Photonics 2 (3) (2015) 369–375.
doi:10.1021/ph500408e.

[35] J. Hoffmann, C. Hafner, P. Leidenberger, J. Hesselbarth,
S. Burger, Comparison of electromagnetic field solvers for the
3D analysis of plasmonic nanoantennas, Vol. 7390, International
Society for Optics and Photonics, 2009, p. 73900J. doi:10.
1117/12.828036.

[36] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D.
Joannopoulos, S. G. Johnson, MEEP: A flexible free-software
package for electromagnetic simulations by the FDTD method,
Computer Physics Communications 181 (2010) 687–702. doi:
doi:10.1016/j.cpc.2009.11.008.

[37] W. Press, Numerical Recipes 3rd Edition: The Art of Scientific
Computing, Cambridge University Press, 2007.

[38] J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili,
M. Mishrikey, Comparison of Numerical Methods for the
Analysis of Plasmonic Structures, Journal of Computational
and Theoretical Nanoscience 6 (3) (2009) 763–774. doi:10.
1166/jctn.2009.1107.

[39] M. A. Yurkin, A. G. Hoekstra, The discrete dipole
approximation: An overview and recent developments, Journal
of Quantitative Spectroscopy and Radiative Transfer 106 (1)
(2007) 558–589. doi:10.1016/j.jqsrt.2007.01.034.

[40] S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard,
A. Arbouet, E. Dujardin, Tailoring and imaging the plasmonic
local density of states in crystalline nanoprisms, Nature
Materials 12 (5) (2013) 426–432. doi:10.1038/nmat3581.

[41] R. W. Boyd, Intuitive explanation of the phase anomaly of
focused light beams, Journal of the Optical Society of America
70 (7) (1980) 877. doi:10.1364/JOSA.70.000877.

[42] L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge
University Press, Cambridge ; New York, 2006.

[43] P. R. Wiecha, A. Arbouet, A. Cuche, V. Paillard,
C. Girard, Decay rate of magnetic dipoles near nonmagnetic
nanostructures, Physical Review B 97 (8) (2018) 085411. doi:
10.1103/PhysRevB.97.085411.

[44] G. Colas des Francs, Optique sub-longueur d’onde et
fluorescence moléculaire perturbée, PhD thesis, Université Paul
Sabatier Toulouse, CEMES-CNRS (2002).

[45] R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff,
R. Pierrat, Y. De Wilde, Electromagnetic density of states in
complex plasmonic systems, Surface Science Reports 70 (1)
(2015) 1–41. doi:10.1016/j.surfrep.2014.11.001.

[46] P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno,
L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, J. B. Pendry,

Magnetic Localized Surface Plasmons, Physical Review X 4 (2)
(2014) 021003. doi:10.1103/PhysRevX.4.021003.

[47] P. R. Wiecha, C. Majorel, C. Girard, A. Arbouet, B. Masenelli,
O. Boisron, A. Lecestre, G. Larrieu, V. Paillard, A. Cuche,
Simultaneous mapping of the electric and magnetic photonic
local density of states above dielectric nanostructures using
rare-earth doped films, arXiv:1801.09690arXiv:1801.09690.

[48] E. Lassalle, A. Devilez, N. Bonod, T. Durt, B. Stout, Lamb shift
multipolar analysis, JOSA B 34 (7) (2017) 1348–1355. doi:
10.1364/JOSAB.34.001348.

[49] C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, J.-P.
Goudonnet, Optical magnetic near-field intensities around
nanometer-scale surface structures, Physical Review B 55 (24)
(1997) 16487–16497. doi:10.1103/PhysRevB.55.16487.

[50] B. T. Draine, The Discrete-Dipole Approximation and its
Application to Interstellar Graphite Grains, Astrophysical
Journal 333 (1988) 848–872.

[51] L. Novotny, Allowed and forbidden light in near-field optics.
II. Interacting dipolar particles, Journal of the Optical Society
of America A 14 (1) (1997) 105–113. doi:10.1364/JOSAA.14.
000105.

[52] G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic
nanostructures: Influence of morphology, Applied Physics
Letters 94 (15) (2009) 153109. doi:10.1063/1.3116645.

[53] G. Baffou, R. Quidant, C. Girard, Thermoplasmonics modeling:
A Green’s function approach, Physical Review B 82 (16) (2010)
165424. doi:10.1103/PhysRevB.82.165424.

[54] P. R. Wiecha, M.-M. Mennemanteuil, D. Khlopin, J. Martin,
A. Arbouet, D. Gérard, A. Bouhelier, J. Plain, A. Cuche,
Local field enhancement and thermoplasmonics in multimodal
aluminum structures, Physical Review B 96 (3) (2017) 035440.
doi:10.1103/PhysRevB.96.035440.

[55] S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard,
A. Arbouet, E. Dujardin, Plasmonic Hot Printing in Gold
Nanoprisms, ACS Photonics 2 (6) (2015) 744–751. doi:10.
1021/acsphotonics.5b00100.

[56] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu,
B. Luk’yanchuk, Directional visible light scattering by silicon
nanoparticles, Nature Communications 4 (2013) 1527. doi:10.
1038/ncomms2538.

[57] I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, N. F.
van Hulst, Multipolar Interference for Directed Light Emission,
Nano Letters 14 (1) (2014) 166–171. doi:10.1021/nl403681g.

[58] D. Macias, A. Vial, D. Barchiesi, Application of evolution
strategies for the solution of an inverse problem in near-field
optics, JOSA A 21 (8) (2004) 1465–1471. doi:10.1364/JOSAA.
21.001465.

[59] T. W. Odom, E.-A. You, C. M. Sweeney, Multiscale Plasmonic
Nanoparticles and the Inverse Problem, The Journal of Physical
Chemistry Letters 3 (18) (2012) 2611–2616. doi:10.1021/
jz300886z.

[60] H.-P. P. Schwefel, Evolution and Optimum Seeking: The Sixth
Generation, John Wiley & Sons, Inc., New York, NY, USA,
1993.

[61] F. Biscani, D. Izzo, C. H. Yam, A Global Optimisation
Toolbox for Massively Parallel Engineering Optimisation,
arXiv:1004.3824 [cs, math]arXiv:1004.3824.

[62] D. Izzo, M. Ruciński, F. Biscani, The Generalized Island Model,
in: F. F. de Vega, J. I. H. Pérez, J. Lanchares (Eds.), Parallel
Architectures and Bioinspired Algorithms, no. 415 in Studies in
Computational Intelligence, Springer Berlin Heidelberg, 2012,
pp. 151–169.

[63] T. Brixner, F. J. García de Abajo, J. Schneider, C. Spindler,
W. Pfeiffer, Ultrafast adaptive optical near-field control,
Physical Review B 73 (12) (2006) 125437. doi:10.1103/
PhysRevB.73.125437.

[64] K. Deb, Multi-Objective Optimization Using Evolutionary
Algorithms, Vol. 16, Wiley, 2001.

[65] P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu,
V. Paillard, Evolutionary multi-objective optimization of
colour pixels based on dielectric nanoantennas, Nature

31

http://dx.doi.org/10.1364/OL.16.001198
http://dx.doi.org/10.1016/j.ultramic.2010.01.013
http://dx.doi.org/10.1016/j.ultramic.2010.01.013
http://dx.doi.org/10.1103/PhysRevB.65.115418
http://dx.doi.org/10.1103/PhysRevB.65.115418
http://dx.doi.org/10.1016/j.cpc.2011.09.009
http://dx.doi.org/10.1016/j.cpc.2011.09.009
http://dx.doi.org/10.1016/j.cpc.2015.03.023
http://dx.doi.org/10.1016/j.cpc.2015.03.023
http://dx.doi.org/10.1021/ph500408e
http://dx.doi.org/10.1117/12.828036
http://dx.doi.org/10.1117/12.828036
http://dx.doi.org/doi:10.1016/j.cpc.2009.11.008
http://dx.doi.org/doi:10.1016/j.cpc.2009.11.008
http://dx.doi.org/10.1166/jctn.2009.1107
http://dx.doi.org/10.1166/jctn.2009.1107
http://dx.doi.org/10.1016/j.jqsrt.2007.01.034
http://dx.doi.org/10.1038/nmat3581
http://dx.doi.org/10.1364/JOSA.70.000877
http://dx.doi.org/10.1103/PhysRevB.97.085411
http://dx.doi.org/10.1103/PhysRevB.97.085411
http://dx.doi.org/10.1016/j.surfrep.2014.11.001
http://dx.doi.org/10.1103/PhysRevX.4.021003
http://arxiv.org/abs/1801.09690
http://dx.doi.org/10.1364/JOSAB.34.001348
http://dx.doi.org/10.1364/JOSAB.34.001348
http://dx.doi.org/10.1103/PhysRevB.55.16487
http://dx.doi.org/10.1364/JOSAA.14.000105
http://dx.doi.org/10.1364/JOSAA.14.000105
http://dx.doi.org/10.1063/1.3116645
http://dx.doi.org/10.1103/PhysRevB.82.165424
http://dx.doi.org/10.1103/PhysRevB.96.035440
http://dx.doi.org/10.1021/acsphotonics.5b00100
http://dx.doi.org/10.1021/acsphotonics.5b00100
http://dx.doi.org/10.1038/ncomms2538
http://dx.doi.org/10.1038/ncomms2538
http://dx.doi.org/10.1021/nl403681g
http://dx.doi.org/10.1364/JOSAA.21.001465
http://dx.doi.org/10.1364/JOSAA.21.001465
http://dx.doi.org/10.1021/jz300886z
http://dx.doi.org/10.1021/jz300886z
http://arxiv.org/abs/1004.3824
http://dx.doi.org/10.1103/PhysRevB.73.125437
http://dx.doi.org/10.1103/PhysRevB.73.125437

Nanotechnology 12 (2) (2017) 163–169. doi:10.1038/nnano.
2016.224.

[66] C. Girard, P. R. Wiecha, A. Cuche, E. Dujardin, Designing
Thermoplasmonic Properties of Metallic Metasurfaces, Journal
of Optics (just accepted). arXiv:1804.01111, doi:10.1088/
2040-8986/aac934.

[67] P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre,
G. Larrieu, V. Paillard, Multi-resonant silicon nanoantennas by
evolutionary multi-objective optimization, in: Computational
Optics II, Vol. 10694, International Society for Optics and
Photonics, 2018, p. 1069402. doi:10.1117/12.2315123.

[68] R. Marty, C. Girard, A. Arbouet, G. Colas des Francs,
Near-field coupling of a point-like dipolar source with a
thin metallic film: Implication for STM plasmon excitations,
Chemical Physics Letters 532 (Supplement C) (2012) 100–105.
doi:10.1016/j.cplett.2012.02.058.

[69] X. S. Li, An Overview of SuperLU: Algorithms,
Implementation, and User Interface, ACM Transactions
on Mathematical Software 31 (3) (2005) 302–325.
doi:10.1145/1089014.1089017.

[70] M. Paulus, O. J. F. Martin, Green’s tensor technique for
scattering in two-dimensional stratified media, Physical Review
E 63 (6) (2001) 066615. doi:10.1103/PhysRevE.63.066615.

[71] P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, V. Paillard,
Origin of second-harmonic generation from individual silicon
nanowires, Physical Review B 93 (12) (2016) 125421. doi:10.
1103/PhysRevB.93.125421.

[72] A. Arbouet, A. Mlayah, C. Girard, G. Colas des Francs,
Electron energy losses and cathodoluminescence from complex
plasmonic nanostructures: Spectra, maps and radiation
patterns from a generalized field propagator, New Journal of
Physics 16 (11) (2014) 113012. doi:10.1088/1367-2630/16/
11/113012.

[73] C. Girard, A. Dereux, O. J. F. Martin, M. Devel, Generation of
optical standing waves around mesoscopic surface structures:
Scattering and light confinement, Physical Review B 52 (4)
(1995) 2889–2898. doi:10.1103/PhysRevB.52.2889.

[74] A. Kwadrin, A. F. Koenderink, Probing the electrodynamic
local density of states with magnetoelectric point scatterers,
Physical Review B 87 (12) (2013) 125123. doi:10.1103/
PhysRevB.87.125123.

[75] B. Gallinet, O. J. F. Martin, Electromagnetic Scattering
of Finite and Infinite 3D Lattices in Polarizable
Backgrounds, Theoretical And Computational Nanophotonics
(Tacona-Photonics 2009) 1176 (2009) 63–65.

[76] P. C. Chaumet, A. Sentenac, Simulation of light scattering
by multilayer cross-gratings with the coupled dipole method,
Journal of Quantitative Spectroscopy and Radiative Transfer
110 (6–7) (2009) 409–414. doi:10.1016/j.jqsrt.2008.12.004.

[77] R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, Bridging
quantum and classical plasmonics with a quantum-corrected
model, Nature Communications 3 (2012) 825. doi:10.1038/
ncomms1806.

[78] J.-J. Greffet, R. Carminati, Image formation in near-field optics,
Progress in Surface Science 56 (3) (1997) 133–237. doi:10.
1016/S0079-6816(98)00004-5.

[79] J. A. Porto, R. Carminati, J.-J. Greffet, Theory of
electromagnetic field imaging and spectroscopy in scanning
near-field optical microscopy, Journal of Applied Physics 88 (8)
(2000) 4845–4850. doi:10.1063/1.1311811.

[80] P. Joly, G. Meurant, Complex conjugate gradient methods,
Numerical Algorithms 4 (3) (1993) 379–406. doi:10.1007/
BF02145754.

[81] X. S. Li, M. Shao, A Supernodal Approach to Incomplete
LU Factorization with Partial Pivoting, ACM Transactions
Mathematical Software 37 (4) (2011) 43. doi:10.1145/1916461.
1916467.

32

http://dx.doi.org/10.1038/nnano.2016.224
http://dx.doi.org/10.1038/nnano.2016.224
http://arxiv.org/abs/1804.01111
http://dx.doi.org/10.1088/2040-8986/aac934
http://dx.doi.org/10.1088/2040-8986/aac934
http://dx.doi.org/10.1117/12.2315123
http://dx.doi.org/10.1016/j.cplett.2012.02.058
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1103/PhysRevE.63.066615
http://dx.doi.org/10.1103/PhysRevB.93.125421
http://dx.doi.org/10.1103/PhysRevB.93.125421
http://dx.doi.org/10.1088/1367-2630/16/11/113012
http://dx.doi.org/10.1088/1367-2630/16/11/113012
http://dx.doi.org/10.1103/PhysRevB.52.2889
http://dx.doi.org/10.1103/PhysRevB.87.125123
http://dx.doi.org/10.1103/PhysRevB.87.125123
http://dx.doi.org/10.1016/j.jqsrt.2008.12.004
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1016/S0079-6816(98)00004-5
http://dx.doi.org/10.1016/S0079-6816(98)00004-5
http://dx.doi.org/10.1063/1.1311811
http://dx.doi.org/10.1007/BF02145754
http://dx.doi.org/10.1007/BF02145754
http://dx.doi.org/10.1145/1916461.1916467
http://dx.doi.org/10.1145/1916461.1916467

	1 The Green dyadic method
	1.1 From Maxwell's equations to Lippmann-Schwinger equation
	1.2 Volume discretization
	1.3 Renormalization of the Green's dyad
	1.4 Multiple monochromatic simulations on the same nanostructure

	2 Comparison to other electro-dynamical simulation techniques
	3 Setting up a pyGDM simulation
	3.1 Geometry and material dispersion
	3.2 Excitation fields
	3.2.1 Plane wave
	3.2.2 Focused plane wave
	3.2.3 Paraxial Gaussian beam
	3.2.4 Tightly focused Gaussian beam
	3.2.5 Dipolar emitter
	3.2.6 Magnetic dipole emitter

	4 Solver
	4.1 Internal fields
	4.1.1 Direct inversion
	4.1.2 Conjugate gradients

	4.2 Decay-rate of dipolar emitters
	4.2.1 Electric dipole
	4.2.2 Magnetic dipole
	4.2.3 LDOS inside a nanostructure

	5 Post-Processing
	5.1 Linear effects
	5.1.1 Near-field outside the nanostructure
	5.1.2 Extinction, absorption and scattering cross-sections
	5.1.3 Far-field pattern of the scattered light
	5.1.4 Heat generation
	5.1.5 Dipolar emitter decay rate

	5.2 Non-linear effects
	5.2.1 Two-photon photoluminescence / surface LDOS

	6 Visualization
	6.1 2D visualization tools
	6.1.1 Structure geometry
	6.1.2 Plot field vectors
	6.1.3 Field lines (``stream-plot'')
	6.1.4 Scalar field representation (color-plot)
	6.1.5 Farfield backfocal plane image
	6.1.6 Animate fields

	6.2 3D visualization tools

	7 Tools
	7.1 2D-projections of nano-structures
	7.2 Geometric cross-section
	7.3 Surface of a nano-structure
	7.4 Calculating spectra
	7.5 Calculating raster-scans

	8 Examples
	8.1 Comparison to Mie theory
	8.1.1 Dielectric nano-sphere
	8.1.2 Dispersive nano-spheres (Au, Si)

	8.2 Other examples
	8.2.1 Forward / backward scattering spectra
	8.2.2 Far-field radiation pattern
	8.2.3 Polarization conversion
	8.2.4 Heat generation
	8.2.5 Decay rate of dipole transition
	8.2.6 Rasterscan simulation: TPL / heat / temperature
	8.2.7 Rasterscan simulation: LDOS

	9 Evolutionary optimization of nanostructure geometries
	9.1 Evolutionary optimization
	9.2 EO in pyGDM
	9.3 Multi-objective optimization
	9.4 EO-Examples
	9.4.1 Maximize scattering cross-section or scattering efficiency
	9.4.2 Maximize electric field intensity
	9.4.3 EMO: Double resonant plasmonic antenna

	10 Conclusion
	11 Appendix – Accuracy, possible system size and limitations
	12 Appendix – Technical details
	12.1 Reference system in pyGDM simulations
	12.2 Structure geometry
	12.3 Material dispersion
	12.4 Minimum working example script
	12.5 Further tools available in pyGDM
	12.5.1 Save and load simulations
	12.5.2 Show information about simulations
	12.5.3 Generate coordinate list for 2D map
	12.5.4 Get index of specific field configuration
	12.5.5 Cubic stepsize from discretized structure
	12.5.6 Get complex field as list of coordinate/field tuples
	12.5.7 Generate 2D map from coordinate list
	12.5.8 Raster-scan field configurations

	12.6 Dependencies
	12.6.1 Dependencies: visu
	12.6.2 Dependencies: visu3D
	12.6.3 Dependencies: tools
	12.6.4 Dependencies: structures
	12.6.5 Dependencies: core.scatter: Solver (parameter ``method'')

	12.7 Compiling, installation
	12.8 Possible future capabilities

	13 Appendix – Keyword arguments of the most important classes and functions
	14 Appendix – GDM in the SI unit system
	15 Appendix – Conjugate gradients
	15.1 Preconditioning
	15.2 Preconditioner recycling

