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Seasonal Outflow of Ice Shelf Water Across the Front
of the Filchner Ice Shelf, Weddell Sea, Antarctica

E. Darelius'"> and J. B. Sallée?

TGeophysical Institute, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway, 2Sorbonne
Universités, CNRS, LOCEAN, Paris, France

Abstract The ice shelf water (ISW) found in the Filchner Trough, located in the southern Weddell Sea,
Antarctica, is climatically important; it descends into the deep Weddell Sea contributing to bottom water
formation, and it blocks warm off-shelf waters from accessing the Filchner ice shelf cavity. Yet the circulation
of ISW within the Filchner Trough and the processes determining its exchange across the ice shelf front

are to a large degree unknown. Here mooring records from the ice shelf front are presented, the longest of
which is 4 years long. They show that the coldest (@ = —2.3°C) ISW, which originates from the Ronne Trough
in the west, exits the cavity across the western part of the ice shelf front during late austral summer and
early autumn. The supercooled ISW escaping the cavity flows northward with a velocity of about 0.03 m/s.
During the rest of the year, there is no outflow at the western site: the current is directed eastward, parallel
to the ice shelf front, and the temperatures at the mooring site are slightly higher (@ = —2.0°C). The eastern
records show a more persistent outflow of ISW.

Plain Language Summary Antarctica is surrounded by large, floating ice shelves covering vast ice
shelf cavities that are filled with sea water. The circulation of water within the cavity brings heat toward the
ice shelf base, which causes the ice shelves to melt from below. To understand the future evolution of the
Antarctic ice shelves and the ice sheet upstream, we need to understand the physics governing the sub-ice
shelf circulation and the processes determining the heat transport across the ice shelf front. Here we present
mooring records from the front of the Filchner ice shelf in the Weddell Sea, Antarctica. The unique records
show that there is a seasonal outflow of water that has been cooled down below the surface freezing point
temperature through interaction with the glacial ice, across the western part of the front. The outflow across
the eastern part of the front is stronger, more persistent, and slightly warmer. It is hypothesized that the
seasonality in the western outflow is caused by changes in the stratification. The findings reopens the
question about the potential blocking effect caused by the large step in bathymetry effectuated by the ice
shelf front.

1. Introduction

The interaction between the floating ice shelves fringing the Antarctic continent and the ocean water filling
their cavities is central to the mass balance of the Antarctic ice sheet (Fiirst et al., 2016; Pritchard et al., 2012).
At the same time, water masses formed within the cavities are in some locations known to descend the conti-
nental slope and contribute to the formation of Antarctic bottom waters, a principal component in the global
thermohaline circulation (e.g., Foldvik et al., 2004). In other locations, the fresh water input from ice shelf melt
inhibits bottom water formation (Hellmer, 2004). The rate at which water enters and exits the ice shelf cavi-
ties and the degree to which it interacts with the meteoric ice will hence influence both the stability of the
Antarctic ice sheet and the properties of the abyssal ocean.

The Filchner-Ronne ice shelf (FRIS), located in the southwestern Weddell Sea, is the largest (by volume) ice
shelf in Antarctica. The majority of the water entering the FRIS cavity is at the surface freezing temperature
(Nicholls et al., 2009), and basal melt rates are currently low (Rignot et al., 2013). The export of ice shelf water
(ISW) emerging from the FRIS (see Figure 1 for locations) through the Filchner Trough (FT) forms the Filchner
overflow (Darelius et al., 2009; Foldvik et al., 2004) and contributes to the formation of Antarctic bottom
waters. Recent modeling efforts suggest that the presence of relatively dense ISW in the FT prevents it from
being flooded by warmer off-shelf water masses, thus limiting the basal melt rates below FRIS (Hellmer
etal., 2012, 2017).
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Figure 1. Map showing the bathymetry of the study region and the circulation in the region as suggested by Darelius,
Makinson, et al. (2014) and Nicholls et al. (2009). The red arrows show the seasonal inflow of water across the
continental shelf break, while the blue arrows show the path of the ice shelf water. The position of the
conductivity-temperature-depth sections and the moorings are indicated according to the legend. Grounded ice is
shown in gray, ice shelves in white, and ocean in light blue. The inset shows the location of the study area

(red rectangle). Bathymetry contours are shown every 200 m.

The ISW filling the FT (Carmack & Foster, 1975) is formed as high salinity shelf water (HSSW) produced on
the wide continental shelf in the west, enters the ice shelf cavity, and interacts with the glacial ice (Nicholls
et al,, 2009). Within the cavity, the HSSW is cooled and slightly freshened as it melts the ice above it on its
way around the southern tip of the Berkner Island and northward toward the front of the Filchner ice shelf
(FIS) (Nicholls et al., 2001, 2009, see Figure 1). Numerical modeling suggests that the sudden shift in water
column thickness at the ice shelf front forces the ISW to follow the FIS front eastward before exiting the cavity
(Darelius, Makinson, et al., 2014). The ISW, which is potentially supercooled (i.e,, at a temperature lower than
the surface freezing point), then flows northward along the eastern flank of the FT (Darelius, Makinson, et al.,
2014;Ryan etal., 2017) toward the sill where it overflows at a rate of 1.6+0.5 Sv (Foldvik et al., 2004). The severe
sea ice conditions make the FT region inaccessible during winter, and observations have been limited to the
short summer season (with exception of sparse conductivity-temperature-depth [CTD] profiles collected by
Weddell Seals; Arthun et al., 2013). Hydrographic profiles obtained during ice-free summers in the region just
north of the FIS front show variability in the properties of ISW that points to variability of their source water,
that s, variability in the properties of HSSW entering the cavity (Darelius, Makinson, et al., 2014, their Figure 3c).
HSSW with an absolute salinity (S,) higher than about 34.92 is typically associated with HSSW originating from
the Ronne Trough (west of 55°W), while HSSW of lower salinity (S, =~ 34.84) is thought to originate from the
Berkner Bank. Hereafter, we refer loosely to ISW with a source salinity higher than 34.92 as ISWg, ., and ISW
with a source salinity around 34.84 as ISWp,.er» @lthough it is uncertain to what extent the properties of the
HSSW remain constant in time. While ISWp,,.. Was reported at the FIS frontin summer 1977, 1993, 1995, 2011,
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and 2017, the water mass was not observed there in 1980, 1984, and 2013 (Darelius, Makinson, et al., 2014
their Figure 3, and Figure 4a, this paper). The observed variability in ISW properties was suggested by Darelius,
Makinson, et al. (2014) to be interannual, but here we demonstrate that the variability is partly explained by
seasonal variability in the outflow of ISW across the FIS front. While sub-ice shelf observations and modeling
show that there is a pronounced seasonality in the flow of HSSW into the cavity across the front of the Ronne
ice shelf, the lack of winter time observations from the FIS front has prevented us from determining if there
is a seasonality also in the outflow. The inflow of HSSW peaks during midwinter when the HSSW production
is most intense and shows a smaller, secondary peak during summer (Jenkins et al., 2004). The seasonality is,
however, much reduced in the Filchner part of the cavity (Jenkins et al., 2004; Nicholls & @sterhus, 2004). In
the northern part of the FT, the flow of ISW across the sill shows a seasonality in water mass properties but not
in outflow velocity (Darelius, Strand et al., 2014). Observations from the continental shelf east of the FT show
a pronounced seasonality in the circulation. The summer time inflow of modified warm deep water (Arthun
et al., 2012; Darelius et al., 2016) stops in winter when the thermocline depth above the continental slope
increases (Semper & Darelius, 2017) and the water column above the continental slope is homogenized by
convection (Ryan et al., 2017).

This paper describes the outflow of ISW across the FIS front based on records from two oceanic moorings
deployed in the vicinity of the ice shelf front in 2013. The mooring records are up to 4 years long and provide
the first time series of oceanic conditions from the FIS front.

2. Data

Two oceanic moorings equipped with temperature, conductivity (not used here), and pressure sensors as
well as current meters were deployed just north of the FIS front in January 2013. M78,,, (77.92°S, 42.16°W)
was deployed at 700-m depth on the western side of the FT, about 3 km from the ice shelf front, and M78,,
(77.75°S, 36.15°W, called M., in Darelius et al., 2016) was deployed along the 700-m isobath on the eastern
side of the FT (Figure 1). Due to thick fast ice in front of the ice shelf, M78,; was deployed about 20-km north
of the front. M78,; was recovered in February 2014 and M78,,, in February 2017, then only being 400 m from
the advancing FIS front.

Frazil ice may form at depth within in situ supercooled ISW (Fer et al., 2012; Foldvik & Kvinge, 1974). An accu-
mulation of frazil ice on the instrument originally placed at 480-m depth at M78,,, caused it to slide up the
mooring line in May 2014. The ascending instrument brought two instruments clamped onto the line with it
to the top of the mooring (380-m depth), where they remained until mooring recovery. Pressure records from
the top of the moorings show that the pull-down due to current drag was smaller than 5 m 99% of the time,
and the related changes in instrument depths have been ignored.

The current meter records—obtained from an RDI 150 kHz acoustic Doppler current profiler in the east
and Aanderaa point current meters in the west—were corrected for magnetic declination using the deploy-
ment mean value (9.3°E and 5.1°E for M78,,, and M78,;, respectively) obtained from www.ngdc.noaa.gov/
geomag-web/#declination. CTD sections along the front were obtained during mooring deployment and
recovery (Figure 2). Salinities are reported in absolute salinity, S, (I0C et al., 2010), with 6 S, taken from version
3.6 of McDougall et al. (2012) database. Note that the S, values in this region are about 0.17 higher than values
obtained when using practical salinities. Similarly, temperatures are reported in conservative temperature, ®
(I0Cetal, 2010).

The ice shelf draft shown in the figures is obtained from Bedmap?2 (Fretwell et al., 2013) at 78.3°S.

3. ISW Outflow

The temperature records from M78,,, show a distinct seasonal cycle with a reoccurring pulse of cold ISW
(@ <—2.25°C) appearing at the mooring site between February and May-June each year (Figure 3a). The
cold layer extends from the bottom—or at least from the deepest instrument, 60 m above the bottom—to
about 450-m depth, but for shorter periods it reaches above 400-m depth, covering the entire mooring. The
in situ freezing point for a salinity of about S;,=34.75 g/kg is equivalent to ® = —2.25°C at 460-m depth
and ® = —2.30°C at 525-m depth, so the upper part of the cold layer emerging from the cavity was in
situ supercooled. Frazil ice formation at depths between about 400- and 500-m depth was evident in CTD
casts on mooring recovery, and accumulation of ice crystals caused instruments to slide up the mooring line
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Figure 2. O (color) and density (labeled contours) sections from (a) mooring deployment 5-6 January 2013 and (b) the
recovery of M78,,, 25-28 February 2017. The positions of the casts are indicated by black triangles at the upper axis,
the bottom topography is shown in gray, and the estimated ice shelf drafts (see section 2) with a dashed, black line.
The position of the sensors on the mooring line is indicated following the legend.

(see section 2). When the cold water is absent (between June and February) the temperatures typically range
between ® = —1.9 and ® = —2.0°C with shorter episodes of lower temperatures. The seasonal variation
in temperature coincides with a seasonal variability of currents (Figure 3c): at depth (675 and 580 m), low
temperatures are associated with northward flow while the current is directed eastward during the warmer
periods. Low-passed, mean currents are typically around 0.03 m/s in both directions.

The 1year long temperature records from M78,, on the eastern flank do not show a similar cold pulse. Instead,
we observe a warm pulse between 400- and 500-m depth in March-May 2013, marking the arrival of the warm
inflow (red arrow in Figure 1) to the FIS front (Darelius et al., 2016). Only during a short period in March 2013
do temperatures drop to a minimum of ® = —2.2°Cwhen a 0.2°C temperature frontis advected back and forth

DARELIUS AND SALLEE

3580



~1
AGU

Geophysical Research Letters 10.1002/2017GL076320

Apr13 Jul13 Oct13 Jan14 Apr14 Jul14 Oct14 Jan15 Apr15 Jul15 Oct15 Jan16 Apr16 Jul16 Oct16 Jan17

T T A T |

E
=
Q.
[
o
c) 498m
| | | | l | 580m
T T T T T T =
1) —d
| /
' 3cms”
-
in 30 days
E g \ 380m
£ T —
8 | W ‘, ® ) —
o 'S ‘ “ ‘ E‘ 598m
a0 il | Feb Apr Jun Aug Oct | Dec
600 T o T T T
Rl L LU BT '
650 b) i Thi =
> ‘
I | | I I 1 | | | | | I I
700 -2.3 2.2 -2.1 -2 -1.9 -1.8
0, Conservative temperature [° C]
-1.88 T T T T T T T T T T T T
dp ; ‘ M78_ 380m ‘
19+ { ! W i
: ' |
@ -1.92 ‘ ‘ -
1le ‘ \
i Wl i M» b
I‘\Hh ‘ ‘ I IHJ\.‘\IIHI | } | Il \ I} [ 1‘!' \'l\\

Apr13 Jul13 Oct13 Jan14 Apr14 Jul14 Oct14 Jan15 Apr15 Jul15 Oct15 Jan16 Apr16 Jul16 Oct16 Jan17

Figure 3. Hovmoller diagram of © observed at (a) M78,,, and (b) M78¢. The temperature profiles obtained after mooring recovery are included. The instrument
depths (triangles on the left axis), the depth of the velocity records (lines) in Figure 3¢, and the time when instruments slid up the line (red star, see section 2) are
indicated. (c) Progressive vector diagram showing currents from M78,,, (circle) and M78,¢ (square) at selected depths (marked by horizontal, black lines in
Figures 3b and 3c). The color coding to show the month of the year starting in January 2013. The thick, black arrow to the right shows the distance covered
during 1 month if the mean velocity is 0.03 m/s, and the thin, black arrows indicate the direction of flow. Note that the records are of different length. (d) © record
from M78,,,,, 380 m depth. The scale has been cut in order to highlight periods with higher temperatures, and temperatures above —1.91°C are marked in red.

past the mooring by strong (0[0.15 m/s]) tidal currents (not shown). The rest of the time, the temperatures at
depth range between ® = —2.0and ® = —2.15°C. The temperatures above the eastern flank are hence higher
than those observed in the west during the period of cold outflow but lower than those observed in the west
when there is no cold outflow. The currents at M78,; at 500-m depth are directed northward most of the year,
and the outflow velocity is increasing throughout the record to reach 10 cm/s in December 2013 (Figure 3c).

The CTD sections obtained along the ice shelf front in 2013 and 2017 (Figure 2) give further insight into the
flow across the FIS front. The 2013 section was obtained in early January (Darelius, Makinson et al., 2014),
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Figure 4. (a) ©S, diagram including data from moorings and conductivity-temperature-depth profiles from the ice shelf
front (green, February 1977; black, January 2013; and red, cyan, and magenta, February 2017) and the ice shelf cavity
(blue, Sites 4 and 5 in 1999, Nicholls et al., 2001 see Figure 1 for location). The dashed lines show the freezing point

at the surface (thick, dashed line) and at 400-m depth (thin, dashed line), while the labeled, thin lines show isopycnals
referenced to surface pressure. The solid line is a Gade line and the black star marks the inferred source salinity
(S4=34.92 g/kg). The black diamond indicates the source salinity (34.85 g/kg) of the ice shelf water (ISW) observed at the
front, for example, in 2013, the yellow, filled circle the interleaving core of colder ISW in the east in 2017, and the small,
yellow circle the properties of the cold ISW core observed in 1973 and 1980. The inset shows the position of the ice
shelf front profiles. Note that the position of the ice shelf front (Fretwell et al., 2013) is not up to date. (b) Density profiles
from the stations shown in Figure 4a and west of 40° (dashed line in inset). The legend is valid for both panels and for
the inset.
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that is, prior to the seasonal outflow which is observed at M78,,, in late January that year. The section only
shows traces of the coldest ISW at a few stations above the flanks of the FT (Figures 2a and 4a). The section
from 2017, on the other hand, was occupied in late February, a few weeks after the arrival of the seasonal cold
pulse. Here the cold water is seen to occupy the region below 400-m depth and west of the 800-m isobath
above the western flank of the FT, that is, a region that is at least 30-km wide (Figure 2b). A rough transport
estimate obtained by combining the mean velocity from the mooring (0.03 m/s) with the area displaying the
cold water in Figure 2b gives 0.3 Sv of northward flow. The CTD sections indicate that the observed seasonality
in the outflow at M78,,, is not caused by the meandering of a narrow, year-round outflow, but that the outflow
is seasonal and spans a wide region over the western flank. A slightly warmer core of cold ISW is observed
above the eastern flank of the FT between the 600-m and 1,000-m isobath in the 2017 section.

The ® — S, properties of the ISW emerging at the western mooring from below about 400-m depth indicate
the presence of ISWpne: the intersection of the Gade line (Gade, 1979) and the surface freezing point line
indicates source water with S, above 34.92, see Figure 4.In ® — S, space, the outflowing ISW overlaps or falls
very close (A® < 0.02 for a given S,) to the ISWp, .. Observed south of Berkner Island (Site 4 and the deeper
part of Site 5, see Figure 1 for location) when the sub-ice shelf water column there was profiled through drilled
access holes in 1999 (Nicholls et al., 2001). The inferred source salinity for the coldest ISW in the east is lower
than in the west, but its ® — S, properties (Figure 4a) suggest that it may be ISWg, .. diluted by mixing. This
is true both in 2013 and 2017, although temperatures are lower in 2017. Below the temperature minimum,
within a layer of ISWg, e, there are indications of interleaving of ISW with a higher source salinity, potentially
ISWgonne (Figure 4a, for example, at S, ~34.82 g/kg, magenta dots within yellow circle).

4, Origin of the Seasonality

To gain insight into the processes that govern the exchange of water masses across an ice shelf front, it is of
interest to understand what mechanism causes the seasonal outflow of ISW across the western part of the
FIS. Observations and modeling suggest that the seasonality is small within the Filchner cavity (Jenkins et al.,
2004; Nicholls et al., 2003) and the seasonal outflow at the FIS front is therefore likely controlled by processes
occurring outside of the cavity. What factors may change, allowing the ISW to cross the western part FIS front
during summer and autumn but not during the rest of the year? Is the outflow linked to seasonal change
in the atmospheric forcing? Or is it changes in the local circulation and the hydrography that lead to the
seasonal outflow?

An examination of the local wind field (ERA-interim; Dee et al., 2011) shows no systematic change in wind
direction or strength in February that could explain the onset of the seasonal outflow, but low-passed time
series reveal that the wind component parallel to the ice shelf front generally is weaker (i.e., less negative) dur-
ing summer (Figure S1 in the supporting information). The summer winds would hence be less downwelling
favorable than the stronger winter winds, although this could be compensated by a less compact sea ice cover
resulting in a higher drag coefficient (see, e.g., Andreas et al., 2010). It is not obvious though, how this would
directly relate to the observed outflow.

A comparison of the density profiles obtained at the western side of the FIS front during periods with
(1977 and 2017) and without (2013) cold outflow (Figure 4b) shows that the stratification is strikingly different.
Profiles obtained during cold outflow typically show a density gradient around 400-m depth, that is, roughly
at the depth of the ice shelf base (Lambrecht et al., 2007). The nonoutflow profiles, on the other hand, show
a density gradient only toward the surface with a thicker, relatively homogeneous layer (Figure 4b) of ISW
beneath it (Figure 2a). Note that the density gradient at depth is not created by the outflowing ISWg, .. that
has a density similar to that of the ambient ISW. The density gradient is instead caused by the presence of a
lighter and slightly warmer water mass above about 400-m depth, that is, above the ISW. The reappearance of
this slightly warmer layer at shallower depths during outflow periods in the mooring records is supported by
the increase in temperature at the shallowest instrument at the onset of the outflow, for example, in February
2015 (Figure 3d). A similar signal in the stratification is observed above the eastern flank in hydrographic
profiles collected by Weddell Seals in 2011 (Arthun et al., 2013).

The circulation at the FIS front was suggested by Darelius, Makinson, et al., (2014) to be determined by poten-
tial vorticity (PV) dynamics: the FIS front represents a large step in water column thickness and it thus poses
a PV barrier that causes the ISW arriving at the FIS front along eastern coast of Berkner Island to turn eastward
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and flow parallel to the ice shelf front to ultimately exit the cavity on the eastern side of the front. A possible
explanation for the observed seasonality, which is qualitatively consistent with the available data, is that the
presence of a density gradient at or around the level of the ice shelf base decouples the lower part of the water
column, effectively weakening the PV barrier and allowing for flow across the FIS front. Similarly, a decoupling
by summer time stratification has been evoked to explain the summer inflow of HSSW across the Ronne Ice
Shelf front (Nicholls et al., 2009).

A quantitative assessment of the role of stratification in weakening the PV barrier and its relevance for the
observed seasonal outflow of ISW across the western part of the FIS front is beyond the scope of our paper.
It is possible that the changes in stratification are caused by a local summer restratification or they may be
linked to the changes in circulation observed on the continental shelf east of the FT (Ryan et al,, 2017), but the
possible mechanism needs to be further investigated.

5. Conclusion

This paper presents unique multiyear mooring records from the region just north of the FIS front. Two moor-
ings, placed at the 700-m isobath on either side of the FT, allow us to describe the outflow of ISW from the FIS
cavity. The mooring records, supplemented by CTD sections from mooring deployment and recovery, show
that ISW originating from the Ronne Trough crosses the western part of the FIS front as a cold pulse during
February-June each year. A comparison of density profiles from periods with and without outflow suggests
that the ISW outflow occurs when there is a density gradient at the level of the ice shelf base. We hypothesize
that the density gradient breaks the PV barrier that is suggested to otherwise steer the ISW eastward along
the FIS front (Darelius, Makinson, et al., 2014). The observations do not allow us to determine to what extent,
if any, the blocking in the west affects the net outflow of ISW across the FIS front.

Apart from the two sections obtained in 2013 and 2017, there are only two comparable CTD sections obtained
along the FIS front in the historical data: a CTD section from 1973 (Carmack & Foster, 1975, reprinted in color
by Darelius, Makinson, et al., 2014) and one from 1980 (Foldvik et al., 1985). The two sections both show a core
of colder ISW above the western flank with minimum temperatures of about ® = —2.25°C for an S, of about
34.78-34.80, that is, with core location and ISW properties that overlap those observed in 2017 (Figure 4a).
These profiles also display a density gradient around 400 m depth. The western stations in 1980 were occupied
in mid-February and the presence of outflowing ISW here at this time of the year is consistent with the timing
of the cold pulse in the mooring records. The 1973 section, however, is from early January, that is, prior to the
arrival of the seasonal cold pulse in the recent records. The 1973 section might point to interannual variability
or possibly a long-term change in the outflow season.

It is possible that the observed seasonal outflow of ISW is a peculiarity observed only at FIS under the hydro-
graphic conditions currently observed in the FT, and that the findings cannot be generalized to other Antarctic
ice shelves where the water properties, forcing, and geometry are different. Our results nevertheless reopen
the question as to the importance of the ice shelf front as a barrier to the exchange of water between the
ice shelf cavity and the ambient ocean. The existence of such a barrier was put forward by early modeling
work (e.g., Grosfeld et al., 1997), but later work has questioned its strength and shown that buoyancy-driven
boundary currents ought to be able to pass the ice shelf front freely (Holland & Jenkins, 2001; Stern et al., 2014).

The question also arises as to where the ISW emerging across the western part of the FIS front goes. Is there
a seasonal, northward flow of ISW along the western flank of the FT, or does the ISW turn eastward at some
distance from the FIS front to join the northward current above the eastern FT? The perennial sea-ice cover
has so far prevented any observations along the western FT and thus the question remains open.
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