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We calculate the probability density function of the local score position on complete excursions of a reflected Brownian motion. We use the trajectorial decomposition of the standard Brownian bridge to derive two different expressions of the density: the first one is based on a series and an integral while the second one is free off the series.

Introduction

This work is motivated by biological sequence analysis (e.g. DNA or proteins) largely developed since the 90's with the creation of databases. The local score is an usual tool to point out atypical segments of biological sequences. It has first been defined by Karlin and Altschul [START_REF] Karlin | Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes[END_REF]. Let (ε i ) i 1 be a sequence of i.i.d. random random variables, such that E[ε i ] = 0 and Var(ε i ) = 1. The random walk (S n ) n 1 associated with (ε i ) i 1 is:

S n := n i=1 ε i , n 1, S 0 = 0.
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The Lindley process (U n ) n 1 and the local score process (H n ) n 0 are respectively defined as:

U n := S n -min 0 k n S k , n 1, (1.1) 
H n := max

0 k n U k = max 0 i j n (S j -S i ), n 0. (1.2)
This classical setting has been extended in many directions (see [START_REF] Karlin | Limit distributions of maximal segmental score among Markov-dependent partial sums[END_REF][START_REF] Mercier | Exact distribution for the local score of one i.i.d. random sequence[END_REF][START_REF] Hassenforder | Exact Distribution of the Local Score for Markovian Sequences[END_REF][START_REF] Mercier | A Hidden Markov Model for the Local Score of One Sequence[END_REF]).

For biological applications, the distribution of H n , when n is large, plays an important role. Here we do not study this question, the interested reader can consult [START_REF] Guedj | Detecting Local High-Scoring Segments: a First-Stage Approach for Genome-Wide Association Studies[END_REF][START_REF] Fariello | Accounting for Linkage Disequilibrium in genome scans for selection without individual genotypes : the local score approach[END_REF]. The Donsker theorem (see Section 2.10 in [START_REF] Billingsley | Convergence of probability measures[END_REF]) permits to define the local score in continuous time, see for instance Theorem 1 in [START_REF] Daudin | Asymptotic behavior of the local score of independent and identically distributed random sequences[END_REF] and [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]. The underlying process is the standard Brownian motion (B(t); t 0). It can be easily proved (see [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]) that the Lindley process (U k / √ n) 0 k n can be approximated by:

U (t) := B(t) -inf 0 s t B(t), 0 t 1. (1.3) 
Recall that ( U (t); t 0) is distributed as the reflected Brownian motion (U (t); t 0) where U (t) := |B(t)|, t 0.

(1.4)

According to (1.1) -(1.4), we define the local score in continuous time as:

U (t) := sup 0 s t U (s), t 0. ( 1.5) 
Let f (t) be the unique time which achieves the maximum of U over [0, t]: f (t) := sup{r t; U (r) = U (t)}, t 0 (1.6)

We say that the maximum U (t) occurs on a complete excursion if f (t) g(t), where g(t) := sup{s t; U (s) = 0}, t 0.

(1.7)

We have calculated in [START_REF] Lagnoux | Probability that the maximum of the reflected Brownian motion over a finite interval [0, t] is achieved by its last zero before t[END_REF] the probability of the event {f (t) g(t)}. Here we deal with the local score U * determined on complete excursions:

U * (t) := U (g(t)) = sup 0 s g(t)
U (s), t 0.

(1.8) f * (t) := sup{r g(t) ; U (r) = U * (t)}, t 0.

(1.9)

Now we are able to define the left end-point g * (t) of the excursion straddling f * (t)

g * (t) := g(f * (t)) = sup{r f * (t) ; U (r) = 0}, t 0.

(1.10)

In [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF], we have calculated the probability density function of (U * (t), f * (t)g * (t)). Unfortunately, it is complicated but the density function of U * (t) is rather simple since it equals the sum of an explicit series. We focus here on the distribution of g * (t). This random time can be interpreted in the setting of local score.

Recall that the scaling property of the Brownian motion implies that g * (t) is distributed as tg * (1). For that reason, we only consider in the sequel t = 1. For simplicity, denote g * (1) by g * . We have drawn a trajectory of (U (t) ; 0 t 1) (see Figure 1) and indicated the variables introduced above.

The main result and the scheme of its proof

Before stating the main result of the paper, let us introduce (i) The probability distribution function of g * is given by

h(x) := k 1 (-1) k+1 k cosh 2 (kx) . ( 2 
p g * (y) = 1 2π y(1 -y) +∞ 0 ln 1 - π 2 (1 -y) 4ys h( √ s) √ s ds, 0 y 1.
(2.12)

(ii) The probability distribution function of g * is also given by

p g * (y) = 1 πy +∞ 0 ln |cot s| ds cosh 2 s 1-y y , 0 y 1. (2.13)
This new result is in the stream of previous papers [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF][START_REF] Lagnoux | Probability that the maximum of the reflected Brownian motion over a finite interval [0, t] is achieved by its last zero before t[END_REF][START_REF] Lagnoux | Statistical significance based on length and position of the local score in a model of i.i.d. sequences[END_REF]. Among the three studies, two are theoretical [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF][START_REF] Lagnoux | Probability that the maximum of the reflected Brownian motion over a finite interval [0, t] is achieved by its last zero before t[END_REF]. The last one is a review of asymptotic distributions of the local score in i.i.d. models and also contains illustrative simulations and statistical tests.

Let us explain the scheme of the proof of Theorem 2.1. Our approach is based on the identity (in distribution): Proposition 2.2. We have

g * (d) = g(1)g b (2.16)
where g(1) and g b are independent r.v. (2.17)

We easily deduce g(1)g 

P (g(1) ∈ dx) = 1 π x(1 -x) ✶ [0,1] (x) dx.
(2.18)

Hence, it remains to determine the distribution of g b . One step in this direction comes from [START_REF] Pitman | Path decompositions of a Brownian bridge related to the ratio of its maximum and amplitude[END_REF]Theorem 2]. Before stating the result, let us fix notation. Let (L(t), t 0) be the local time process at 0 related to the Brownian motion (B(t), t 0) and (τ s , s 0) be its right inverse. Let us consider the r.v. ξ distributed as T 1 (R) with

T x (R) = inf{s 0 ; R(s) = x}, x > 0. (2.19) (R(s), s 0), introduced in [4]
, stands for a 3-dimensional Bessel process started at 0 and will be extensively used in the sequel. The density p ξ is explicitly known (see [START_REF] Biane | Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions[END_REF]) and is given by

p ξ (u) = 1 √ 2πu 3/2 k∈Z -1 + (1 + 2k) 2 u exp - (1 + 2k) 2 2u (2.20) = d du k∈Z (-1) k exp - k 2 π 2 u 2 , u > 0. (2.21)
We always assume in the sequel that ξ and (U (t)) t 0 are independent.

Proposition 2.3. Let f : R → R be a bounded Borel function. Then

E[f (g b )] = √ 2π 2 R 2 + E f l 2 τ 1 l 2 τ 1 + 4t 1 √ l 2 τ 1 + 4t ✶ {lU(τ1)<1} p ξ (t)dldt. (2.22)
The proof of Proposition 2.3 is postponed in Section 3.1. Integrating with respect to l in (2.22) and making the change of variable u = l 2 τ 1 /(l 2 τ 1 + 4t), considering that τ 1 and t are fixed, permits to obtain the density function of g b .

Corollary 2.4. [Probability distribution function of g b ]

The probability distribution function of g b is given by 

p g b (u) = √ 2π 4 1 √ u(1 -u) +∞ 0 E 1 √ τ 1 ✶ {u(4tU (τ 1 ) 2 +τ 1 )<τ 1 } p ξ (t)dt✶ [0,1] (u

Proofs

We keep the notation introduced in Section 2.

3.1. Proof of Proposition 2.3 1) By definition, g b is defined via steps (1.7)-(1.10) where we substitute |b| for U . Theorem 2 [START_REF] Pitman | Path decompositions of a Brownian bridge related to the ratio of its maximum and amplitude[END_REF] is convenient for our purpose since it expresses the law of (b(s); 0 s 1) conditionally on b * , with two independent pieces of Brownian trajectories. Let us introduce br * (u) =

1 √ σ 1 +σ 1 B (u(σ 1 + σ1 )) , 0 u σ 1 σ 1 +σ 1 1 √ σ 1 +σ 1 B ((1 -u)(σ 1 + σ1 )) , σ 1 σ 1 +σ 1 u 1 (3.24)
where B and B are two independent standard Brownian motions and σ 1 = inf{t 0; B(t) = 1} and σ1 = inf{t 0; B(t) = 1}.

(br * (u); 0 u 1) is the concatenation of (B(u); 0 u σ 1 ) and ( B(t); 0 t σ1 ) with the scaling in space (respectively time) 1/ √ σ 1 + σ1 (resp. 1/(σ 1 + σ1 )). Lemma 3.1. [Theorem 2 in [START_REF] Pitman | Path decompositions of a Brownian bridge related to the ratio of its maximum and amplitude[END_REF]] For every non-negative measurable function F defined on the path space C([0, 1]), 

E[f (g b )] = 2 √ 2πE f g(σ 1 ) σ 1 + σ1 1 √ σ 1 + σ1 ✶ {B(σ1)∧ B(σ 1 )>-1} ( 
E[f (g b )] = 2E[f (g b )✶ {b(1)>b(1)} ] = 2 √ 2πE    f (ρ) √ σ 1 + σ1 ✶    sup 0 u 1 br * (u) > -inf 0 u 1 br * (u)       ,
where ρ is the starting point of the highest excursion of (br * (s); 0 1). See Figure 3 for more precisions. We remark that (σ 1 + σ1 )ρ = g(σ 1 ) (see Figure 4) and sup

0 u 1 br * (u) > -inf 0 u 1 br * (u) = inf 0 u σ 1 +σ 1 X(u) > -1 = inf 0 u σ 1 B(u) ∧ inf 0 u σ1 B(u) > -1 .
Identity (3.27) follows immediately.

2) Remark that the expectation in the right hand side of (3.27) involves the law of (3.28)

First we determine the law of σ1 , B(σ 1 ) , see Lemma 3.3 below. Second we consider more generally the law of (g(σ 1 ), σ 1 , B(σ 1 )), see Lemma 3.5.

Lemma 3.3. Let a > 0 and ϕ : [0, +∞[→ [0, +∞[. Then E[ϕ(σ 1 )✶ {B(σ 1 )>-a} ] = +∞ 0 ϕ(t)ss t (a, a + 1)dt where ss t (x, z) = 1 √ 2π k∈Z z -x + 2kz t 3/2 exp{-(z -x + 2kz) 2 /(2t)}. (3.29) Proof of Lemma 3.3 We have E[ϕ(σ 1 )✶ {B(σ 1 )>-a} ] = E[ϕ(σ 1 )|B(σ 1 ) > -a]P(B(σ 1 ) > -a).
By definition, P(B(σ

1 ) > -a) = P(inf t∈[0,σ 1 ] B(t) > -a) = P(σ 1 < σ -a ) = a/(a + 1)
and conditionally on {B(σ 1 ) > -a}, (a + B(t), 0 t σ 1 )

(d) = (R a (t), 0 t H a+1 ) where (R a (t), t 0) is a 3-dimensional Bessel process started at a and H z = inf{t 0, R a (t) = z}.
Assume that a < z. By Formula 2.0.2 p63 in [START_REF] Borodin | Handbook of Brownian motionfacts and formulae,Probability and its Applications[END_REF], 

P(H z ∈ dt) = z a ss t (a, z)dt. ( 3 
E[f (g b )] = 2 √ 2π +∞ 0 E ✶ {B(σ 1 )>-1} f g(σ 1 ) σ 1 + t 1 √ σ 1 + t ss t (1, 2)dt. (3.31) 
Now we deal with the distribution of (g(σ 1 ), σ 1 ) conditionally on {B(σ 1 ) > -1}.

Lemma 3.5. Let ϕ be a bounded Borel function. Then,

E[ϕ(g(σ 1 ), σ 1 )✶ {B(σ 1 )>-1} ] = 1 2 R 2 + E ϕ(l 2 τ 1 , l 2 τ 1 + t)✶ {lU(τ1)<1} p ξ (t)dldt (3.32)
Proof of Lemma 3.5 From Proposition 4 in [START_REF] Vallois | Une extension des théorèmes de Ray et Knight sur les temps locaux Browniens[END_REF], σ 1g(σ 1 ) is independent of (g(σ 1 ), B σ 1 ) and distributed as ξ (see Section 2). Moreover,

B σ 1 = B g(σ 1 )
. Hence

E[ϕ(g(σ 1 ), σ 1 )✶ {B(σ 1 )>-1} ] = +∞ 0 E[ϕ(g(σ 1 ), g(σ 1 ) + t)✶ {B(σ 1 )>-1} ]p ξ (t)dt.
Recall that (L(t); t 0) is the local time at 0 of (B(t); t 0). Using several times Proposition 4 in [START_REF] Vallois | Une extension des théorèmes de Ray et Knight sur les temps locaux Browniens[END_REF] we get:

E[ϕ(g(σ 1 ), σ 1 )✶ {B(σ 1 )>-1} ] = +∞ 0 p ξ (t) +∞ 0 1 2 e -l/2 E[ϕ(g(σ 1 ), g(σ 1 ) + t)✶ {B(σ 1 )>-1} |L(σ 1 ) = l]dldt = 1 2 R 2 + E[ϕ(τ l , τ l + t)✶ {B(τ l )>-1} |B(τ l ) < 1]P(B(τ l ) < 1)p ξ (t)dldt = 1 2 R 2 + E[ϕ(τ l , τ l + t)✶ {B(τl)>-1,B(τl)<1} ]p ξ (t)dldt.
Using U = |B| and the scaling identity (U (τ l ), τ l )

(d)
= (lU (τ 1 ), l 2 τ 1 ) (see Formula (4.2) in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]) ends the proof of Lemma 3.5.

Remark 3.6. The law of (τ 1 , U (τ 1 )) is rather complicated, see Proposition 2.2 in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF]. Lemma 3.5 does not permit to have easily an explicit formula of the density function of g(σ 1 ) conditionally on {B σ 1 > -1} and therefore to recover Lemma 3.3. Now we are able to end the proof of Proposition 2.3. Using Corollary 3.4 and Lemma 3.5, one gets

E[f (g b )] = √ 2π R 3 + E f l 2 τ 1 l 2 τ 1 + t 1 + t 2 1 √ l 2 τ 1 + t 1 + t 2 ✶ {lU(τ1)<1} • p ξ (t 1 )ss t 2 (1, 2)dldt 1 dt 2 = √ 2π 2 R 2 + E f l 2 τ 1 l 2 τ 1 + 4t 1 √ l 2 τ 1 + 4t ✶ {lU(τ1)<1} p ξ (t)dldt because p ξ * 2ss • (1, 2) is the probability distribution function of H 2 when R 0 = 0 and H 2 (d) = 4H 1 (d)
= 4ξ by the scaling property of the Bessel process.

Proof of (2.12) in Theorem 2.1 3.2.1. A first formula of the probability distribution function of g *

Our starting point is obviously Proposition 2.2. Note that the density function of g( 1) is explicit and given by (2.18) and (2.23) shows that the one of g b is expressed via the unknown quantity:

I(u) := R + E 1 √ τ 1 ✶ {u(4tU(τ1) 2 +τ 1 )<τ 1} p ξ (t)dt, 0 < u < 1.
(3.33)

The main result of this subsection is Corollary 3.9.

Lemma 3.7. For any 0 < y < 1, one has 

p g * (y) = - 1 2 √ 2π 1 √ y lim ε→0 1-ε y s y du (1 -u) u(u -y) dI(s). ( 3 
E[f (g * )] = 1 π 1 0 E[f (xg b )] x(1 -x) dx = 1 2 √ 2π 1 0 f (y) y(u -y) I(u) √ u(1 -u) ✶ {0 y u} dydu (3.35)
where the last equality comes from the change of variable ux = y for a fixed u. Hence, using that I(1) = 0 and I is decreasing:

p g * (y) = 1 2 √ 2π 1 √ y 1 y I(u) u(u -y)(1 -u) du = - 1 2 √ 2π 1 √ y 1 y 1 u(u -y)(1 -u) 1 u dI(s) du = - 1 2 √ 2π 1 √ y lim ε→0 1-ε y s y du u(u -y)(1 -u) dI(s).
As shows (3.35) there is a singularity at u = 1. This explains why we introduce the cutoff ε. Now our strategy is to compute I (Lemma 3.8) and then its derivative. This leads to Corollary 3.9, which is the first main step of the proof of (2.12).

Lemma 3.8. We get

I(u) = 2 π + 2 k 1 (-1) k I 1 k 2 π 2 8 1 -u u , 0 < u < 1 (3.36)
where

I 1 (v) := 1 √ 2π +∞ 0 1 √ s 1 cosh 2 ( √ s + 2v) ds. (3.37)
Proof of Lemma 3.8 1) Let h 1 be the real-valued function defined by

h 1 (u) := 2 k 1 (-1) k exp - k 2 π 2 u 2 , u > 0. (3.38) By (2.21), p ξ = h ′ 1 , then for any t 1 > 0, t 1 0 p ξ (t)dt = +∞ 0 p ξ (t)dt - +∞ t 1 h ′ 1 (t)dt = 1 + h 1 (t 1 ). Since τ 1 (d)
= 1/N 2 with N ∼ N (0, 1), the above identity and (3.38) imply:

I(u) = E 1 √ τ 1 1 + h 1 1 -u u τ 1 4U (τ 1 ) 2 = 2 π + 2 k 1 (-1) k I 1 k 2 π 2 8 1 -u u
where

I 1 (v) = E 1 √ τ 1 exp -v τ 1 U (τ 1 ) 2 , v > 0. (3.39)
2) We calculate I 1 . Using the identity

+∞ 0 1 √ t e -ta dt = π a ,
with a = τ 1 and inverting and E in (3.39) leads to:

I 1 (v) = 1 √ π +∞ 0 E exp -τ 1 t + v U (τ 1 ) 2 dt √ t = 1 √ π R 2 + E exp -τ 1 t + v x 2 |U (τ 1 ) = x 1 x 2 e -1/x dx dt √ t , since 1/U (τ 1
) is exponentially distributed (see [START_REF] Vallois | Sur la loi conjointe du maximum et de l'inverse du temps local du mouvement brownien: application à un théorème de Knight, Stochastics Stochastics Rep[END_REF]Theorem 1]). We claim:

E e -µτ 1 |U (τ 1 ) = x e -1/x x 2 = 2µ sinh 2 (x √ 2µ) exp -2µ coth(x 2µ) , µ > 0.
(3.40) Indeed, by Proposition 2.2 and Formula (4.13) in [START_REF] Chabriac | Elements related to the largest complete excursion of a reflected Brownian motion stopped at a fixed time. Application to local score[END_REF],

E e -µτ 1 ✶ {U (τ 1 )<x} = exp -2µ coth(x 2µ) (3.41) = x 0 E e -µτ 1 |U (τ 1 ) = y 1 y 2 e -1/y dy, (3.42) (3.43)
and a derivative with respect to x leads to (3.40).

Using (3.40) and the change of variable u = 2 (tx 2 + v) for a fixed x,

I 1 (v) = 1 √ π R 2 + 2(tx 2 + v) sinh 2 2(tx 2 + v) • exp -2 t + v x 2 coth 2(tx 2 + v) dxdt x 2 √ t = 1 2 √ π R 2 + u x 3 u 2 -v sinh 2 ( √ u) exp - √ u x coth( √ u) ✶ {u>2v} dudx = 1 2 √ π +∞ 2v 1 u 2 -v cosh 2 ( √ u) +∞ 0 we -w dw du = 1 √ 2π +∞ 0 1 √ s ds cosh 2 ( √ s + 2v)
where we make the change of variable w = √ u coth( √ u)/x for a fixed u.

Corollary 3.9. We have

p g * (y) = π 8 √ y lim ε→0 k 1 (-1) k+1 k 2 δ k (y, ε), 0 < y < 1, (3.44)
where

δ k (y, ε) := +∞ 0 1 √ v 1-ε y 1 s 2 1 v + k 2 π 2 4 1-s s sinh cosh 3 v + k 2 π 2 4 1 -s s × s y 1 (1 -u) u(u -y) du dsdv. (3.45)
Proof of Corollary 3.9 We take the derivative in (3.36) and (3.37) and we get

I ′ (s) = - π 2 4s 2 k 1 (-1) k k 2 I ′ 1 k 2 π 2 8 1 -s s = π 2 4s 2 2 π k 1 (-1) k k 2 • +∞ 0 1 v v + k 2 π 2 4 1-s s sinh cosh 3 v + k 2 π 2 4 1 -s s dv (3.46)
that plugged into (3.34) leads to the required result.

3.2.2.

A second formula of the probability distribution function of g * From (3.45), we see that δ k (y, ε) is a triple integral. We reduce it to a simple integral see Lemma 3.10 below. Then (3.44) implies that p g * (y) is a limit of a single integral (see Corollary 3.11). The limit can be calculated, cf. Lemma 3.12, that proves (3.44).

Lemma 3.10.

Letting ε ′ = ε/1 -ε, one has δ k (y, ε) = 4 k 2 π 2 1 √ 1 -y +∞ 0   ρ 1 (ε ′ ) √ s - ρ 2 (s, ε ′ ) s + π 2 4 ε ′   kds cosh 2 k s + π 2 4 ε ′ (3.47)
where

ρ 1 (ε ′ ) := ln √ 1-y+ √ 1-y(1+ε ′ ) √ 1-y- √ 1-y(1+ε ′ ) and ρ 2 (s, ε ′ ) := ln u 1 (s,ε ′ )+u 2 (s,ε ′ ) |u 1 (s,ε ′ )-u 2 (s,ε ′ )| (3.48) with u 1 (s, ε ′ ) := 4s π 2 (1 -y -yε ′ ) and u 2 (s, ε ′ ) := 4s π 2 + ε ′ 1 -y . (3.49)
Proof of Lemma 3.10 In (3.45), we directly integrate with respect to s and then we make the change of variable w = (1u)/u:

δ k (y, ε) = 4 k 2 π 2 R 2 + ✶ {y u 1-ε} (1 -u) uv(u -y) •     1 cosh 2 v + k 2 π 2 4 ε ′ - 1 cosh 2 v + k 2 π 2 4 1-u u     dudv = 4 k 2 π 2 1-y y ε ′ dw w 1 -y(1 + w) • R +     1 cosh 2 v + k 2 π 2 4 ε ′ - 1 cosh 2 v + k 2 π 2 4 w     dv √ v = 4 k 2 π 2 (q 1 -q 2 )
where

q 1 := 1-y y ε ′ dw w 1 -y(1 + w)     +∞ 0 dv √ v cosh 2 v + k 2 π 2 4 ε ′     q 2 := 1-y y ε ′ dw w 1 -y(1 + w)   +∞ k 2 π 2 4 w 1 t -k 2 π 2 4 w dt cosh 2 √ t   = +∞ k 2 π 2 4 ε ′ q 3 (t) cosh 2 √ t dt (3.50) with q 3 (t) := 2 kπ t 0 ε ′ 1 w 1 -y(1 + w) 1 √ t 0 -w ✶ {w< 1-y y } dw and t 0 = 4t k 2 π . 1) Observe that w → - 1 √ 1 -y ln √ 1 -y + 1 -y(1 + w) √ 1 -y -1 -y(1 + w) is a primitive of 1/w 1 -y(1 + w), therefore 1-y y ε ′ dw w 1 -y(1 + w) = 1 √ 1 -y ln √ 1 -y + 1 -y(1 + ε ′ ) √ 1 -y -1 -y(1 + ε ′ ) = 1 √ 1 -y ρ 1 (ε ′ )
and

q 1 = 1 √ 1 -y ρ 1 (ε ′ ) +∞ 0 kds √ s cosh 2 k s + π 2 4 ε ′ (3.51)
after the change of variable v = k 2 s.

2) Now we simplify q 3 (t). Let u = (t 0w)/(1y(1 + w)). From this change of variable and we get:

• if t 0 > (1 -y)/y, q 3 (t) = 4 kπ +∞ u 0 du u 2 (1 -y) -t 0 = 1 t(1 -y) ln   u 0 + t 0 1-y u 0 - t 0 1-y   , • if t 0 < (1 -y)/y, q 3 (t) = 4 kπ 0 u 0 du u 2 (1 -y) -t 0 = 1 t(1 -y) ln   u 0 + t 0 1-y t 0 1-y -u 0   where u 0 = (t 0 -ε ′ )/(1 -y(1 + ε ′ )).
We make the change of variable t = k 2 (s + π 2 ε ′ /4) in (3.50), then t 0 /(1y) = u 2 (s, ε ′ ), u 0 = u 1 (s, ε ′ ) and

q 3 (t) = 1 k 1 s + π 2 ε ′ 4 ρ 2 (s, ε ′ ).
Finally, (3.47) is a consequence of (3.51), (3.50) and the above identity.

Using identities (3.44) and (3.47), the definition (2.11) of h in and interverting (legally) the integral and the sum gives the following corollary because the cutoff ε ′ permits to intervert the integral and the sum. Finally, we can write p g * (y) as a limit of an integral of a function which is expressed as a series.

Corollary 3.11. We have

p g * (y) = 1 2π y(1 -y) lim ε ′ →0 +∞ 0   ρ 1 (ε ′ ) √ s - ρ 2 (s, ε ′ ) s + π 2 4 ε ′   h s + π 2 4 ε ′ ds (3.52)
where h, ρ 1 and ρ 2 have respectively been defined in (2.11) and (3.48).

Here we compute the limit of the term ρ 1 (ε ′ )/ √ sρ 2 (s, ε ′ )/ s + π 2 ε ′ /4 appearing in the previous integral and we verify that the dominated convergence theorem may be applied.

Lemma 3.12. For any s > 0, lim

ε ′ →0   ρ 1 (ε ′ ) √ s - ρ 2 (s, ε ′ ) s + π 2 4 ε ′   h s + π 2 4 ε ′ = ln 1 - π 2 (1 -y) 4ys h( √ s) √ s . (3.53)
Proof of Lemma 3.12 We use the following decomposition

ρ 1 (ε ′ ) √ s - ρ 2 (s, ε ′ ) s + π 2 4 ε ′ = ρ 3 (ε ′ ) √ s - ρ 4 (s, ε ′ ) s + π 2 4 ε ′ + ρ 5 (s, ε ′ ) s + π 2 4 ε ′ +ln ε ′   1 s + π 2 4 ε ′ - 1 √ s   (3.54)
where

ρ 3 (ε ′ ) = 2 ln 1 -y + 1 -y(1 + ε ′ ) -ln(y), (3.55) ρ 4 (s, ε ′ ) = 2 ln (u 1 (s, ε ′ ) + u 2 (s, ε ′ )) + ln π 2 (1 -y) + ln (1 -y(1 + ε ′ )) -ln(4y), (3.56) ρ 5 (s, ε ′ ) = ln s - π 2 4 1 -y y + π 2 4 ε ′ . (3.57)
It is easy to deduce from (3.49) and (2.11):

lim ε ′ →0 ρ 3 (ε ′ ) = 2 ln 2 + ln(1 -y) -ln(y), lim ε ′ →0 ρ 4 (s, ε ′ )/ s + π 2 4 ε ′ = ln(4s(1 -y)/y)/ √ s, lim ε ′ →0 ρ 5 (s, ε ′ ) = ln s -π 2 (1 -y)/4y , lim ε ′ →0 h s + π 2 4 ε ′ = h( √ s).
Then (3.53) follows from (3.54).

Proof of (2.12)

We claim that we can intervert in (3.52) the limit (ε ′ → 0) and the integral, using the dominated convergence theorem. Then (2.12) is a direct consequence of Lemma 3.12. Indeed, there exists a generic constant C > 0 (that may change from one line to another) such that we have the following inequalities:

|ρ 3 (ε ′ )| √ s C √ s , ∀s > 0, ∀ε ′ ∈ (0, 1)., |ρ 4 (s, ε ′ )| s + π 2 4 ε ′ C √ s (1 + ln(1 + s) + | ln s|) , ∀s > 0, ∀ε ′ ∈ (0, 1], |ρ 5 (s, ε ′ )| s + π 2 4 ε ′ C √ s 1 + ln(1 + s) + ln s - π 2 (1 -y) 4y , s ∈ I c ε ′
where

I c ε ′ := 0, π 2 (1 -y) 4y -π 2 ε ′ ∪ π 2 (1 -y) 4y , +∞ .
It remains to investigate the limit of the integral when s ∈ I ε ′ . For y > 0 fixed and ε ′ small enough,

1 s + π 2 4 ε ′ C, h s + π 2 4 ε ′ C, s ∈ I ε ′
The change of variable u = sπ 2 (1y)/4y leads to:

+∞ 0 ρ 5 (s, ε ′ ) s + π 2 4 ε ′ h s + π 2 4 ε ′ C π 2 4 ε ′ -3π 2 4 ε ′ | ln u|du. (3.58)
Consequently the left hand side in (3.58) goes to 0 as ε ′ → 0. The proof of (2.12) is now complete.

Proof of (2.13) in Theorem 2.1

Our purpose is to get rid off the series that appears in the definition of h.

In order to keep the guiding principal, some technical points are proved in Section 3.4. Our proof has five main steps, numbered from 1 to 5.

1)

Starting with (2.12), our goal is to simplify

ρ(y) := +∞ 0 ln 1 - π 2 (1 -y) 4ys h( √ s) √ s ds.
In order to switch the sum and the integral, we need to determine the behavior of h in the vicinity of 0 and +∞.

Lemma 3.13. One has (i) for any x > 0, |h(x)| 4e -2x /(1e -2x ) 2 ;

(ii) for any x ∈ (0, 1), |h(x)| C/ √ x where C is a positive constant.

The proof of Lemma 3.13 is postponed in Section 3.4. The simplification of ρ is based on the following identity:

ln 1 - π 2 (1 -y) 4ys = ln π 2 (1 -y) 4y -ln s + ln 4ys π 2 (1 -y) -1 . (3.59)
This gives rise to a decomposition of ρ(y) as the sum of three terms.

Lemma 3.14. One has

ρ(y) = a 1 ln π 2 (1 -y) 4y + a 2 + τ (y) (3.60)
where

a 1 := +∞ 0 h( √ s) √ s ds, a 2 := - +∞ 0 ln(s) h( √ s) √ s ds, (3.61)
and τ (y) :

= +∞ 0 ln 4ys π 2 (1 -y) -1 h( √ s) √ s ds. (3.62)
We calculate τ (Lemma 3.19), a 1 (item 3)) and a 2 (Lemma 3.21).

2)

We begin with τ . We can eliminate the sum in h( √ s) but only on [ε, +∞[.

Let us introduce

ϕ(a, n) := n i=1 a 2 k 2 -1 (-1) k+1
, a > 0, n 1.

(3.63) Lemma 3.15. For any y > 0, τ (y) = lim ε → 0 τ 1 (ε, y) where:

τ 1 (ε, y) := +∞ ε ln ϕ 4yt π 2 (1 -y) , t ε dt √ t cosh 2 ( √ t) . ( 3 

.64)

Proof of Lemma 3.15 a) First, using (ii) of Lemma 3.13, we get that the function s → ln 4ys

π 2 (1-y) -1 h( √ s) √ s is integrable on [0, ∞], consequently τ (y) = lim ε → 0 τ 1 (ε, y) with τ 1 (ε, y) = +∞ ε ln 4ys π 2 (1 -y) -1 h( √ s) √ s ds. (3.65) b)
Second, it is possible to permute the integral and the sum in τ 1 (ε, y) (Equation (3.65)). In that view, we will use the following result: let (f k ) k 1 be a sequence of functions defined on [0, +∞[ and such that

k 1 +∞ 0 |f k (s)|ds < +∞. (3.66) Then +∞ 0 k 1 f k (s) ds = +∞ 0 k 1 f k t k 2 1 k 2 dt. (3.67)
Now let us define

f k (s) := (-1) k+1 ln 4ys π 2 (1 -y) -1 k √ s cosh 2 (k √ s)
✶ {s ε} .

Since cosh x e x /2 and √ s √ ε, we get

k 1 |f k (s)| ln 4ys π 2 (1 -y) -1 4 √ ε k 1 ke -2k √ s 4 √ ε ln 4ys π 2 (1 -y) -1 e -2 √ s (1 -e -2 √ ε ) 2 using k 1 kρ k = ρ d dρ k 1 ρ k = ρ (1 -ρ) 2 .

Noticing that

∞ 0 e -2 √ s ln 4ys π 2 (1-y) -1 ds < ∞, (3.66) holds, we may apply (3.67):

τ 1 (ε, y) = +∞ 0 k 1 (-1) k+1 ln 4yt π 2 (1 -y)k 2 -1 ✶ {k 2 t ε } 1 √ t cosh 2 ( √ t) dt. Since k 1, k 2 ε t implies t ε and k 2 ε t ⇔ k √ t/ε ⇔ k ⌊ √ t/ε⌋. We introduce a := 4yt/(π 2 (1 -y)), n := ⌊ √ t/ε⌋, then n k=1 (-1) k+1 ln a 2 k 2 -1 = ln |ϕ(a, n)|
from which we deduce the Lemma 3.15.

To determine the limit of τ 1 (y, ε) in (3.65), we calculate the limit of ϕ(a, m) when m → ∞ (cf. Lemma 3.17). We prove in Lemma 3.18 that the dominated convergence theorem applies. We begin with modifying ϕ(a, m) so that its limit as m → ∞ can be calculated.

Lemma 3.16. One has

ϕ(a, 2n) = Γ(n + 1 -(a + 1)/2)Γ(n + 1 + (a -1)/2) Γ(n + 1 -a/2)Γ(n + 1 + a/2) Γ(n + 1) Γ(n + 1/2) 2 α(a)
where α(a)

:= π Γ(1 -a/2)Γ(1 + a/2) Γ(1 -(a + 1)/2)Γ(1 + (a -1)/2)
.

Proof of Lemma 3.16 By definition, we get

ϕ(a, 2n) = n k=1 k -a+1 2 k -a 2 n k=1 k + a-1 2 k + a 2 n k=1 k k -1 2 2 .
Recalling that Γ(x + 1) = xΓ(x) for all x / ∈ N, we easily deduce

n k=1 (k + b) = Γ(n + 1 + b) Γ(1 + b) and ϕ(a, 2n) = Γ(n + 1 -(1 + a)/2)Γ(n + 1 + (a -1)/2) Γ(n + 1 -a/2)Γ(n + 1 + a/2) Γ(n + 1) Γ(n + 1/2) 2 α(a) with α(a) = (Γ(1/2)) 2 Γ(1 -a 2 )Γ(1 + a 2 )/ Γ(1 -1+a 2 )Γ(1 + a-1 2 ) . It remains to notice that Γ(1/2) =
√ π to conclude the proof.

We are now able to compute the limit of ϕ(a, m) as m goes to infinity.

Lemma 3.17. For any a,

lim m→+∞ |ϕ(a, m)| = |α(a)| = πa 2 cot πa 2 .
Proof of Lemma 3.17 (i) Assume that m = 2n. Recall that Γ(1 + x) ∼ √ 2πx x+1/2 e -x as x → ∞ and notice that

n -(a + 1)/2 n -a/2 = 1- 1 2n +o(1/n) and (n-a/2) ln n -(a + 1)/2 n -a/2 → -1/2. Then Γ(n + 1 -(a + 1)/2) Γ(n + 1 -a/2) ∼ 1/ √ n, n → ∞.
Changing the variable a in -a leads to

Γ(n + 1 + (a -1)/2) Γ(n + 1 + a/2) ∼ 1/ √ n, n → ∞.
Similarly, we get Γ(n + 1)

Γ(n + 1/2) ∼ √ n, n → ∞.
Consequently, lim n→+∞ ϕ(a, 2n) = α(a) (ii) Assume now that m = 2n + 1. It suffices to notice that ϕ(a, 2n + 1) = ϕ(a, 2n)

a 2
(2n+1) 2 -1 and to apply the previous result to get that the limit of ϕ(a, 2n + 1) is -α(a) when n → +∞.

(iii) Finally, it remains to simplify α(a). Using the identities Γ(1+x) = xΓ(x) with x = a/2 and Γ(z)Γ(1z) = π/ sin(πz), z / ∈ -N for z = a/2 and z = 1/2a/2 yields the required result.

Since

t/ε → +∞ as ε → 0, then Lemma 3.17 implies:

lim ε→0 ln ϕ 4ty π 2 (1 -y) , t ε = ln α 4ty π 2 (1 -y) = ln ty 1 -y cot ty 1 -y .
It remains to apply the dominated convergence theorem to get the limit of τ 1 (y, ε). Its legal use is justified by the following lemma.

Lemma 3.18. (i) First,

ln ϕ 4yt π 2 (1 -y) , t ε ϕ 1 (t) with ϕ 1 (t) := k 1 ln 1 - t a 3 k 2 and a 3 := π 2 (1 -y) 4y .
(ii) Second,

A := ∞ 0 ϕ 1 (t) dt √ t cosh 2 ( √ t) < ∞. (3.68) Proof of Lemma 3.18 (i) By definition, we have ln |ϕ(a, n)| = n k=1 (-1) k+1 ln |1 -a 2 /k 2 | and thus ln |ϕ(a, n)| n k=1 ln 1 - a 2 k 2 .
(ii) We decompose A defined by (3.68) as

A = A 1 + A 2 with A 1 = a 3 /2 0 ϕ 1 (t) dt √ t cosh 2 ( √ t) and A 2 = ∞ a 3 /2 ϕ 1 (t) dt √ t cosh 2 ( √ t) .
We prove that A 1 and A 2 are finite.

• Since there exists c > 0 such that | ln(1

-x)| cx for 0 < x < 1/2, condition t a 3 /2 implies that ln 1 - t a 3 k 2 ct a 3 k 2 .
from which we deduce that

A 1 c a 3 k 1 1 k 2 a 3 /2 0 √ tdt cosh 2 ( √ t) < ∞ .
• Since ϕ 1 (t) is a series with positive terms, we have:

A 2 = k 1 ∞ a 3 /2 ln 1 - t a 3 k 2 dt √ t cosh 2 ( √ t) .
and the change of variable t = k 2 s leads to:

A 2 = k 1 k ∞ a 3 /2k 2 ln 1 - s a 3 ds √ s cosh 2 (k √ s) .
Now since cosh x e x /2, we get

A 2 4 ∞ 0 ln 1 - s a 3 1 √ s k 1 ke -2k √ s ds 4 ∞ 0 ln 1 - s a 3 e -2 √ s (1 -e -2 √ s ) 2 ds √ s
Finally we conclude that the integral converges at infinity and 0.

We have established the following lemma.

Lemma 3.19. The function τ can be simplified as:

τ (y) = 2 +∞ 0 ln s y 1 -y cot s y 1 -y ds cosh 2 (s)
.

(3.69)

3) Let us prove that a 1 = 1. We use the following probabilistic result.

Lemma 3.20. Let (ζ(α)) 0<α<1 be a sequence of geometrical random variables with parameter α. Then η(α

) := (1 -α) ζ(α) converges in distribution to U ([0, 1]) as α → 0.
Admit for a while Lemma 3.20 whose proof is postponed at the end of item 3).

First, by Lemma 3.13,

a 1 = lim ε→0 a 1 (ε) where a 1 (ε) := +∞ ε h( √ s) √ s ds.
By permuting the sum and the integral, letting k √ s = t and introducing ν = e -2k √ ε , we obtain:

a 1 (ε) = 2 +∞ k=1 (-1) k+1 +∞ k √ ε dt cosh 2 t = 2 +∞ k=1 (-1) k+1 1 -tanh(k √ ε) = 4 +∞ k=1 (-1) k+1 e -2k √ ε 1 + e -2k √ ε = 4 +∞ k=1 (-1) k+1 ν k 1 + ν k = 4 +∞ k=1 ν 2k-1 (1 -ν) (1 + ν 2k-1 )(1 + ν 2k ) ,
where the last equality comes from separating the odd and even numbers. Consequently,

a 1 (ε) = 4ν 1 + ν +∞ k=1 1 (1 + 1 ν ν 2k )(1 + ν 2k ) P(ζ(1 -ν 2 ) = k) = 4ν 1 + ν E ϕ 1 ν , τ (1 -ν 2 ) where ϕ (u, v) = 1 (1 + uv)(1 + v) , u, v 0.
Since ϕ is continuous, bounded and ν → 1 as ε → 0, it remains to apply Lemma 3.20 to get

a 1 = lim ε→0 a 1 (ε) = 2 1 0 du (1 + u) 2 = 1.
Proof of Lemma 3.20 Let 0 < u < 1. Then We conclude to (2.13) and the proof Theorem of 2.1 .

P(η(α) < u) = P ζ(α) > ln u ln(1 -α) = (1 -α) ⌊ln u/ ln(1-α)⌋ → u, as α → 0.

Technical results

In this subsection, we prove the intermediate results used in Section 3, namely Lemma 3.13, and identities (3.72) and (3.73).

Proof of Lemma 3.13 (i)

The first inequality is direct as soon as one notices that cosh x e x /2.

(ii) Let h 0 and k be the functions defined by h 0 (x) := xh(x) for x > 0 and h 1 (x) := x/ cosh 2 (x) for x 0. The Taylor expansion of h 1 with integral rest can be written in the following form:

h 1 (b) -h 1 (a) = (b -a)h ′ 1 (b) + R(a, b) where R(a, b) := (b -a) 1 0 (h ′ 1 (a + r(b -a)) -h ′ 1 (b))dr. Then, h 0 (x) = k 1 (-1) k+1 h 1 (kx) = -(h 01 (x) + h 02 (x) + h 03 (x))
where

h 01 (x) = x 1 n x * h ′ 1 (2nx) h 02 (x) = 1 n x * R((2n -1)x, 2nx) h 03 (x) = n>x * (h 1 (2nx) -h 1 ((2n -1)x))
and x * = x -3/2 . The derivative of h 1 being bounded, we deduce that |h 02 (x)| c √ x. Since h 1 (x) ce -x , we can easily prove that |h 03 (x)| ce -2/ √ x /x. As for h 01 (x), we decompose this sum with the related integral: 

h 01 (x) = x 0 h ′ 1 (2y)dy + h01 (x) where h01 (x) = x 1 n nx nx (n-1)x (h ′ 1 (2nx) -h ′ 1 (2y))dy , n x = ⌊x * ⌋ and x = n x x. From the previous estimates, we have | h01 (x)| c √ x and x 0 h ′ 1 (2y)dy = 1 2 h 1 (x) ce -2/ √ x . 29 
2k+1) √ ε 2k √ ε f (t)dt. ( 
• Obviously, we first have

a 21 (ε) + a ′ 21 (ε) = 4 +∞ √ ε f (t)dt a 21 (ε) -a ′ 21 (ε) = 4 +∞ k=1 2k √ ε (2k-1) √ ε (f (t) -f (t + √ ε))dt.
• Second, we prove that lim ε→0 (a 21 (ε)a ′ 21 (ε)) = 0. Indeed, we notice that for small values of ε, we have f

(t + √ ε) -f (t) 0, t ∈ [0, 1] since for all t ∈ [0, 1], f ′ (t) > 0. Then |a 21 (ε) -a ′ 21 (ε)| 4 1 0 (f (t + √ ε) -f (t))dt + 4 +∞ 1 f (t + √ ε) -f (t) dt.
On one hand,

1 0 (f (t + √ ε) -f (t))dt = 1+ √ ε 1 f (t)dt - √ ε 0 f (t))dt -→ ε→0 0 since f is integrable on R + .
On the other hand, for any t 1, |f ′ (t)| Ce -t that leads to

+∞ 1 f (t + √ ε) -f (t) dt C √ ε +∞ 1 e -t dt -→ ε→0 0.
• Finally, we derive (3.72) from the previous results and the following equation We begin with a new decomposition of a 22 (ε).

a 21 (ε) = 1 2 (a 21 (ε) + a ′ 21 (ε)) + 1 2 (a 21 (ε) -a ′ 21 (ε)). 3 
Lemma 3.22.

a 22 (ε) = 4 +∞ √ ε g 1 ε (t) + g 2 ε (t) + O 1 n (θ(t + √ ε) + θ(t)) dt (3.75)
where Using Stirling formula

g 1 ε (t) = n ln n θ(t + √ ε) -θ(t) + 1 2 ln nθ(t + √ ε), g 2 ε (t) = (ln 2 -1)n θ(t + √ ε) -θ(t) ln √ 2πθ(t + √ ε) - 1 2 ln 2θ(t).
k ! = √ 2πk k+1/2 exp -k + η(k) 12k , k 1 
where 1 -1/(12k + 1) η(k) < 1, we easily deduce the asymptotic behavior of S e m and S o m as m → +∞: 

S e k = k ln k + (ln 2 -1)k + 1 2 ln k + ln √ 2π + O 1 k , (3.76) 
S o k = k ln k + (ln 2 -1)k + 1 2 ln 2 + O 1 k (3.
+∞ 2k √ ε θ(t)dt = n k=1 ln(2k) +∞ (2k-1) √ ε θ(t + √ ε)dt = +∞ √ ε n k=1 ln(2k)✶ {(2k-1) √ ε t} θ(t + √ ε)dt = +∞ √ ε S e n θ(t + √ ε)dt and similarly, n k=1 ln(2k -1) +∞ (2k-1) √ ε θ(t)dt = +∞ √ ε S o n θ(t)dt.
Then (3.75) is a direct consequence of (3.71), (3.76) and (3.77).

By Lemma 3.22, a 22 (ε) is the sum of three terms. We determine the limit of each term separately.

1) It is clear that We calculate θ 1 and the limit of θ 2 (ε) as ε → 0.

lim ε→0 +∞ √ ε O 1 n (θ(t + √ ε) + θ(t))dt = 0. (3.78) 2) Note that n|θ(t + √ ε) -θ(t)| Ce -t , t 0, ε > 0. ( 3 
(i) By an integration by parts, it comes (ii) We determine the limit of θ 2 (ε), ε → 0. Noticing that

+∞ √ ε t θ(t + √ ε) -θ(t) √ ε dt = 1 √ ε +∞ 2 √ ε (t - √ ε)θ(t)dt - +∞ √ ε tθ(t)dt = - +∞ √ ε θ(t)dt - 1 √ ε 2 √ ε √ ε (t - √ ε)θ(t)dt.
Consequently, 

θ 2 (ε) = 1 2 √ ε ln(2 √ ε) 2 √ ε √ ε (t - √ ε)θ(t)dt

Figure 1 :

 1 Figure 1: The r.v.'s g(1), U (1), U * (1), f * (1) and g *
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 1 (s); 0 s 1) represents the standard Brownian bridge and 1 g(1) B(sg(1)); 0 s 1 is independent of g(1). (2.15) If we replace U by |b| in the scheme (1.7)-(1.10) (resp. (1.7)-(1.8)), we get g b (resp. b * (1)) which have been plotted in Figure 2
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 2 Figure 2: The r.v.'s g b and b * (1)
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 [32 (b(u); 0 u 1)] = √ 2πE[F (br * (u); 0 u 1)M * ] structure of the trajectory of br * and (3.25) to give a first expression of the distribution of g b in terms of Brownian random variables. Let f be a bounded Borel function, then

3 .27) where B(σ 1 ) := inf 0 u σ 1 B

 311 (u) and B(σ 1 ) := inf 0 u σ1 B(u). Proof of Corollary 3.2 First, notice that b * (1) = sup 0 u 1 |b(u)| = b(1) ∨ b(1), where b(1) := sup 0 u 1 b(u) and b(1) :=inf 0 u 1 b(u). Moreover, b * (1) = b(1) ⇔ b(1) > b(1) and on that set, b * (1) = b(1). Since (-b(u); 0
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  .30) Using (3.28), Corollary 3.2 and Lemma 3.3, we deduce: Corollary 3.4. Let f be a bounded Borel function, then

5 )

 5 Finally, we are able to compute ρ(y). Plugging (3.69) into (3.60), using a 1 = 1 and (3.70), we get ρ(y) Setting x = s y/(1y), we have:

  77)where O (1/k) stands for a sequence bounded by 1/k.

implies θ 1 =

 1 -1/2.

and lim ε→0 θ 2

 2 (ε) = 0. Moreover using (3.89) and θ 1 = -1/2, the limits (3.78), (3.80) and (3.92) into (3.75) implies (3.73) which completes the proof.

  .34) Proof of Lemma 3.7 Let f : R → R be a bounded Borel function. Using Proposition 2.2, Corollary 2.4 and (2.18), we obtain:

4 )

 4 We calculate a 2 . We admit two intermediate results (whose proofs are postponed in Section 3.4) so that the reader can have quickly the explicit value of a 2 .

	Proof of Lemma 3.21 We proceed as for the calculation of a 1 and we
	straightforwardly get a 2 = -lim ε→0	ε	+∞	h( √ s √ s)	ln(s)ds = -lim ε→0	(a 21 (ε) + a 22 (ε))
	where a 21 (ε) := 4	+∞ k=1	2k (2k-1) √ ε	√ ε	ln t cosh 2 (t)	ds,
	a 22 (ε) :=	+∞ k=1	ln(2k)	+∞ 2k √ ε	dt cosh 2 (t)	-ln(2k -1)	+∞ (2k-1)	√ ε	dt cosh 2 (t)	.
	Lemma 3.21. We have				
				a 2 = -2	0	+∞	ln t cosh 2 (t)	dt -ln	π 2 4	.	(3.70)

  √ ε as ε goes to 0 and thus n (θ(t + √ ε)θ(t)) ∼ t 2 θ ′ (t), ε → 0. We apply the Lebesgue's dominated convergence theorem and we get We are interested in the limit of the integral involving g 1 ε (t). In that view, we decompose g 1 ε (t) in Lemma 3.23 using a new class of functions that we define as follows. The sequence of functions (R ε (t), t 0) ε∈(0,1/2] is said to belong to the class R if|R ε (t)| dt < +∞.. (3.82) Clearly, if (R ε (t), t 0) ε∈(0,1/2] belongs to the class R then lim ε→0Proof of Lemma 3.23 The function g 1 ε (defined in Lemma 3.22) is the sum of tow terms. We study each of them separately. a) We prove that

	Finally, Using the definition (3.74) of n, we have n -t lim ε→0 2 √ ε +∞ √ ε g 2 ε (t)dt = 1 2 (ln π + 1 -ln 2) . 1 2 . Then λ(n) -λ t 2 √ ε 1 2 | sup u∈J |λ ′ (u)| 1 2 1 + ln 1 + t √ ε	(3.80) (3.86)
	where J is the interval with end points n and t/2 θ(t + √ ε) -θ(t) C √ εe -t . √ ε. It is clear that Then (3.81) and (3.82) follow from (3.85), (3.86) and (3.87). 3) (i) lim ε→0 R ε (t) = 0, t 0, (ii) +∞ 0 ln(t/2 √ ε)) = 0 using (3.74). Using moreover (3.87), we deduce that sup 0<ε<1/2 +∞ ln(n)θ(t + √ ε) = ln t 2 θ(t) + R ε (t). √ ε 0 0. c) Then (3.83) follows from (3.84), (3.88), the following identity	(3.87) (3.81) (3.88) R ε (t)dt =
	Lemma 3.23. One has g 1 ε (t) = 1 2 (t ln(t)θ ′ (t) + ln(t)θ(t))-t ln t 2 √ ε θ(t + √ ε) -θ(t) = 1 2 ln(2 √ and easy calculations.	ε) t t ln t 2	θ(t + θ ′ (t) + R ε (t) √ ε) -θ(t) √ ε	+ θ(t) +R ε (t).
	According to Lemma 3.23,				(3.83)
	+∞			
	√ ε	g 1 ε (t)dt = θ 1 + θ 2 (ε) + o(ε)	(3.89)
	.79) ε) -θ(t) + R ε (t) (3.84) where n has been defined in (3.74) and (R ε (t), t 0) ε∈(0,1/2] ∈ R. It suffices Moreover, n ∼ t 2 n ln n θ(t + √ ε) -θ(t) = t 2 √ ε ln t 2 √ ε θ(t + where √ to show that θ 1 := +∞ 1 (t ln(t)θ ′ (t) + ln(t)θ(t)) dt, (3.90) 2 0 θ 2 (ε) := -1 2 ln(2 √ ε) +∞ √ ε t θ(t + √ ε) -θ(t) √ ε + θ(t) dt. (3.91)
	lim ε→0 R ε (t) = n ln n θ(t + +∞ √ ε n θ(t + √ ε) -θ(t) dt = = √ ε) -θ(t) -1 2 1 2 2 = λ(n) -λ(t/2 √ ε) θ(t + √ ε) -θ(t) +∞ 0 tθ ′ (t)dt [tθ(t)] +∞ 0 -t √ ε ln t 2 √ ε belongs to R where λ(x) = x ln x.	0	+∞ θ(t + θ(t)dt = -√ ε) -θ(t) 1 2 (3.85) .

b) Since | ln aln b| |a -b|/ min{a, b}, a, b > 0, we have lim ε→0 (ln n -