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Abstract
In this paper, we present an optimized implementation of
the Finite-Element Methods numerical kernel for SIMD vec-
torization. A typical application is the modelling of seismic
wave propagation. In this case, the computations at the el-
ement level are generally based on nested loops where the
memory accesses are non-contiguous. Moreover, the back
and forth from the element level to the global level (e.g.,
assembly phase) is a serious brake for automatic vectoriza-
tion by compilers and for efficient reuse of data at the cache
memory levels. This is particularly true when the problem
under study relies on an unstructured mesh.
The application proxies used for our experiments were ex-
tracted from EFISPEC code that implements the spectral
finite-element method to solve the elastodynamic equations.
We underline that the intra-node performancemay be further
improved. Additionally, we show that standard compilers
such as GNU GCC, Clang and Intel ICC are unable to per-
form automatic vectorization even when the nested loops
were reorganized or when SIMD pragmas were added.
Due to the irregular memory access pattern, we introduce
a dedicated strategy to squeeze the maximum performance
out of the SIMD units. Experiments are carried out on In-
tel Broadwell and Skylake platforms that respectively offer
AVX2 and AVX-512 SIMD units. We believe that our vector-
ization approach may be generic enough to be adapted to
other codes.

Keywords FEM, vectorization, SIMD, mini-app

1 Introduction
Realistic-sized three-dimensional earthquake modeling is ex-
tremely computationally intensive. However recent advances
in High Performance Computing (HPC) platforms make nu-
merical simulation of seismic wave propagation feasible at
a large scale and at high seismic frequencies [4, 6, 18, 24].
Up until recently, the improvement of the performances of
the applications were mainly coming from Moore’s Law.
Furthermore, the flat MPI programming model was enough
to express the application-level parallelism. The quest for
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growing performance under a strict power budget has led
to the introduction of much more complex processors with
multiple levels of parallelism.
Indeed a simple way to improve the performance of pro-
cessors is to use Data Level Parallelism to process several
data at the same time with a single instruction. This idea
was first developed for supercomputers in the form of vector
processors, but is now implemented in almost all processor
architectures as a dedicated SIMD (Single Instruction onMul-
tiple Data) unit.
Leveraging emerging chips with wide SIMD units requires
significant transformation in the data-layout and the organi-
zation of the computation.
Several solutions are available: 1) using compilers to automat-
ically transform a scalar code into a vectorized one, 2) using
compiler intrinsics which are binded to assembly instruc-
tions, 3) using optimized libraries such as MKL, LAPACK,
FFTW or Arch-R. In this paper we focus on x86 AVX2 and
AVX-512 units, since AVX2 is supported by Intel Broadwell
processors used in a lot of supercomputers and since AVX-
512 supported by Intel Skylake processors is promoted as
the upcoming standard.
Theoretically, AVX2 and AVX-512 units may allow respec-
tively a speedup of 8 and 16 when computing 32-bit floating
point values. To attain the best speedup with SIMD units,
one has to respect several constraints: 1) exhibiting a SIMD
computation pattern 2) accessing contiguous data, 3) correct
data alignment, 4) Structure of Array (SoA) or Array of Struc-
ture of Array (AoSoA) layouts. Of course, compute-bound
codes are more likely to reach the theoretical peak speedup.
Depending on the considered architecture, some constraints
may be more or less prevalent. The first constraint is obvious,
if the same instruction cannot be applied to some data then
the code is not vectorizable (except for some addsub instruc-
tions). A consequence of this constraint is that branches need
to be replaced by masked instructions.
Then, data need to be stored contiguously since a single
SIMD load instruction is able to read up to 256-bit (resp. 512-
bit) of data when using the AVX2 (resp. AVX-512) unit. It is
possible to access to non-contiguous data using gather and
broadcast intrinsics. Data also have to be aligned in memory
as required by the SIMD unit. For example, the AVX unit
requires data to be aligned on 32-byte boundaries. It is of
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course possible to access unaligned data, however, it implies
an additional cost. Finally, data have to be organized with a
suitable layout to avoid extra data reorganization inside the
SIMD registers.
In this paper, we study the EFISPEC3D seismic wave propaga-
tion software package [8] based on a Spectral Finite-Element
Method (SFEM). We have extracted a proxy from the full
application corresponding to the computation of the internal
forces (almost 90% of the elapsed time). This strategy allows
us to smoothly evaluate our vectorization strategy by rewrit-
ting this intensive section of the code in C++.
The remainder of this paper is organized as follows. In the
next section, the related work is described. In section 3, we
discuss the fundamentals of seismic wave propagation and
the EFISPEC code is introduced. Then, in section 4 we in-
troduce the proxy application and its SIMD implementation.
In section 5, we present the results obtained with the proxy
application. Finally, we conclude this study and present some
future work.

2 Related work
From the numerical point of view, several methods have
been successfully used for the simulation of elastic wave
propagation in three-dimensional domains. Finite-difference
methods (FDM), classical or spectral finite-element methods
(FEM and SFEM) have been introduced last few years for this
class of problems. Interested readers could refer to [19] for
further details on these approaches.
From the HPC point of view, one major challenge is to lever-
age the various levels of parallelism currently available. If
we consider the parallel performance at large scale, several
recent research papers ([2, 22, 26]) have reported very good
scaling for explicit parallel elastodynamics applications (up
to several tens of thousands of cores). Whatever the numeri-
cal method implemented, the rather dense numerical kernel
alongwithMPI point-to-point communications explain these
performances. Significant works have also been made to ex-
tend this parallel results on heterogeneous and low-power
processor ( [3, 11]).
Regarding parallel FEM assembly on shared-memory archi-
tectures, the numerical scheme requires to gather values
computed at the element-level based on an indirection ar-
ray. These irregular memory accesses dramatically reduce
the opportunity to reuse data at the cache memory level.
For instance, optimized implementations have been intro-
duced on GPGPU [5, 16, 21]. Most of these approaches im-
plement mesh coloring strategy and fully benefit from the
memory bandwidth available on the underlying architec-
ture. Additionally, various multicore-aware implementations
have been described (for instance in [1, 10, 12]). These pa-
pers underline the need for advanced reorganization of the
computation at the algorithmic level (Cuthill-McKee graph
traversal [7]) or at higher level (task-based runtime systems

for instance). This latter option is described in [25] with the
implementation of a divide and conquer algorithm that ex-
ploits Intel Cilk multithreading library. If we focus on SIMD
only optimizations, the compiler performance plays a ma-
jor role in the works previously described. Unfortunately,
recent studies have underlined the limited impact of auto-
matic vectorization [14, 15, 23]. Indeed, this strategy may
not be sufficient to squeeze the optimal performance out of
the underlying architecture.

3 EFISPEC: Spectral finite element solver
3.1 Spectral-element method
The spectral-element method (SEM) appeared more than 20
years ago in computational fluid mechanics [9, 17, 20]. The
SEM is a specific formulation of the finite-element method
for which the interpolated points and the quadrature points
of an element share the same location. These points are the
Gauss–Lobatto–Legendre (GLL) points, which are the p + 1
roots of (1 − ξ 2)P ′

p (ξ ) = 0, where P ′
p denotes the derivative

of the Legendre polynomial of degree p and ξ coordinate in
the one-dimensional reference space Λ = [−1, 1].
The generalization to higher dimensions is done through
the tensorization of the one-dimensional reference space.
In three dimensions, the reference space is the cube □ =
Λ × Λ × Λ (see Fig. 1).
The mapping from the reference cube to a hexahedral ele-
ment Ωe is done by a regular diffeomorphism Fe : □→ Ωe .
In a finite-element method, the domain of study is discretized
by subdividing its volume Ω into welded non-overlapping
hexahedral elementsΩe , e = 1, . . . ,ne such thatΩ = ∪

ne
e=1Ωe .

The elements Ωe form the mesh of the domain. On the one
hand, each element Ωe has a local numbering of the GLL
points ranging from 1 to p + 1 along each dimension of the
tensorization. On the other hand, the mesh has a unique
global numbering ranging from 1 to N . The mapping from
the local numbering to the global numbering is the so-called
"assembly" phase of all finite-element calculations.
Each GLL point of an element Ωe is redirected to a unique
global number, ∀Ωe . When multiple elements share a com-
mon face, edge or corner, the assembly phase sums the local
GLL value into the global numbering system. In this article,
the problem of interest is the equation of motion whose weak
formulation is given by∫
Ω
ρwT ·udΩ =

∫
Ω
∇w : τ dΩ−

∫
Ω
wT · f dΩ−

∫
Γ
wT ·TdΓ

where Ω and Γ are the volume and the surface area of the
domain under study, respectively; ρ is the material density;
w is the test vector; u is the second time-derivative of the
displacement u; τ is the stress tensor; f is the body force
vector and T is the traction vector acting on Γ. Superscript
T denotes the transpose, and a colon denotes the contracted
tensor product.
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Figure 1. Referenced cube with (4 + 1)3 = 125 GLL points.

Our study focuses on the internal forces defined by (see
[13]) ∫

Ωe

∇w : τ dΩe ≈

p+1∑
α=1

p+1∑
β=1

p+1∑
γ=1

3∑
i=1

wα βγ
i ×

[
ωβωγ

p+1∑
α ′=1

[
ωα ′J

α ′βγ
e

3∑
j=1

[
τ
α ′βγ
i j ∂jξα ′

]
ℓ′α (ξα ′)

]
+ωαωγ

p+1∑
β ′=1

[
ωβ ′J

α β ′γ
e

3∑
j=1

[
τ
α β ′γ
i j ∂jηβ ′

]
ℓ′β (ηβ ′)

]
+ωαωβ

p+1∑
γ ′=1

[
ωγ ′J

α βγ ′

e

3∑
j=1

[
τ
α βγ ′

i j ∂jζγ ′

]
ℓ′γ (ζγ ′)

] ]
(1)

with τ the stress tensor (= c : ∇u); Jα ′βγ
e the jacobian of an

element Ωe at the GLL points α ′βγ ; ωλ integration weight
at the GLL point λ; ξ ,η, ζ local coordinates along the three
dimensions of the reference cube; ℓ′λ derivative of the La-
grange polynomial at the GLL point λ. c is the elastic tensor
and ∇u is the gradient of the displacement defined by

∂iuj
(
ξαηβζγ

)
=

[p+1∑
σ=1

u
σ βγ
j ℓ′σ (ξα ) ∂iξα βγ

]
+

[p+1∑
σ=1

u
ασγ
j ℓ′σ (ηα ) ∂iηα βγ

]
+

[p+1∑
σ=1

u
α βσ
j ℓ′σ (ζα ) ∂iζα βγ

]
3.2 Implementation
3.2.1 Element storage and numberings
Since the considered meshes are unstructured with multiple
refinements (see Fig. 2), the indirection from local to global
numberings can not be expressed in a closed-form expres-
sion. A common approach to switch from local to global

numberings is the use of an indirection array, as shown in
figure 3: given the element number and the local GLL num-
ber (from 0 to (p + 1)3 − 1), the array returns the global GLL
number. In figure 3, the first two elements are neighbours
and share common global GLL numbers (4, 9, 14, ...). In ad-
dition, each global GLL number is a computational point
where physical values are associated (such as, displacement
in the x ,y, z-directions).

Figure 2. Example of unstructured mesh generated by CU-
BIT meshing tool and used by EFISPEC3D code to solve the
equation of motion.

GLL

0    1    2    3    4

5    6    7    8    9

10  11  12  13  14

...

Global
GLL indices

GLL associated
physical values

element 0
0 1 2 3 4 5 6 7 8 9 ... 4 125 ...

element 1

GLL 0
X0 Y0 Z0 X1 Y1 Z1 ...

GLL 1

element 0 element 1 element 2

4 125 126 127 128

9   ...

14  ...

...

Figure 3. Storage of the elements and their GLLs.

3.2.2 Internal forces computation kernel
The main loop of the kernel iterates over elements. For each
element the following three steps are performed:

1. gathering: GLL values of an element are copied into a
local array,

2. internal forces computation,
3. assembly: contributions of the element are added into

a global array.
Each step consists in traversing the GLLs of the element,

thus it is implemented using three nested loops which iterate
3
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over the element dimensions. The first and second steps may
be merged by replacing accesses to the local array in the
computation step by global accesses. However, this imple-
mentation is not as fast since arithmetic instructions have to
wait for the completion of load instructions from memory.
The chosen implementation on the other side stores all the
GLLs into a local array which fits into the L1 cache.

The internal forces computation code is derived from equa-
tion 1. It consists in traversing each element along its three
dimensions and compute each GLL contribution in a local ar-
ray. It requires to access some GLL points parameters stored
in different arrays like integration weights and derivatives
of the Lagrange polynomial. It is composed mainly of multi-
plications and additions which may be translated into Fused
Multiply Add (FMA) instructions by the compiler on current
architectures.

The assembly step consists in adding local GLL contribu-
tions to the corresponding global array.

4 Vectorization of the EFISPEC mini-app
Prior to considermanual vectorization, several attempts were
made on the Fortran code to optimize the computation of
the elements and to enable automatic vectorization. SIMD
pragmas were added, arrays were aligned accordingly to the
SIMD instruction set considered, and loops were reorganized,
but none of these modifications allowed the compiler to
completely vectorize the nested loops.

4.1 Manual vectorization approach
Since the same computation is applied to all the elements,
we propose to manually vectorize the external loop iterating
on elements. With AVX2 it is possible to handle 8 elements at
the same time. Figure 4 illustrates the proposed vectorization
approach. Thus, the three internal loops iterating on GLLs
are kept unmodified, only the external loop needs to iterate
by the number of 32-bit floating point values available in
a SIMD register. This approach has the advantage to keep
the instructions organized as in the scalar version. We now
present how this choice is implemented for the three different
parts of the element computation.

scalar computation: elements are processed sequentially

GLL

vectorized local computation of 8 elements at the same time

Figure 4. Scalar and vectorized approaches to process ele-
ments.

4.1.1 Gathering
As described above, each element is composed of 125 GLLs
which have to be gathered into a local array before starting
the local computation. The AVX2 version of this step con-
sists in gathering 8 times more elements (resp. 16 times for
AVX-512). In EFISPEC, global GLL indices of elements are
stored in an array called ig_hexa_gll_glonum. This array
starts with the 125 indices of the first element GLLs, then
those of the second element, and so on. For the computation,
the code needs to load in the local array the first GLL of the
8 first elements, but their indices are not stored contiguously.
A solution available since SSE is to use a set intrinsics which
gathers data of an array from the indices given as its argu-
ments. Since AVX2, a gather intrinsics is available which
gathers data from indices stored in a SIMD register. In this
case we need to reorder the indices by interleaving them and
correctly align the array. This step may be performed when
the array is generated thus it may not involve an overhead.

4.1.2 Internal forces computation
As discussed in section 3.2.2, the internal forces computation
requires to access some GLL parameters. For parameters
which are the same for GLLs at the same position in each
element, we use a set1 intrinsics which sets all the SIMD
register values to the same value. For specific GLLs parame-
ters stored in an AoS layout, we use a set intrinsics which
takes eight values (non contiguous in our case) as parameters
and assembles them into a SIMD register. We also propose to
reorder them into an SoA layout to improve the data locality
so we can use aligned load intrinsics instead which sim-
plifies the code and may provide better performance since
contiguous data are loaded.
The computation itself is straightforward to vectorize

since all the scalar arithmetic instructions used in the original
code have their SIMD counterparts. Moreover, compilers pro-
vide overloaded arithmetic operators for SIMD types. Thus,
the vectorized version of this step differs from the original
one only by the presence of set, set1 and loads intrinsics.

4.1.3 Assembly
The AVX2 instruction set does not provide scatter intrin-
sics to store local contributions into the corresponding global
array. As a consequence, the assembly step can not be vec-
torized and is kept unmodified.

The AVX-512 instruction set provides a scatter intrinsics
but, when using it, concurrent writes may occur depending
on the way contributions are stored. Indeed, some elements
may be arbitrarily rotated during the generation of unstruc-
tured meshes. In figure 5, the first two configurations are
conflict-free since SIMD units are synchronous. The last con-
figuration is one possible conflicting configuration which
occurs when one of two contiguous element is rotated. In
this case, the same GLL (in blue) may be loaded twice within
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the same SIMD register. Thus, after the vectorized internal
forces computation, the two contributions of the same GLL
for each element may be stored in the same place. Note that,
it only concerns GLLs at the corner, middle of edges or faces
of contiguous elements. This configuration may be detected
on the fly using conflict detection intrinsics available in the
AVX-512CD subset. However, it adds a computation over-
head and is not a portable solution. We propose two generic
solutions to this problem. The first one consists in always
storing contributions sequentially. This is the default ap-
proach when using AVX2 or older units (AVX and SSE) since
no scatter intrinsics is available. However, this increases the
verbosity of the code and may be not optimal when using
AVX-512. The second and most general solution is to add a
pre-processing step to detect this configuration, and permute
or rotate elements if necessary. This is the chosen solution
for our proxy application.

non-contiguous elements:
no conflict

contiguous elements:
no conflict

contiguous rotated elements:
conflict

Figure 5. Conflict-free and conflicting configurations of ele-
ments.

4.2 AVX2 and AVX-512 implementations
Since most compilers provide overloaded arithmetic oper-
ators for intrinsics, it is possible to keep the syntax close
to the scalar one. Only the load and store intrinsics are left
visible in the code. AVX2 and AVX-512 versions are similar
except for the intrinsics prefix and for the assembly part.

4.3 Proxy application versions
Different versions of the proxy application were developed to
study and compare the performance brought by data-layout
modifications and vectorization.
The proxy application, called fort-local, was first de-

veloped in Fortran to verify its correctness and behaviour
with the original EFISPEC code, and to serve as a refer-
ence for further developments. This version was in turn

translated into C++. It is called c++-local. Then two ex-
plicitly vectorized (AVX) versions were developed: the first
one, c++-local-avx, with the local array and the second
one, c++-avx, without the local array as discussed in sec-
tion 3.2.2. It allows to measure the benefit of the local array
on the performance. Finally, three different versions were
proposed: c++-local-avx-soa, c++-local-avx2-soa and
c++-local-avx512-soa, with data-layouts converted from
AoS to SoA combined respectively with AVX, AVX2 and AVX-
512 intrinsics. In this case we can study the impact of gather
intrinsics brought by AVX2 and also the speedup brought by
a larger AVX-512 unit. All the results are presented in the
next section.

5 Experimentations
5.1 Experimental setup
We propose to use three different compilers: g++ 7.2, icpc
18.0, clang 5.0, to compare their ability to optimize the
codes. We use the gfortran and ifort Fortran compilers.
All codes are compiled with the -O3 optimization flag which
also enables the compiler auto-vectorization process. The
-march=native flag is also added to adapt the compilation
to the architecture by enabling the support for the available
SIMD unit and the FMA instructions.

Broadwell Skylake
Processor Intel Xeon E5-2699 v4 Intel Xeon Gold 6148
# of cores 22 20
Base freq. 2.2 Ghz 2.4 Ghz
Turbo freq. 3.6 Ghz 3.7 Ghz
AVX freq. 1.8 Ghz (AVX) 1.6 Ghz (AVX-512)
L2 256KB 1024KB
L3 28MB 28MB

Table 1. Details on the Intel Broadwell and Skylake proces-
sors used.

Two processors are considered based on two different Intel
architectures: Broadwell and Skylake. The details of both
processors are given in table 1. To avoid variability of the
core frequency, the turbo mode is disabled. Note that, on
both architectures, the core frequency when executing AVX
and AVX-512 instructions is lower than the base frequency.

Tests are performed on the same data set containing 40,000
elements.

5.2 Results
Results are shown in table 2. We discuss the results following
the order in which versions were developed.

Fortran vs C++: We first observe that the Fortran and C++
versions are better optimized by icpc than by g++. An anal-
ysis of the assembly code generated by icpc shows that the
code is partially vectorized. However, icpc is not able to

5
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g++-7.2 icpc-18.0 clang-5.0
Bdw / Skl Bdw / Skl Bdw / Skl

fort-local 755 / 629 282 / 225 -
local 682 / 559 367 / 294 716 / 654
avx 335 / 287 269 / 220 388 / 316
local-avx 233 / 195 152 / 122 251 / 203
local-avx-soa 217 / 190 141 / 119 257 / 206
local-avx2-soa 216 / 191 150 / 119 251 / 205
local-avx512-soa — / 157 — / 99 — / 153

Table 2. Execution times (ms) for the different proxy-
application versions.

optimize the C++ version to the same level of the Fortran
version. The assembly code also shows some AVX instruc-
tions but it is organized very differently. The C++ code is
around 10% faster with g++, and 30% slower with icpc on
both architectures.

Scalar/Auto-vectorization vs AVX intrinsics: To deter-
mine the benefit brought by manual code vectorization, we
compare the results for the local and the local-avx ver-
sions. Even if the local version may be partially vectorized
by the compilers, the manual vectorization is far more effi-
cient. We achieve a performance improvement of 65% with
g++, 58% with icpc on both architectures, and of 65% on the
Broadwell and 69% on the Skylake with clang.

Direct vs local access toGLLs: As explained in section 3.2.2,
gathering GLLs in a local array prior to the computation
provides better performance than accessing GLLs from the
global array during the computation. We can also verify it for
the AVX version by comparing the avx and the local-avx
versions. With g++, icpc and clang, the local-avx version
is respectively 30%, 42% and 45% faster than the avx version
on both architectures.

AoS vs SoA: Transforming the data-layout from AoS to
SoA does not improve significantly the performance. When
comparing the local-avx and local-avx-soa versions, we
observe at most 5% more performance with g++ and icpc on
the Broadwell architecture and no significant improvement
on the Skylake architecture. Note that, it simplifies the code
by replacing set intrinsics which take eight arguments (the
values to put in an AVX register) by load intrinsics which
take only one argument (the address where to load eight
contiguous values).

AVX vs AVX2: Using AVX2 intrinsics for gathering GLLs
values does not bring any performance advantage. How-
ever, it also highly simplifies the code by replacing the set
intrinsics with gather intrinsics.

AVX2 vs AVX-512: We compare the local-avx2-soa and
the local-avx512-soa versions for the Skylake architec-
ture which supports the AVX-512 instruction set. Note that

the considered processor is an Intel Xeon Gold 6148 which
contains two AVX2 ports and an AVX-512 port. When an
AVX-512 instruction is processed, it can be sent to the AVX-
512 port or divided into two AVX2 instructions, each one
sent to a different AVX2 port. This is not the case for Sky-
lake processors from the Silver serie which do not have a
dedicated AVX-512 port. Thus, with the considered Skylake
processor we can expect a speedup of two when moving
from AVX2 to AVX-512. However, results show that we only
obtain around 17% more performance with g++ and icpc
and 25% with clang, which means that the memory bus is
not able to sustain the demand of the AVX-512 unit.

Overall speedup: On both platforms, the best performance
is obtained with the code compiled with the icpc compiler.
On the Broadwell platform, a speedup of 2 is achieved by
manually vectorizing the code using AVX intrinsics over the
original Fortran code. On the Skylake platform, a speedup
of 2.27 is achieved by using AVX-512 intrinsics. The ben-
efit obtained with AVX-512 over AVX is far less than the
theoretical speedup of two, which confirms that we have
reached a memory bottleneck and that no further significant
improvement may be obtained by further vectorization.

6 Conclusion and future work
The manual vectorization of our proxy application is able to
provide at least a speedup of 2 on current architectures over
the original Fortran version. Note that, this is not the speedup
brought by the sole vectorization since the original version
is already partially vectorized by compilers. However, the
low speedup of the AVX-512 version over the AVX2 version
confirms that vectorization can not be exploited at its best
level in our case. This is an expected result since only the
internal forces computation exhibits a SIMD friendly pattern.
The programming effort for the vectorization process is

relatively low. The difficulty resides in identifying the SIMD
pattern and adapting the memory accesses. The vectorized
implementation keeps the same code organization as the
Fortran version, only some intrinsics are required to load
and store data.
We consider several directions for the future. The first

one is the integration of the proxy application back into
the EFISPEC application. Since it represents 90% of the full
application and since we achieve a speedup of 2, we can
expect a global speedup of 1.8. The second one consists in
studying new data layouts to improve the memory locality
since memory is the main bottleneck. The intra-node scala-
bility of the EFISPEC application may also be improved by
replacing MPI with OpenMP. The proxy application may
be extended to study multithreading strategies. We finally
plan to develop a Domain Specific Language (DSL) for FEM
solvers to completely hide the intrinsics and abstracting the
data layout thus helping the developer concentrate on the
internal forces computation.
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