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ABSTRACT

Many applications dedicated to urban areas (e.g. land cover mapping and biophysical
properties estimation) using high spatial resolution remote sensing images require the use of
3D atmospheric correction methods, able to model complex light interactions within urban
topography such as buildings and trees. Currently, one major drawback of these methods is
their lack in modelling the radiative signature of trees (e.g. the light transmitted through the
tree crown), which leads to an over-estimation of ground reflectance at tree shadows. No
study has been carried out to take into account both optical and structural properties of trees in
the correction provided by these methods. The aim of this work is to improve an existing 3D
atmospheric correction method, ICARE (Inversion Code for urban Areas Reflectance
Extraction), to account for trees in its new version, ICARE-VEG (ICARE with VEGetation).

! Present address : CNRM, Météo-France/CNRS, 31057 Toulouse, France
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After the execution of ICARE, the methodology of ICARE-VEG consists in tree crown
delineation and tree shadow detection, and then the application of a physics-based correction
factor in order to perform a tree-specific local correction for each pixel in tree shadow. A
sensitivity analysis with a design of experiments performed with a 3D canopy radiative
transfer code, DART (Discrete Anisotropic Radiative Transfer), results in fixing the two most
critical variables contributing to the impact of an isolated tree crown on the radiative energy
budget at tree shadow: the solar zenith angle and the tree leaf area index (LAI). Thus, the
approach to determine the correction factor relies on an empirical statistical regression and the
addition of a geometric scaling factor to account for the tree crown occultation from ground.
ICARE-VEG and ICARE performance were compared and validated in the Visible-Near
Infrared Region (V-NIR: 0.4-1.0um) with hyperspectral airborne data at 0.8m resolution on
three ground materials types, grass, asphalt and water. Results show that (i) ICARE-VEG
improves the mean absolute error in retrieved reflectances compared to ICARE in tree
shadows by a multiplicative factor ranging between 4.2 and 18.8, and (ii) reduces the spectral
bias in reflectance from visible to NIR (due to light transmission through the tree crown) by a
multiplicative factor between 1.0 and 1.4 in terms of spectral angle mapper performance.
ICARE-VEG opens the way to a complete interpretation of remote sensing images (sunlit,
shade cast by both buildings and trees) and the derivation of scientific value-added products

over all the entire image without the preliminary step of shadow masking.

1. Introduction

The potential of hyperspectral remote sensing imagery with high spatial resolution in
the reflective domain 0.4-2.5um has long been studied to increase the characterization of
surface materials for ecosystem monitoring (\Wulder et al., 2004), and particularly for urban
environments (Jensen and Cowen, 1999; Small, 2001; Puissant and \Weber, 2014), such as for
vegetation biodiversity assessment (Alonzo et al., 2014), road traffic monitoring (Rosenbaum
et al., 2010) and land cover classification (Roessner et al., 2001). For urban applications, one
major limitation comes from the complex topography of urban landscapes combined with low
solar elevation, which induces many shaded pixels in aerial and satellite images at high spatial
resolution. In image processing, shaded region areas are often neglected, with shadows
classified as a material class (Dell’Acqua et al., 2005; Yuan and Bauer, 2006) or used to
retrieve the dimensions of nearby buildings (Liow and Pavlidis, 1990).
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The processing of shadows involves both shadow detection (Adeline et al., 2013a) and
shadow correction (Shahtahmassebi et al., 2013). For shadow correction purposes, two main
categories of methods can be examined. The first includes de-shadowing methods using
multisource data fusion or applying a radiometric enhancement correction to "re-light™" shaded
pixels generally based on histogram adaptation strategies (Dare, 2005). Although sufficient
for coarse classification of urban material types, it is unsatisfactory for the intra-class
variability quantification and the retrieval of physico-chemical properties of surface materials,
which requires the accurate spectral reflectance of each material. The second category of de-
shadowing methods uses atmospheric correction codes to convert at-sensor radiance into
reflectance units. They are physics-based methods which correct the radiometrical bias
occurring in shaded pixels by considering atmospheric conditions and sometimes the scene
3D topography (e.g. Digital Surface Model - DSM or a vector model). To our knowledge,
only a few atmospheric correction codes are adapted to urban environments: the semi-
empirical model of Chen et al., 2013, ICARE (Inversion Code for urban Areas Reflectance
Extraction, Lachérade et al., 2008) and ATCOR-4 (Atmospheric/topographic correction for
airborne imagery, Richter and Schlapfer, 2002). However, only the two last codes can achieve
an exact calculation of the 3D radiative terms to retrieve surface reflectance.

ATCOR-4 is currently the most used atmospheric correction code by the scientific
community that has been tested for a large panel of hyperspectral airborne sensors over the
spectral range 0.4-2.5um. For a flat terrain composed of lambertian materials (i.e.
corresponding to an isotropic light reflection), ATCOR-4 performance achieves an error in
the retrieved reflectance of 0.02 and 0.04 for an initial reflectance of less than 0.10 and 0.40,
respectively (Rese ATCOR-4 User Guide; Richter and Schlapfer, 2002). For a rugged terrain,
ATCOR-4 performance is not quantified since it strongly depends on the DSM accuracy and
the registration between the image and the DSM (Rese ATCOR-4 User Guide; Schldpfer et
al., 2000). An improved version of ATCOR named BREFCOR is able to correct the effects of
bidirectional reflectance distribution function of materials (Schlapfer et al., 2015). ICARE is a
3D atmospheric correction method dedicated to urban areas with lambertian materials. It was
initially developed to process airborne multispectral images acquired by the PELICAN image
system (Duffaut and Deliot, 2005) with spectral bandwidth of 30nm at a spatial resolution of
20cm, and with limited spatial extent. Its performance showed a maximum peak to peak
accuracy of 0.04 in the retrieved reflectance for eight spectral bands from 420 to 917nm and
for pixels located in shadows cast by buildings (Lachérade et al., 2008). Currently, ICARE is

being improved to process hyperspectral images. The improved method named ICARE-HS
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(ICARE using HyperSpectral imagery) was tested with airborne HySpex hyperspectral data
with 160 spectral bands in the Visible-Near Infrared (V-NIR: 0.4-1.0um) at a spatial
resolution of 80cm (Ceamanos et al., 2017). The performance of this new ICARE version was
not quantitatively validated.

Atmospheric correction codes succeed in modeling opagque objects governed by
absorption and reflection processes (e.g. buildings). However, the main issue lies in the lack
of modeling of transmittance processes resulting from semi-transparent and transparent
surfaces (e.g. trees and windows). For trees, ATCOR-4 and ICARE neglect the fraction of the
incident solar radiation that is transmitted through tree crown, thus generating a bias in the
retrieved reflectance in tree shadows (Adeline et al., 2012; Schlapfer et al., 2013; Damm et al,
2015). Actually, the under-estimation of total irradiance in the shade produces an over-
estimation of retrieved reflectance, which is higher in the NIR bands than in the visible with a
transition close to the red-edge (Adeline et al., 2012; Damm et al, 2015). With ICARE,
Adeline et al., 2012 showed that the retrieved reflectance in tree shadows compared to their
counterpart in sunlit areas for the same material type (asphalt and grass) gave mean root mean
square error values up to 0.09. With ATCOR-4, Damm et al, 2015 showed that an inaccurate
estimation of irradiance can lead to a difference in tree shadows in NDVI values (Normalized
Difference Vegetation Index; Rouse, 1974) up to 13% and in PRI values (Photochemical
Reflectance Index; Gamon et al., 1992) up to 32% for some test scenarios over grass. One of
the required steps to solve this issue is to carry out a sensitivity analysis in order to know
which tree canopy parameters, both spectral (e.g. optical properties of leaves and wood) and
structural (e.g. leaf area index, leaf angular distribution, clumping, tree dimensions) have the
most impact on light transmission through the tree crown. To our best knowledge, such an
analysis has not been performed yet for radiative transfer budget estimation.

The objective of this work is to improve the existing 3D atmospheric correction code
ICARE to cope with the presence of trees. The new version is further named ICARE-VEG
(ICARE with VEGetation). It is based on the building of a physics-based correction factor to
apply to ICARE’s outputs in order to provide a better estimation of surface reflectance in tree
shadows. The challenge is to define a general correction baseline adapted to any urban trees
and requiring a small number of relevant variables to study. To this end, ICARE-VEG relies
on the decoupling between a spectral reference correction based on a "reference tree model”
with fixed geometrical dimensions, and a spatial correction accounting for the real dimensions
of the tree processed in the image. The spectral reference correction is built from the results of

a sensitivity analysis based on a design of experiments to derive the most important factors

4



contributing to light transmission through the tree crown. The spatial correction factor is
computed from the tree dimensions and the location of the pixel within the tree shadow. At
last, ICARE-VEG only considers deciduous trees with green healthy leaves and surfaces with
a lambertian spectral behaviour.

This paper is organized as follows. Section 2 introduces the physical principles of
radiative transfer modeling for ICARE-VEG. Section 3 describes each step implemented in
ICARE-VEG. Section 4 presents the airborne and field data used for validation. Finally, the
performance of ICARE-VEG for surface reflectance retrieval in tree shadows is presented in

section 5. Conclusion and perspectives are given in section 6.

2. Physical modeling for ICARE-VEG

For a given wavelength A in the optical domain 0.4-2.5um, the surface reflectance p of
a target is derived from the direct upwelling radiance R coming from the target and
reaching a given pixel of the sensor detector matrix, the total downwelling irradiance
received at ground, and the upwelling direct atmospheric transmission (Fig. 1; Lacherade
et al., 2008) such as:

- (1)
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Fig. 1. Taxonomy of the radiative transfer components for ICARE (IC) and ICARE-VEG
(ICV) for an urban scene and for a target a) in the sun, b) in a building shadow and c) in a tree

shadow.

In urban environment, the radiative components R ;,- and I;,; are highly sensitive to
the complex 3D topography inducing downwelling and upwelling multiple reflections on
surrounding surface elements, and to local atmospheric multiple scattering. The total at-sensor
radiance, , Is the sum of the direct radiance, , the environment radiance due to the
atmospheric light scattering, , and the atmospheric radiance (the so-called path radiance),

(Fig. 1). Also, the total irradiance, , is the sum of the direct solar irradiance, 14, the
atmospheric diffuse solar irradiance, , the irradiance due to scattering by the surrounding

environment, , and the earth-atmosphere coupling irradiance, /.4y, (Fig. 1).

ICARE (noted IC) considers that surfaces have lambertian reflectances and the
viewing direction is Nadir. The surface spectral bidirectional reflectance for any pixel P at the
wavelength 4 is simply named p(P, 1). ICARE analytically determines the surface reflectance

for a pixel A in a sunlit region (Fig. 1a) with:



)

For a pixel B in any shaded region (Fig. 1b), ICARE assumes to be null, leading to

the following expression:

@)

This reflectance determination for is only valid for shadows cast by opaque

surface materials such as buildings. In shaded regions cast by trees, however, the incoming

light transmitted through tree crowns, , must be considered in addition to (Fig. 1c).
The term can be split into , the light directly transmitted without interactions with
the tree elements, and , the light that is transmitted after at least one scattering with

crown elements, either leaves or woody stems (Fig. 1c). Consequently, Eq. 3 needs to be
modified for a pixel C in tree shadow with a more accurate estimation of total irradiance

received at ground, ,suchas:

with (4)

The goal of ICARE-VEG (noted ICV) is to update ICARE retrieved surface
reflectance to cope with tree shadows. It requires to solve Eqg. 4 from Eq. 3 with the
introduction of a physics-based correction factor £ which is the ratio between the transmitted

light, , and the total irradiance computed by ICARE, , with the following expression:

— with _ (5)

The factor £ depends on the wavelength A, and the solid angle Q under which the tree
crown that casts the shadow is seen from any pixel C in the shadow. The analytical

determination of g is not straightforward due to both the spectral and spatial dependence of
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the ratio . Here, the main assumption is that the spectral and spatial response of

can be linearly decorrelated. Thus, S is decomposed as follows:

—— with _— (6)

is the mean spectral response of  according to a "reference tree model” with
fixed geometric dimensions. is further called the reference correction factor. It is

associated with a reference solid angle : is the solid angle at the location of the pixel

C for the real geometrical dimensions of the tree in the scene.

3. ICARE-VEG method implementation

The semi-automatic ICARE-VEG correction code is structured as depicted in Fig. 2.
The original ICARE code is executed as a preliminary step (section 3.1). Individual trees and
their associated shadows are then identified to perform a tree-specific local correction for each
pixel in tree shadow (sections 3.2 and 3.3). The physics-based correction factor B (section 3.4)
is divided into the determination of the reference correction factor (section 3.4.1) and the
solid angles, and (section 3.4.2). is evaluated in 3 steps. They rely on a
"reference tree model" with fixed geometrical dimensions to study how is impacted by
tree crown biophysical and structural variables, and other external variables. For that purpose,
the DART 3D radiative transfer code is used to simulate light interactions within a tree crown
(Discrete Anisotropic Radiative Transfer; Gastellu-Etchegorry et al, 1996). The results are
stored in a look-up table and a sensitivity analysis aims at defining the major variables
required to assess (section 3.4.1.1). Then, these major variables are derived from the
processed image (section 3.4.1.2) and they are used to empirically compute thanks to
statistical multivariate strategies (section 3.4.1.3). At last, ICARE-VEG correction provides
an improved reflectance retrieval for the pixels in tree shadows, while pixels in the sun and in

the shadow of buildings are not updated from ICARE outputs (section 3.5).
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Fig. 2. ICARE-VEG method workflow (3.1 existing ICARE method, from 3.2 to 3.5 new
developments presented in this paper, highlighted by bold boxes).

3.1. Atmospheric correction by ICARE



ICARE (Lachérade et al., 2008) requires 3 inputs: an at-sensor image expressed in
spectral radiance unit, a DSM and the geometry conditions (e.g. flight altitude, sensor spatial
and spectral characteristics, sun and viewing angles) and the atmospheric conditions.
Atmospheric radiative components are computed with the radiative transfer code 6SV

(\Vermote et al., 1997). The output is an image of spectral surface reflectance.
3.2. Tree crown delineation

Two consecutive image segmentations are performed for delineating the individual

tree crowns: detection of tree clusters, and separation of individual tree crowns in each cluster
(Fig. 3).

ICARE reflectance NDVI histogram vegetation
image image thresholding mask

___/— ) i B

high vegetation region tree label
growing
mask " mask
( segmentation
Digital Surface .| histogram DSM [

Model (DSM) 'L thresholding

mask

0
Gaussian

smoothing
~—

Fig. 3. Flowchart of the individual tree crown delineation.

First, pixels of vegetation are extracted in the image by computing the NDVI with the
red band at 670nm and the NIR band at 800nm. The histogram of the NDVI image is
thresholded with the bimodal technique of Otsu (1979) to create a binary vegetation mask.
Then, a refinement step uses the DSM to separate high vegetation (e.g. trees) and low
vegetation (e.g. grass). The histogram of the DSM image is classified with a user-defined
threshold based on the minimum tree height the user wants to consider. The overlap between
the resulting DSM mask and the vegetation mask generates the high tree vegetation mask (i.e.
tree clusters location).

Afterwards, individual tree crowns are delineated within each tree cluster. Zheng et al.,
2016 give a relevant review of long studied techniques in the literature. The most used
technique is rasted-based using extrapolation, interpolation and smoothing procedures for
treetop detection and crown segmentation. First, the DSM mask is smoothed with a Gaussian
filter in order to flatten the strong irregularities on top of tree canopies. Second, a region

growing segmentation based on the method of lovan et al. (2014) is used to delineate the tree
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crowns. In short, the method detects local maxima in the DSM from the high vegetation mask,
attributes a tree label to each treetop, and then performs a gradient descent technique to give a
tree label to all pixels in the high vegetation mask. This step provides a tree label mask.

To avoid the detection of several treetops for the same tree, an adjacency condition
sets the minimum distance between two treetops. This distance, expressed in a number of
pixels, essentially depends on the image spatial resolution. The tree label mask is refined with
two other criteria. The first removes trees with very small crowns, using a minimum number
of pixels per tree label. The second one eliminates tree crowns that are partially in the shade
of other trees or buildings. For that, it uses a maximum percentage of shaded pixels for a tree

crown.
3.3. Tree shadow detection

The identification of tree shadows is twofold: detection of all the shadows in the image

and assignation of tree labels for tree shadows pixels (Fig. 4).

at-sensor radiance intensity histogram morphologlcal global shadow
image image thresholding closing filter mask
Digital Surface 4| tree shadow ‘( region growing tree label shadow

Model (DSM) g framing 'L segmentation mask
T r

Acquisition and
atmospheric tree label
conditions mask

Fig. 4. Flowchart of the individual tree shadow detection.

First, the shadow mask is created using an intensity image (noted I) computed from
the combination of four radiance (R) spectral images (B: 470nm, G: 550nm, R: 670nm and
NIR: 800nm):

[ = ZX(RNIR'HZR)"'RB"'RV (7)

A global shadow binary mask is derived from this intensity image by histogram
thresholding following the first valley detection method of Nagao et al.(1979). This method

has shown good performance for high spatial resolution aerial images (Adeline et al, 2013a).
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A morphological closing filter is applied in order to spatially homogenize the tree shadows
possibly containing many penumbra areas.

Second, the detection of tree shaded pixels is achieved by framing each individual tree
shadow with a rectangular box with vertices P, — P, — P; — P, (Fig. 5a). The edge P; — P, of
this box represents the tree crown diameter, which is the segment intersecting the treetop in
the direction perpendicular to the sun azimuth angle ¢,. The orientation of the adjacent edges
of the box, namely P, — P; and P; — P,, is driven by ¢, while their length is dependent on the
tree shadow length L (Fig. 5a) following sun ray parallel projection to the ground (Rosskopf
et al., 2017). This length L is actually computed from the knowledge of the ground sampling
distance (GSD), the sun zenith angle (6;), and the tree height (H;,..) derived from the treetop
position and the DSM:

__ tan(65)XHree

L GsD 8)

a) upper view b) 3D view

Fig. 5. Geometric configurations with an isolated tree for a) tree shadow framing and b) solid
angle computation from a point C in tree shadow and for a tree crown modelled as an

ellipsoid (for the annotations see Appendix B).

Once the dimensions of the rectangular box are known, a region growing technique is
applied, consisting in gradually scanning the box area and looking for pixels that belong to the

global shadow mask but do not fall into the labeled pixels of the tree label mask. Each

12



detected tree shaded pixel is assigned to the corresponding tree label to build a tree shadow
label mask.

In case of overlapping tree shadows, the highest tree is assumed predominant over the
others. Also, a shaded region cannot be associated with more than one tree. And a refinement
step is applied to remove small tree shadows based on a criterion counting the number of
pixels belonging to each tree label.

3.4. Correction factor determination

The correction factor £ is the product between the reference correction factor

Prer (section 3.4.1) and a ratio of viewing solid angles Q(C)/Q¢ (section 3.4.2; Eq. 6).

3.4.1. Reference correction factor

A regression model is built using a design of experiments based on a "reference tree

model" for further empirical computation of f,..

3.4.1.1. Design of experiments with DART and sensitivity analysis

A simple scenario was considered in the form of an isolated tree on a flat ground, for
urban mid-latitude conditions and considering a viewing direction at Nadir (Fig. 6). Table 1
gives the DART input parameters that describe the scene and the "reference tree model”
(Gastellu-Etchegorry et al, 1996). The latter has fixed arbitrary dimensions, an ellipsoid
crown, and a trunk outside and inside the crown with a cylindrical and conical shape,
respectively. The DART spatial discretization scheme was set to 0.4m (i.e. spatial resolution
of the output image).

13
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Fig.6. "Reference tree model™ building from the DART interface.

Table 1. DART settings for the design of experiments (the abbreviations of the variables of

interest are given in brackets and in bold)

Variables [units] Values
Zenith angle [°] (SUN) 30-45-60
Sun geometry ) )
Azimuth angle [°] 90 (relative value)
Sensor geometry  Zenith angle [°]/ azimuth angle [°] 0/0
Number®/ Range [um] 110/ 0.4-1.0
Spectral bands b
FHWM" [nm] 3.7
_ Gaseous atmospheric profile Mid-latitude summer
Atmospheric
o Aerosol type Urban
conditions
Visibility [km] (VISI) 10-23
Dimensions in X,y,z [m x m x m] For a zenith angle <60°: 22.8 x
22.8x14.0
For a zenith angle = 60°: 30.8 x
Scene

Voxel size in X,y,z [m X m x m]
Ground reflectance (GROUND)

30.8 x 14.0
0.4x0.4x0.4
Asphalt and grass (cf. Fig.7)

Tree height [m]/ tree crown height [m]

Tree crown ellipsoid axis in X,y [m X
Isolated tree |

m

Trunk diameter below crown [m]

14

14.2/9.4
6 X6

0.4
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Tree leaf area index [m?.m™] (LAI) 05-1-15-2-25-3-35-4

-6-8

Leaf angle distribution ellipsoidal

Average leaf angle [°](ALA) 30-57.58-70

Horizontal random distribution of 0-30-70

holes in the tree crown [%]

(POROSITY)

Leaf optical properties (LOP) Liquidambar, oak and poplar (cf.
Fig.7)

®Spectral bands inside atmospheric water vapour windows are not considered
® FHWM: Full-Half-Width-Maximum

In agreement with previous studies characterizing the canopy reflectance (\\eiss et al.,
2000; Combal et al., 2002) or the tree crown transmittance (Sampson and Smith, 1993), seven
variables of interest X are selected to study the variations of g, : tree Leaf Area Index that is
the product between Leaf Area Index of the scene and the vegetation cover of the scene (for
simplicity referred in this paper as LAI; Norman and Welles, 1983), Average Leaf Angle
(ALA) defined for an ellipsoidal angle distribution (Campbell, 1990), percentage of holes in
the tree crown (POROSITY) approximating somehow the clumping effect, Leaf Optical
Properties (LOP), ground reflectance (GROUND), sun zenith angle (SUN) and atmospheric
visibility (VISI). Each variable is tuned between 2 and 10 values according to its sensitivity.
The ground and trunk optical properties come from the DART spectral database while the leaf
optical properties come from the ANGERSO03 spectral database (Jacquemoud et al., 2003).
The ground surface is assumed to be asphalt or grass (Fig. 7). Three representative urban tree
species were chosen: liquidambar "liquidambar styraciflua”, for its mean leaf optical
properties, and oak "quercus palustris™ and poplar "populus alba”, for their extreme optical
properties (Fig.7).

15
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Fig. 7. Optical properties of scene components: two ground types (asphalt and grass) and
trunk (left), leaves for the "reference tree model” (right: reflectances are in solid lines and

transmittances are in dashed lines).

A full factorial design was carried out to study the impact of each independent variable
X, individually or in interactions with the others, on the variations of (Droesbeke et al.,
1997). DART simulated a total of 3240 scenarios, corresponding to top-of-canopy
hyperspectral images with 110 spectral bands. It provided the radiative quantities required to
compute per ground pixel in tree shadow. Mean values of were stored in a look-up-
table and used to perform a global sensitivity analysis to find out the major variables X' for
determining . A variance analysis (ANOVA) with a linear relationship between and
the variables X was performed to compute a sensitivity index noted n?2. This is the ratio "sum
of squares values accounting for the single and combined effects of the variables on the
variance of " over "total sum of square values" (Monod et al., 2006; Olejnik and Algina,
2003). SUN and LAl are the major variables X' because they give the highest values of  (cf.
Appendix A). SUN being usually known (e.g. from date, time and location), the issue is to

estimate the LAI, which is therefore discussed below.
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3.4.1.2. Tree LAI estimation

Tree LAI can be estimated through the use of spectral vegetation indices from which
NDVI is the most used (Colombo et al., 2003 ; Jensen et al., 2012). An empirical LAI-NDVI
relationship is built based on a Beer-Lambert exponential regression model with 3 coefficients
(Baret and Guyot, 1991):

NDVI = NDVI,, + (NDVI, — NDVI,,). exp~knovi<LAl )

where NDVI, is the NDVI value for a bare soil (i.e. LAl equals zero), NDVI,, is the

asymptotic value of NDVI if LAI tends to infinite and kypy; is the extinction coefficient.

The training data is provided by the design of experiments. For each DART scenario
with a fixed LAI value, the NDVI is computed as the mean over a mask of 6x6 pixel grid
centred at the canopy treetop. Then for each scenario out of the total of 324 run with DART,
10 pairs of LAl and NDVI are available. However, the estimation of the coefficients of the
regression model in Eq.9 depends on the 6 remaining variables of X from the design of
experiments (ALA, POROSITY, LOP, GROUND, SUN, VISI). Except when SUN = 60°
(high solar incidence angle leading to odd fits), performance of the built regression models
gave coefficients of determination R?> 0.87 and root mean square errors RMSE< 0.37 in the
estimated LA

Then, regression models are applied in the NDVI image and the NDVI value for each
tree is computed as a mean over a 3x3 pixel grid centred at the treetop (grid size can be
chosen manually). In practice, due to the difficulty to have a priori knowledge about the
variable values (ALA, POROSITY, LOP, GROUND, SUN, VISI) for each tree, they are
arbitrarily fixed to their average values : ALA = 57° (close to the common spherical
distribution), POROSITY = 0% (uniform leaf spatial distribution), LOP = liquidambar,
GROUND = asphalt, SUN = 45° and VISI = 23km (good visibility).

3.4.1.3. Multivariate regression analysis

From the previously determined major variables X' (i.e. SUN and LAI), a multivariate

linear regression model is built to estimate the reference correction factor g, by using a
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stepwise strategy in order to decrease the number of terms in the regression expression
(Burnham and Anderson, 2004). A second degree polynomial expression with first order
interactions between X' (LAI, SUN) is chosen at first. After some tests, the following reduced

equation was chosen for all spectral bands:

Y = ag + X} (ay + az. X} + a5. X;°) + Xp. (ay + as. X5) + ag. X]. X5 + +a;. Xp. X ° +

ag. X1%. X5?
X| = e 0sLAl
with{ X3 = cos(SUN) (10)

Y = arcsin(y/Brer)

The 9 regression coefficients a;were bootstrapped over 1000 samples and their mean
values were the coefficients of the final expression in Eg. 10. The confidence intervals for the
bootstrap fit of Eq. 10 were: 0.87 < R? < 0.93 and 5.3% < RMSE < 8.3% (n = 2592). The
estimated ... corresponds to the ratio between Iy, and I, (EQ. 6). For instance for a sun
zenith angle of 55°, its values reach more than 40%, and have a monotonous increase towards
NIR bands for very low LAI values (LAI < 1; Fig. 8). Iqns 1S Mainly dominated by the
contribution of I&7_ due to few light interactions with tree crown elements (Eq.4). The more
the LAl increases, the more ..., values have a curvature at red-edge position between 700nm
dif

and 800nm. This emphasizes the contribution of I;.> _ in addition to I3%, . in I;qns. AS @
matter of fact, this spectrally-dependant feature of ., is consistent with the leaves optical
property features (Fig.7). Hence with the strong light multiple scattering within the tree

crown, B,..r values account less than 10% for very high LAI values (LAI > 5; Fig. 8).
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Fig. 8. Reference correction factor expressed in percentage (i.e. f,.r) for different LAl values

and for a zenith angle of 55°.

3.4.2. Tree viewing solid angle

Once the reference correction factor ., is estimated for each tree, a pixel-based
spatial correction factor is needed to account for the real dimensions of the tree compared to
the one used as a "reference tree model™ in the design of experiments with DART. In a real
scene, each point in the shade views a specific part of the tree; the closer the shaded point is to
the tree position, and the larger the occultation is. This occultation is represented by the solid
angle Q under which the tree crown is seen. For simplicity, each tree crown is modelled as an
elliptic shape (Fig. 5b). However, the mathematical expression of £ is not straightforward and
is further detailed in Appendix B. Then, the spatial correction factor is the ratio of Q for the
real tree in the image over Q.. for DART "reference tree model” (see Eq. 6). Q values

usually ranges between 0 and = in steradian unit. Q¢ equals to 0.4sr.

3.5. Tree shadow reflectance correction
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ICARE-VEG corrects the ICARE reflectance of any pixels in a tree shadow by a
specific factor B (see Eq. 6). Other pixels are not corrected. In order to compare ICARE and
ICARE-VEG performances, the Mean Absolute Error (MAE) in retrieved reflectance in tree
shadows, i.e. p;cy, IS compared with ground truth measurements when they are available, or
ICARE sunlit retrieved reflectance of the same material type over another area, i.e. pref/ic,

such as:

1
MAE = YRS Z?’:olplcv(ﬂi) ~ Prefyic (’11’)| 4y

with N the number of spectral bands.

The threshold for best MAE accuracy is set to 0.04 according to the performance of
ICARE (Lachérade et al., 2008). A second metric is used, the spectral angle mapper (SAM;
Kruse et al., 1993), to inform about the spectral distortions in the retrieved reflectance. It is a
similarity spectral index independent of illumination and shadowing conditions. It requires

computing the spectral angle o between the reference reflectance, i.e. prer/c, and the

retrieved reflectance, i.e. p;cy:

N preriic(Ap). A
a = COS_1< Yic1P f/11c/(2 )-prev(A) 1/2> (12)
(N pref/ic2)) T (EX prcvE(A)

The lower a value is, the more similar the spectral shape is between the reference and
ICARE-VEG retrieved reflectances.

4. Experimental data

ICARE-VEG was validated by using the data collected on October 24™ 2012 over
Toulouse, France, from the UMBRA campaign (Urban Material characterization in the sun
and shade of Built-up structures and trees and their Retrieval from Airborne image

acquisitions over two French cities; Adeline et al., 2013Db).

4.1. Airborne hyperspectral data
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Airborne hyperspectral images were acquired with the push-broom sensor HySpex-
VNIR1600 (NorskElektroOptikk) with 160 bands in the spectral range 0.4-1um and a spectral
resolution of 3.7nm. For further analysis, 22 spectral bands are kept after removing low
instrumental signal-to-noise ratio and water vapour atmospheric windows, and after spectral
aggregation at 18nm to be compatible with ICARE running with 6SV code. The acquisitions
were at Nadir with a ground spatial resolution of 0.8 m. In addition, a DSM was derived by
multi-stereoscopic acquisitions from a panchromatic camera with a horizontal accuracy of
0.12 m (Pierrot-Deseilligny and Paparoditis, 2006). The aerial images were manually
georeferenced based on the DSM. More than 20 ground control points were selected with the
use of the ENVI software and the precision accuracy was inferior to the pixel size. At last, the
images were radiometrically corrected with in-lab sensor calibration coefficients.

Three images were studied and extracted, namely image U1, U2 and U3 (Fig. 9). They
corresponded respectively to an acquisition time of 12h40UTC for Ul and U2, and
11h30UTC for U3, with a solar zenith and azimuth angles of respectively (57.2°; 198.1°) for
Ul and U2, and (55.5°;, 177.5°) for U3. They induced large shadows on aerial images
specifically in urban areas. The image U1 contains 27% of shaded pixels, 34% for U2, and
finally 30% for U3. The images Ul and U2 are located on a sports centre, and are largely
dominated by vegetated areas, both well maintained grass lawns and isolated trees, with
sports infrastructures. They are characteristics of open areas whereas image U3 is oppositely
representative of dense urban areas with high buildings and tree rows alongside the "canal du
Midi".
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Fig. 9. RGB composite images used in this study associated with their greyscale DSM and

their location on a Google Earth image over Toulouse, France.

4.2. Field measurements and atmospheric conditions

Road asphalt and grass surface reflectance were measured over the spectral range
0.35-1.0um at 3nm spectral resolution and 1nm spectral sampling interval with a portable
ASD (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer and a
reflectance plate Spectralon® of known reflectance. The integrated water vapor content and
the aerosol type and abundance were measured with a microwave radiometer and a
sunphotometer from AERONET (AErosol RObotic NETwork).

5. Results and discussion

ICARE-VEG is applied on the three images described in section 4. Results are

discussed for each processing step, then ICARE-VEG performance is compared with those of

ICARE in tree shadows and with ground truth.
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5.1. Image processing steps performed on trees and their shadows

Tree crown delineation and tree shadow detection (sections 3.2 and 3.3, cf. Fig. 2) are
the most critical steps in ICARE-VEG since a tree-specific correction is further applied
accounting for each tree dimensions and position relatively to the location of the shaded
pixels.

For tree crown delineation, the adjacency criterion was set to 5 pixels (i.e. 4 m) for U2
and U3 images, and to 4 (i.e. 3.2m) for U1. The percentage of canopy pixels in the shade was
set to 80% (except for U3, 70%), the minimum number of pixels per tree to 40 pixels, and the
tree minimum height to 5m.The DSM of U1 and U3 images was smoothed with a 2x2 size
Gaussian filter. From the original images in Fig. 11a, results of NDVI images and histogram
thresholding are shown in Fig. 10a and 10c, leading to the tree label masks shown in Fig. 11b.
Some advantages and drawbacks can be pointed out:

(1) Vegetation detection with NDVI is often limited by changes in tree phenology, age
and health (e.g. senescent leaves, diseases), and also by top of canopy anisotropic directional
reflectance behavior. The UMBRA campaign took place at the early autumn season (Fig.
11a). Then, LAI of deciduous trees was falling, inducing a decrease in NDVI and sometimes
tree under-detection (trees located at bottom of U1 and middle of U2 have mean NDVI values
of 0.40 and 0.44, below the thresholds of 0.49 and 0.46: Fig.10c and Fig. 11b). Furthermore,
the presence of a large vegetation fraction in the image (e.g. both grass and trees) produces an
irregular shaped NDVI histogram, thus impacting the bimodal thresholding step (Ul: Fig.
10c). As a perspective, a combination of vegetation spectral indices is recommended for a
better discrimination with artificial materials (lovan et al, 2014).

(i) Topography is assumed to be flat, which induces tree misdetection when local
variations occur (vegetated hedges on a bridge, U3: Fig. 11b). Moreover, DSM accuracy may
be degraded next to sudden slope changes (lawn close to high buildings, U3:Fig. 11Db).
However, these errors are generally corrected during the shadow detection step, since no
shadow is usually associated to the false detected trees (e.g. false detection of grass as trees).

(i) The delineation of each tree crown is straightforward for isolated trees. For
instance, good performances are achieved for trees in rows (left in U2 and along the canal in
U3:Fig. 11b). Difficulties arise in presence of clustered trees (centre and top-left of U1 and on
the right of U2, Fig. 11b) and pruned trees (middle-right of U3: Fig. 11b), sometimes due to
the presence of homogeneous canopies or a lack in height variation among trees (Zheng et al.,
2016).
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For tree shadow detection, the minimum number of pixels for a tree shadow was set to
100. From the original images in Fig. 11a, results of intensity images and histogram
thresholding are shown in Fig. 10b and 10d, leading to the global shadow masks shown in
Fig. 11c, and finally to the tree label shadow masks in Fig. 11d. Usually urban scenes contain
a high percentage of shadows, which makes easier the thresholding on the intensity image
based on a bimodal histogram. However, dark materials in sunlit regions and bright materials
in shaded regions may be falsely detected as shadows (Adeline et al., 2013a). To address
these problems, the thresholding method of Nagao (1979) is used to remove water bodies
(canal detected in U3 without shadow detection: Fig. 11c) and the morphological closing filter
homogenizes shaded regions (white road lines and cars, U3: Fig. 11c). In the tree label
shadow masks, the method visually performs well for trees in rows and less for clustered trees
such as observed before. In some cases, the tree shadow is truncated or under-detected due to
a local less accurate DSM horizontal and vertical description (tree in row at bottom-left in U3
and the clustered tree at middle-left in U1: Fig. 11d).

600 f 25003(‘ d) __U1:238 7

g | ...U2:194

+ 500 2 2000 __U3:17.9
X s X [ ]
& saof & P ]
B g -8 1500 - \ - __'
5 SO0 5 £\ ]
2 - 2 1000 E oy iz 3
E 200f £ E ; ; ]
s F e AR I ]
Z 100k 5001 g 3
- ol T —

0 10

20 30 Py 50
Radiance values (W.m—2.sr—1.um-1)

24



Fig. 10.a) NDVI images, b) intensity images, c) NDVI histograms and d) intensity histograms
(black dots indicates thresholds values).

Fig. 11. a) RGB composite images, b) tree label masks, c) global shadow masks before

applying the morphological filter and d) tree shadow label masks.
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LAI and tree viewing solid angle estimation (sections 3.4.1.2 and 3.4.2, cf. Fig. 2) are
the last steps required to compute the final physics-based correction factor f of ICARE-VEG.

For LAI estimation, the application of the LAI-NDV1 regression model to the images
shows the diversity of low estimated LAI values during the start of the fall season (Fig. 12).
Without ground truth measurements, no validation can be performed. But on visual
examination and by knowledge about the study site, qualitative comparison from one LAI to
another seems correct if LAI values are not extreme (LAI close to 0 or superior to 4). Their
values range is 0.77-2.35m*m™ for U1, 0.63-2.06m*m™ for U2 and 0.61-2.21m%m™ for U3.
Improvements can be investigated in the future by adding the contribution of textural indices
or geostatistical information in cases of heterogeneous and patchy spectral information over
tree crowns (Colombo et al., 2003).

Finally for tree viewing solid angle estimation, Q is computed for every pixel in each
tree shadow. Its mean value is 0.16sr for U1 and U2, and 0.18sr for U3 (Fig. 12). For instance
for the long cast shadow at the bottom right in U1, Q values range between 2.0sr for the pixel

the closest to the trunk and 0.36sr for the pixel the furthest to the trunk.

U2

Fig. 12. LAl estimated from the LAI-NDVI regression model (first row) and tree viewing

solid angles Q computed in each tree shadow (second row; treetops are indicated in red dots).

5.2. Spectral analysis and comparison between ICARE and ICARE-VEG
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The improvement of ICARE-VEG over ICARE in tree shaded regions is analyzed for
3 types of materials, namely grass (high variable reflectance), asphalt (intermediate flat
reflectance), and water (very low reflectance), respectively for 2 trees with different LAI
values (Fig. 13). Performances are assessed with the computation of the metrics, MAE and
SAM (Eq. 12, Table 2), and by observing the spectral variability in the retrieved reflectance
(Fig. 14). The results show that:

(1) the mean reflectance of ICARE in the tree shade is always overestimated compared
to its counterpart in the sun. This is strengthened if the material in the shade has a high
reflectance (i.e. grass compared to asphalt) and if the LAI is small (since the tree crown
transmittance increases; Fig. 13). The MAE for ICARE in the tree shade is at least 4 times
higher than the one with ICARE in the sun when compared to the ground truth (Table 2),

(i) ICARE retrieved reflectance in the tree shade is distorted from visible to NIR
bands, with a spectral increase starting at the red-edge position (particularly more visible for
grass). This observation is in line with the previous comments on f,.. (Fig. 12). ICARE-VEG
correction attenuates this spectral distortion: SAM values are better by a multiplicative factor
between 1.0 and 1.4 compared to ICARE (Table 2),

(iii) ICARE-VEG retrieves lower reflectance values than ICARE, and have a better
accuracy due to the correction brought by I,,ns : its MAE decreases by a multiplicative
factor between 2 and 4.5 when considering ground truth as a reference, and by a
multiplicative factor between 4.2 and 18.8 when considering ICARE in the sun as a reference
(Table 2). ICARE-VEG correction is spectrally-dependent; it is less notable in the visible
range but becomes important in the NIR where ICARE can achieve non physical reflectance
values higher than 1 (e.g. grass; Fig. 13a and 13b),

(iv) The spectral dispersion in ICARE retrieved reflectances increases from sunlit to
shaded regions (Fig. 14). This may be due to penumbra and tree clumping effects impacting
the spatial homogeneity of the tree shadow at ground. Globally, ICARE-VEG correction
reduces this dispersion but not at the same order of magnitude of what ICARE in the sun
does,

(v) The correction applied to water is the most challenging because of its very low
reflectance, smaller than the 4% threshold in MAE selected as the desired accuracy for

atmospheric correction models (Fig. 13). However, ICARE-VEG correction is promising
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since the order of magnitude in retrieved reflectances is correct as well as its global spectral
shape,

(iv) The spectral differences between ICARE-VEG results and ground truth may be
explained by the fact that ground truth has been measured close to tree shadow but in the
sunny part, which induces spectral intra-class variability issue, and . factor brings a mean
correction over the tree shadow, which cannot account for all local variations in tree shadow,
especially when LAI is low.

At last, ICARE and ICARE-VEG are compared for all pixels belonging to the tree
shadow label mask (U1: 5048 pixels, U2: 3843 pixels, U3: 4034 pixels). In the NIR band at
800nm, the decrease in the mean ICARE-VEG retrieved reflectance compared to ICARE is
43.3% for U1, 54.5% for U2 and 36.7% for U3. In the red band at 670nm, this decrease is
36.4% for U1, 51.8% for U2 and 40.1% for U3. At 800nm, ICARE reflectance is larger than 1
for 5.9%, 3.6% and 0.3% of pixels for U1, U2 and U3, respectively. ICARE-VEG reduces
this percentage of pixels to 4.1%, 2.9% and 0.1%, respectively.
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Fig. 13. ICARE reflectances in the sun ("1C_sun") and both ICARE and ICARE-VEG
reflectances in the shade ("1C_sh™ and "ICV_sh") for 3 ground materials (grass: first column,
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asphalt: second column, and water: third column) and for 2 different LAI values (high: first
row and low: second row). In-situ measurements are also shown when available ("GT" :
Ground Truth).

Table 2. ICARE and ICARE-VEG performance (MAE : Mean Absolute Error expressed in
percentage of reflectance unit, and SAM : Spectral Angle Mapper expressed in radian unit)
for scenarios from a to f (please refer to Fig. 13). Reference reflectance is in-situ

measurements or ICARE in the sun. Bold numbers indicate MAE values lower than 4%; "

stands for unavailable data.

Reference Test Metrics a) b) C) d) e) f)

MAE 7.6% 65% 05% 1.3%

ICARE (sun) _ _
SAM 022 015 0.05 0.09
In-situ ICARE MAE 31.7% 29.0% 4.6% 25.2%
measurements (shadow) SAM 026 021 017 0.23 a a
(sun) 13.1
ICARE-VEG MAE o 82% 23% 57%
0
(shadow) SAM 019 013 0.18 B B
0.25
ICARE MAE 37.1% 342% 4.7% 24.0% 10.6% 7.1%
ICARE (shadow) SAM 007 007 020 030 037 049
(sun) ICARE-VEG MAE 142% 105% 23% 51% 6.0% 1.1%

(shadow)  SAM 005 005 015 025 034 042
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Fig. 14. Reflectance variability in red band (2 first rows) and NIR band (2 last rows) for
ICARE in the sun ("1C_sun™) and both ICARE and ICARE-VEG in the shade ("IC_sh™ and

"ICV_sh" respectively) for scenarios from a to f (please refer to Fig. 13).

6. Conclusions

ICARE-VEG improves ICARE 3D atmospheric correction in order to correct retrieved
surface reflectances in presence of tree shadows. It includes image-based techniques such as
tree crown delineation and tree shadow detection, and then the application of a spectral and
geometrical physics-based correction factor in tree shadow pixels following each tree crown
characteristics. Since this issue is relatively new, the strategy was based on a complex
exploratory methodology by using the DART 3D canopy radiative transfer model, and heads
towards the development of a semi-automatic method. ICARE-VEG only considers deciduous
trees with green healthy leaves and surfaces with a lambertian spectral behaviour.

The application of ICARE-VEG on VNIR hyperspectral high spatial resolution data
and the comparison between ICARE and ICARE-VEG clearly stress that a large inaccuracy
occurs if tree crown transmission is neglected. Globally, results were encouraging and showed
that (i) neglecting the transmitted irradiance demonstrates an over-estimation in retrieved
reflectances, the higher the material reflectance is and the lower the tree LAl is, (ii) this bias
increases from visible to NIR at the red-edge position, which is due to the additive
contribution of the diffuse over the direct transmitted irradiance in the total transmitted
irradiance received at tree shadow; ICARE-VEG attenuated this spectral distortion by a
multiplicative factor between 1.0 and 1.4 by means of spectral angle mapper performance,
(ili) ICARE-VEG improves the mean absolute error in retrieved reflectances compared to
ICARE in tree shadows by a multiplicative factor ranging between 4.2 and 18.8 for some test
cases (taking ICARE in the sun as reference), and (iv) for a given wavelength, the spectral
variability in the retrieved reflectances increases from sunlit to shaded regions due to
penumbra and tree clumping effects, which makes difficult for the ICARE-VEG correction to
exactly reduce at the same order of magnitude of what ICARE does in sunlit regions.

These results highlight the complexity to model physical natural processes with finer
spatial resolutions. The difficulty relies on the high number of sources of variability to cope
with, among them, the spectral and spatial dimensions for the tree shadow correction, the
intra-class variability for a given material, and the intrinsic characteristics of urban areas
(Small, 2001).
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Future work includes the validation of ICARE-VEG in the Short Wave Infrared
Region (SWIR: 1.0-2.5um), the replacement of 6SV atmospheric code with MODTRAN
(MODerate resolution atmospheric TRANsmission; Berk et al, 1999) in ICARE-HS, and the
comparison of 3D atmospheric codes in urban areas between the fusion of ICARE-VEG and
ICARE-HS and ATCOR-4. Moreover, a better analysis of the direct and diffuse transmitted
irradiance terms in presence of a tree crown is planned to better understand the possible

sources of errors and improvements of ICARE-VEG.
Acknowledgements

This work was funded by ONERA and the French Research Agency in the framework
of the ANR VegDUD proposal studying the role of vegetation in sustainable urban
development. We would like to thank the CESBIO DART team (Nicolas Lauret, Tristan
Gregoire, JeromeCros) for their useful advices and server resources as well as the ONERA IT
department, Benedicte Diez and Sidonie Levebvre (ONERA) and Fabrice Vinatier (LISAH)

for their support about the use of ICARE and statistical issues.
Appendix A

To assess the most influent variables X', a global sensitivity analysis based on
ANOVA is applied on a second degree polynomial expression with first order interactions
between the inputs X={LAI, ALA, POROSITY, LOP, GROUND, SUN, VISI} and the output
Bres. For each spectral band, the regression fit between X and B,..r gives: R?> 0.98 and p-
value < 1%. The sensitivity index n? is computed for 4 ranges of LAI from the results of
ANOVA: full LAI range (0.5-8), low LAI (0.5-2), medium LAI (2-3.5) and high LAI (3.5-8).
Results are shown in Table A.1.

Table A.1. Median values of the sensitivity index n?, expressed in total percentage accounting
for the contribution of the variable in the variance of ,..f computed over the spectral domain
for different LAI ranges and based on ANOVA results. Each single variable represents its
main effect (coefficient of the variable taken alone and squared except for the qualitative
variables: LOP, GROUND, VISI); the interaction effect is the sum of all combinations
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between the variables; residuals stand for the missing contribution from other variables or

errors in the fitting regression model of .

LAI range
Variables (Df)® | 0.5<LAI<S 0.5<LAI<2 2<LAI<35 3.5<LAI<8
(n=3490) (n=1296) (n=1296) (n=1296)
LAI (2) 72.1 41.6 24.1 15.2
ALA (2) 1.5 1.1 5.4 8.5
POROSITY (2) 0.9 0.2 2.3 8.3
LOP (2) 0.0 0.0 0.0 0.0
GROUND (1) 0.0 0.0 0.0 0.0
SUN (2) 18.2 38.1 51.2 50.2
VISI (1) 3.6 13.8 9.1 6.2
Interactions (27) 2.6 3.2 7.1 10.0
Residuals 1.1 2.0 0.8 1.6

®Degree of Freedom

Whatever the LAI range, n? values showed few spectral dependence except locally on
the red-edge with around 10% maximum variation (data not shown). In one side for the full
LAI range (0.5 < LAI < 8) and by order of importance, LAI and SUN contribute the most to
Pres Variance, then VISI, the interactions (mainly dominated by ALA with SUN), ALA,
POROSITY, and at last no contribution for LOP and GROUND. These two last variables
might interfere in the radiative budget (i.e. S,.5) at a second level compared to LAl and SUN
since the contribution of the direct light is predominant over the diffuse light within the
canopy. On the other side, by considering LAI ranges, the more LAI increases, the more the
influence of LAI and VISI is reduced for the increasing benefit of SUN, ALA, the interactions
(e.g. ALA with SUN) and POROSITY. Indeed, increasing tree clumping and both sun zenith
angle and leaf orientation gets more transparency in a very closed canopy (i.e. high LAI).

Finally, LAl and SUN are selected as X' variables to estimate f3,...

Appendix B

The solid angle viewing a surface situated in the upper space from any point is usually
defined by:
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Q= fon/z f(Z’TZZ" cos(8).de.do = fon/z A@(0).cos(0) db (B.1)

0 denotes the elevation angle (which is not the standard notation in spherical
coordinate system), and ¢ the azimuth angle (anticlockwise from South direction, ¢.g. X axis).
AP(0) = Pimax(0) — @min(6) is the partial angle of the object for a given 0 and is set to 0
when the object is out of reach for a given direction (6, ¢). However, here the tree crown is
assumed to have an ellipsoid shape (Essery et al., 2008; Fig. 5), hence Agp(68) expression is
not trivial to determine and to integrate since it depends on 6 variations.

Let’s consider a given point C(0,0,0) situated in the tree shadow. C is the centre of the
Cartesian coordinates system. The coordinates of the base of the trunk T are (Xo,Y0,0), the total
tree height is Hypee, the trunk height Hy,ynie = Heree /4, the tree crown has a diameter of Dy e

and is modelled by an ellipsoid with a revolution symmetry in Z axis:

N2 (1 N2 N2
(x=x0)°+(V—Yo) +(Z Zzo) =1 (B.Z)

2
L 5

with 1, = D400 /2 denotes the horizontal tree radius of the crown diameter, 1, = (Hiree —
Hipuni) /2 is the vertical radius, and zy = Hyynk + Heree /2 1S the altitude of the ellipsoid
centre. For any ray beam emitted from point C(0,0,0) in a given direction denoted by the

couple of angles (0, @), the parametric equation is:

(B.3)

l.cos(0).cos(p)
l.sin(6) >

C (l) — <l.cos(9).sin(q))

| stands for the parametric distance. In order to find the intersection between the beam
and the crown, Eq. B.2 is substituted into Eq. B.3. This gives a quadratic equation with three

coefficients a. 12 + b.1 + ¢ = 0 determined by:

2 iaa2
( a = cos 2(9) + sin 2(9)
7 T2
-2. 0).(xo. +y,.5i 2.sin(6).
ib _ —2.cos(8).(xo Ccr);(ql) yosin(@)) smr(2 ).-Zo (B.4)
h v
_ Xo+ys , z§
k €= 7 + r2 1
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@, Is defined as the azimuth of point T. The expression of parameter b can be

rewritten as follows:

{F (6] = 2.cos(8). |x2+y3
b = F,[6].cos(p — o) + F5[6]with{ 2"~ — T (B.5)
F3 [6] _ 2.sir;f}26).zo

In order to find only one solution to this quadratic equation, i.e. when the ray intersects
the tree crown surface at only one point located at the borders of the tree crown, the equality

b? — 4ac = 0 must comply with:

: 2 2 2
bzzﬁizﬁﬂm=2J(ﬁ?”+w@m)fﬂ“+ﬁ—1> (B.6)

2
I Ty Th Ty

Thus, two solutions are resulting for ¢:

@ = @yt Ap/2 withAp = 2 arccos (%[QF]?'M) (B.7)
2

Since the azimuth of the two borders are symmetric, Ag is centred on the azimuth of
the trunk (i.e. ¢,). By reporting Eqg. B.6 and Eqg. B.5 in Eqg. B.1, the integration will be solved

numerically by using the Riemann integral, further validated with a Monte Carlo method. Ag

Fi[0]-F;3

will be set to 0 when the tree is out of reach, i.e. for values of 6 leading to 0] [9]| > 1,
2

where the arcos function is not defined.
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