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ABSTRACT 21 

22 

Many applications dedicated to urban areas (e.g. land cover mapping and biophysical 23 

properties estimation) using high spatial resolution remote sensing images require the use of 24 

3D atmospheric correction methods, able to model complex light interactions within urban 25 

topography such as buildings and trees. Currently, one major drawback of these methods is 26 

their lack in modelling the radiative signature of trees (e.g. the light transmitted through the 27 

tree crown), which leads to an over-estimation of ground reflectance at tree shadows. No 28 

study has been carried out to take into account both optical and structural properties of trees in 29 

the correction provided by these methods. The aim of this work is to improve an existing 3D 30 

atmospheric correction method, ICARE (Inversion Code for urban Areas Reflectance 31 

Extraction), to account for trees in its new version, ICARE-VEG (ICARE with VEGetation). 32 
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After the execution of ICARE, the methodology of ICARE-VEG consists in tree crown 33 

delineation and tree shadow detection, and then the application of a physics-based correction 34 

factor in order to perform a tree-specific local correction for each pixel in tree shadow. A 35 

sensitivity analysis with a design of experiments performed with a 3D canopy radiative 36 

transfer code, DART (Discrete Anisotropic Radiative Transfer), results in fixing the two most 37 

critical variables contributing to the impact of an isolated tree crown on the radiative energy 38 

budget at tree shadow: the solar zenith angle and the tree leaf area index (LAI). Thus, the 39 

approach to determine the correction factor relies on an empirical statistical regression and the 40 

addition of a geometric scaling factor to account for the tree crown occultation from ground. 41 

ICARE-VEG and ICARE performance were compared and validated in the Visible-Near 42 

Infrared Region (V-NIR: 0.4-1.0µm) with hyperspectral airborne data at 0.8m resolution on 43 

three ground materials types, grass, asphalt and water. Results show that (i) ICARE-VEG 44 

improves the mean absolute error in retrieved reflectances compared to ICARE in tree 45 

shadows by a multiplicative factor ranging between 4.2 and 18.8, and (ii) reduces the spectral 46 

bias in reflectance from visible to NIR (due to light transmission through the tree crown) by a 47 

multiplicative factor between 1.0 and 1.4 in terms of spectral angle mapper performance. 48 

ICARE-VEG opens the way to a complete interpretation of remote sensing images (sunlit, 49 

shade cast by both buildings and trees) and the derivation of scientific value-added products 50 

over all the entire image without the preliminary step of shadow masking. 51 

52 

1. Introduction53 

54 

The potential of hyperspectral remote sensing imagery with high spatial resolution in 55 

the reflective domain 0.4-2.5µm has long been studied to increase the characterization of 56 

surface materials for ecosystem monitoring (Wulder et al., 2004), and particularly for urban 57 

environments (Jensen and Cowen, 1999; Small, 2001; Puissant and Weber, 2014), such as for 58 

vegetation biodiversity assessment (Alonzo et al., 2014), road traffic monitoring (Rosenbaum 59 

et al., 2010) and land cover classification (Roessner et al., 2001). For urban applications, one 60 

major limitation comes from the complex topography of urban landscapes combined with low 61 

solar elevation, which induces many shaded pixels in aerial and satellite images at high spatial 62 

resolution. In image processing, shaded region areas are often neglected, with shadows 63 

classified as a material class (Dell’Acqua et al., 2005; Yuan and Bauer, 2006) or used to 64 

retrieve the dimensions of nearby buildings (Liow and Pavlidis, 1990). 65 
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The processing of shadows involves both shadow detection (Adeline et al., 2013a) and 66 

shadow correction (Shahtahmassebi et al., 2013). For shadow correction purposes, two main 67 

categories of methods can be examined. The first includes de-shadowing methods using 68 

multisource data fusion or applying a radiometric enhancement correction to "re-light" shaded 69 

pixels generally based on histogram adaptation strategies (Dare, 2005). Although sufficient 70 

for coarse classification of urban material types, it is unsatisfactory for the intra-class 71 

variability quantification and the retrieval of physico-chemical properties of surface materials, 72 

which requires the accurate spectral reflectance of each material. The second category of de-73 

shadowing methods uses atmospheric correction codes to convert at-sensor radiance into 74 

reflectance units. They are physics-based methods which correct the radiometrical bias 75 

occurring in shaded pixels by considering atmospheric conditions and sometimes the scene 76 

3D topography (e.g. Digital Surface Model - DSM or a vector model). To our knowledge, 77 

only a few atmospheric correction codes are adapted to urban environments: the semi-78 

empirical model of Chen et al., 2013, ICARE (Inversion Code for urban Areas Reflectance 79 

Extraction, Lachérade et al., 2008) and ATCOR-4 (Atmospheric/topographic correction for 80 

airborne imagery, Richter and Schläpfer, 2002). However, only the two last codes can achieve 81 

an exact calculation of the 3D radiative terms to retrieve surface reflectance. 82 

ATCOR-4 is currently the most used atmospheric correction code by the scientific 83 

community that has been tested for a large panel of hyperspectral airborne sensors over the 84 

spectral range 0.4-2.5µm. For a flat terrain composed of lambertian materials (i.e. 85 

corresponding to an isotropic light reflection), ATCOR-4 performance achieves an error in 86 

the retrieved reflectance of 0.02 and 0.04 for an initial reflectance of less than 0.10 and 0.40, 87 

respectively (Rese ATCOR-4 User Guide; Richter and Schläpfer, 2002). For a rugged terrain, 88 

ATCOR-4 performance is not quantified since it strongly depends on the DSM accuracy and 89 

the registration between the image and the DSM (Rese ATCOR-4 User Guide; Schläpfer et 90 

al., 2000). An improved version of ATCOR named BREFCOR is able to correct the effects of 91 

bidirectional reflectance distribution function of materials (Schläpfer et al., 2015). ICARE is a 92 

3D atmospheric correction method dedicated to urban areas with lambertian materials. It was 93 

initially developed to process airborne multispectral images acquired by the PELICAN image 94 

system (Duffaut and Deliot, 2005) with spectral bandwidth of 30nm at a spatial resolution of 95 

20cm, and with limited spatial extent. Its performance showed a maximum peak to peak 96 

accuracy of 0.04 in the retrieved reflectance for eight spectral bands from 420 to 917nm and 97 

for pixels located in shadows cast by buildings (Lachérade et al., 2008). Currently, ICARE is 98 

being improved to process hyperspectral images. The improved method named ICARE-HS 99 
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(ICARE using HyperSpectral imagery) was tested with airborne HySpex hyperspectral data 100 

with 160 spectral bands in the Visible-Near Infrared (V-NIR: 0.4-1.0µm) at a spatial 101 

resolution of 80cm (Ceamanos et al., 2017). The performance of this new ICARE version was 102 

not quantitatively validated. 103 

Atmospheric correction codes succeed in modeling opaque objects governed by 104 

absorption and reflection processes (e.g. buildings). However, the main issue lies in the lack 105 

of modeling of transmittance processes resulting from semi-transparent and transparent 106 

surfaces (e.g. trees and windows). For trees, ATCOR-4 and ICARE neglect the fraction of the 107 

incident solar radiation that is transmitted through tree crown, thus generating a bias in the 108 

retrieved reflectance in tree shadows (Adeline et al., 2012; Schläpfer et al., 2013; Damm et al, 109 

2015). Actually, the under-estimation of total irradiance in the shade produces an over-110 

estimation of retrieved reflectance, which is higher in the NIR bands than in the visible with a 111 

transition close to the red-edge (Adeline et al., 2012; Damm et al, 2015). With ICARE, 112 

Adeline et al., 2012 showed that the retrieved reflectance in tree shadows compared to their 113 

counterpart in sunlit areas for the same material type (asphalt and grass) gave mean root mean 114 

square error values up to 0.09. With ATCOR-4, Damm et al, 2015 showed that an inaccurate 115 

estimation of irradiance can lead to a difference in tree shadows in NDVI values (Normalized 116 

Difference Vegetation Index; Rouse, 1974) up to 13% and in PRI values (Photochemical 117 

Reflectance Index; Gamon et al., 1992) up to 32% for some test scenarios over grass. One of 118 

the required steps to solve this issue is to carry out a sensitivity analysis in order to know 119 

which tree canopy parameters, both spectral (e.g. optical properties of leaves and wood) and 120 

structural (e.g. leaf area index, leaf angular distribution, clumping, tree dimensions) have the 121 

most impact on light transmission through the tree crown. To our best knowledge, such an 122 

analysis has not been performed yet for radiative transfer budget estimation. 123 

The objective of this work is to improve the existing 3D atmospheric correction code 124 

ICARE to cope with the presence of trees. The new version is further named ICARE-VEG 125 

(ICARE with VEGetation). It is based on the building of a physics-based correction factor to 126 

apply to ICARE’s outputs in order to provide a better estimation of surface reflectance in tree 127 

shadows. The challenge is to define a general correction baseline adapted to any urban trees 128 

and requiring a small number of relevant variables to study. To this end, ICARE-VEG relies 129 

on the decoupling between a spectral reference correction based on a "reference tree model" 130 

with fixed geometrical dimensions, and a spatial correction accounting for the real dimensions 131 

of the tree processed in the image. The spectral reference correction is built from the results of 132 

a sensitivity analysis based on a design of experiments to derive the most important factors 133 
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contributing to light transmission through the tree crown. The spatial correction factor is 134 

computed from the tree dimensions and the location of the pixel within the tree shadow. At 135 

last, ICARE-VEG only considers deciduous trees with green healthy leaves and surfaces with 136 

a lambertian spectral behaviour. 137 

This paper is organized as follows. Section 2 introduces the physical principles of 138 

radiative transfer modeling for ICARE-VEG. Section 3 describes each step implemented in 139 

ICARE-VEG. Section 4 presents the airborne and field data used for validation. Finally, the 140 

performance of ICARE-VEG for surface reflectance retrieval in tree shadows is presented in 141 

section 5. Conclusion and perspectives are given in section 6. 142 

143 

2. Physical modeling for ICARE-VEG144 

145 

For a given wavelength λ in the optical domain 0.4-2.5μm, the surface reflectance ρ of 146 

a target is derived from the direct upwelling radiance  coming from the target and 147 

reaching a given pixel of the sensor detector matrix, the total downwelling irradiance 148 

received at ground, and the upwelling direct atmospheric transmission  (Fig. 1; Lachérade 149 

et al., 2008) such as: 150 

151 

(1) 152 

153 
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154 

Fig. 1. Taxonomy of the radiative transfer components for ICARE (IC) and ICARE-VEG 155 

(ICV) for an urban scene and for a target a) in the sun, b) in a building shadow and c) in a tree 156 

shadow. 157 

158 

In urban environment, the radiative components      and      are highly sensitive to 159 

the complex 3D topography inducing downwelling and upwelling multiple reflections on 160 

surrounding surface elements, and to local atmospheric multiple scattering. The total at-sensor 161 

radiance, , is the sum of the direct radiance, , the environment radiance due to the 162 

atmospheric light scattering, , and the atmospheric radiance (the so-called path radiance), 163 

 (Fig. 1). Also, the total irradiance, , is the sum of the direct solar irradiance,     , the 164 

atmospheric diffuse solar irradiance, , the irradiance due to scattering by the surrounding 165 

environment, , and the earth-atmosphere coupling irradiance,        (Fig. 1). 166 

167 

ICARE (noted IC) considers that surfaces have lambertian reflectances and the 168 

viewing direction is Nadir. The surface spectral bidirectional reflectance for any pixel P at the 169 

wavelength   is simply named       . ICARE analytically determines the surface reflectance 170 

for a pixel A in a sunlit region (Fig. 1a) with: 171 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7 

172 

(2) 173 

174 

For a pixel B in any shaded region (Fig. 1b), ICARE assumes  to be null, leading to 175 

the following expression: 176 

177 

(3) 178 

179 

This reflectance determination for  is only valid for shadows cast by opaque 180 

surface materials such as buildings. In shaded regions cast by trees, however, the incoming 181 

light transmitted through tree crowns, , must be considered in addition to  (Fig. 1c). 182 

The term  can be split into , the light directly transmitted without interactions with 183 

the tree elements, and , the light that is transmitted after at least one scattering with 184 

crown elements, either leaves or woody stems (Fig. 1c). Consequently, Eq. 3 needs to be 185 

modified for a pixel C in tree shadow with a more accurate estimation of total irradiance 186 

received at ground, , such as : 187 

188 

189 

with (4) 190 

191 

The goal of ICARE-VEG (noted ICV) is to update ICARE retrieved surface 192 

reflectance to cope with tree shadows. It requires to solve Eq. 4 from Eq. 3 with the 193 

introduction of a physics-based correction factor   which is the ratio between the transmitted 194 

light, , and the total irradiance computed by ICARE, , with the following expression: 195 

196 

 with (5) 197 

198 

The factor   depends on the wavelength  , and the solid angle   under which the tree 199 

crown that casts the shadow is seen from any pixel C in the shadow. The analytical 200 

determination of   is not straightforward due to both the spectral and spatial dependence of 201 
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the ratio . Here, the main assumption is that the spectral and spatial response of 202 

can be linearly decorrelated. Thus,   is decomposed as follows: 203 

204 

 with (6) 205 

206 

 is the mean spectral response of  according to a "reference tree model" with 207 

fixed geometric dimensions. is further called the reference correction factor. It is 208 

associated with a reference solid angle .  is the solid angle at the location of the pixel 209 

C for the real geometrical dimensions of the tree in the scene. 210 

211 

3. ICARE-VEG method implementation212 

213 

The semi-automatic ICARE-VEG correction code is structured as depicted in Fig. 2. 214 

The original ICARE code is executed as a preliminary step (section 3.1). Individual trees and 215 

their associated shadows are then identified to perform a tree-specific local correction for each 216 

pixel in tree shadow (sections 3.2 and 3.3). The physics-based correction factor  (section 3.4) 217 

is divided into the determination of the reference correction factor  (section 3.4.1) and the 218 

solid angles, and (section 3.4.2). is evaluated in 3 steps. They rely on a 219 

"reference tree model" with fixed geometrical dimensions to study how  is impacted by 220 

tree crown biophysical and structural variables, and other external variables. For that purpose, 221 

the DART 3D radiative transfer code is used to simulate light interactions within a tree crown 222 

(Discrete Anisotropic Radiative Transfer; Gastellu-Etchegorry et al, 1996). The results are 223 

stored in a look-up table and a sensitivity analysis aims at defining the major variables 224 

required to assess  (section 3.4.1.1). Then, these major variables are derived from the 225 

processed image (section 3.4.1.2) and they are used to empirically compute  thanks to 226 

statistical multivariate strategies (section 3.4.1.3). At last, ICARE-VEG correction provides 227 

an improved reflectance retrieval for the pixels in tree shadows, while pixels in the sun and in 228 

the shadow of buildings are not updated from ICARE outputs (section 3.5). 229 

230 
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231 

Fig. 2. ICARE-VEG method workflow (3.1 existing ICARE method, from 3.2 to 3.5 new 232 

developments presented in this paper, highlighted by bold boxes). 233 

234 

3.1. Atmospheric correction by ICARE 235 

236 
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 ICARE (Lachérade et al., 2008) requires 3 inputs: an at-sensor image expressed in 237 

spectral radiance unit, a DSM and the geometry conditions (e.g. flight altitude, sensor spatial 238 

and spectral characteristics, sun and viewing angles) and the atmospheric conditions. 239 

Atmospheric radiative components are computed with the radiative transfer code 6SV 240 

(Vermote et al., 1997). The output is an image of spectral surface reflectance. 241 

 242 

3.2. Tree crown delineation 243 

 244 

 Two consecutive image segmentations are performed for delineating the individual 245 

tree crowns: detection of tree clusters, and separation of individual tree crowns in each cluster 246 

(Fig. 3). 247 

 248 

 249 

Fig. 3. Flowchart of the individual tree crown delineation. 250 

 251 

 First, pixels of vegetation are extracted in the image by computing the NDVI with the 252 

red band at 670nm and the NIR band at 800nm. The histogram of the NDVI image is 253 

thresholded with the bimodal technique of Otsu (1979) to create a binary vegetation mask. 254 

Then, a refinement step uses the DSM to separate high vegetation (e.g. trees) and low 255 

vegetation (e.g. grass). The histogram of the DSM image is classified with a user-defined 256 

threshold based on the minimum tree height the user wants to consider. The overlap between 257 

the resulting DSM mask and the vegetation mask generates the high tree vegetation mask (i.e. 258 

tree clusters location).  259 

 Afterwards, individual tree crowns are delineated within each tree cluster. Zheng et al., 260 

2016 give a relevant review of long studied techniques in the literature. The most used 261 

technique is rasted-based using extrapolation, interpolation and smoothing procedures for 262 

treetop detection and crown segmentation. First, the DSM mask is smoothed with a Gaussian 263 

filter in order to flatten the strong irregularities on top of tree canopies. Second, a region 264 

growing segmentation based on the method of Iovan et al. (2014) is used to delineate the tree 265 
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crowns. In short, the method detects local maxima in the DSM from the high vegetation mask, 266 

attributes a tree label to each treetop, and then performs a gradient descent technique to give a 267 

tree label to all pixels in the high vegetation mask. This step provides a tree label mask.  268 

 To avoid the detection of several treetops for the same tree, an adjacency condition 269 

sets the minimum distance between two treetops. This distance, expressed in a number of 270 

pixels, essentially depends on the image spatial resolution. The tree label mask is refined with 271 

two other criteria. The first removes trees with very small crowns, using a minimum number 272 

of pixels per tree label. The second one eliminates tree crowns that are partially in the shade 273 

of other trees or buildings. For that, it uses a maximum percentage of shaded pixels for a tree 274 

crown.  275 

 276 

3.3. Tree shadow detection 277 

 278 

 The identification of tree shadows is twofold: detection of all the shadows in the image 279 

and assignation of tree labels for tree shadows pixels (Fig. 4). 280 

 281 

 282 

Fig. 4. Flowchart of the individual tree shadow detection. 283 

 284 

 First, the shadow mask is created using an intensity image (noted I) computed from 285 

the combination of four radiance (R) spectral images (B: 470nm, G: 550nm, R: 670nm and 286 

NIR: 800nm): 287 

 288 

  
                 

 
         (7) 289 

 290 

 A global shadow binary mask is derived from this intensity image by histogram 291 

thresholding following the first valley detection method of Nagao et al.(1979). This method 292 

has shown good performance for high spatial resolution aerial images (Adeline et al, 2013a). 293 
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A morphological closing filter is applied in order to spatially homogenize the tree shadows 294 

possibly containing many penumbra areas. 295 

 Second, the detection of tree shaded pixels is achieved by framing each individual tree 296 

shadow with a rectangular box with vertices             (Fig. 5a). The edge       of 297 

this box represents the tree crown diameter, which is the segment intersecting the treetop in 298 

the direction perpendicular to the sun azimuth angle   . The orientation of the adjacent edges 299 

of the box, namely       and      , is driven by    while their length is dependent on the 300 

tree shadow length   (Fig. 5a) following sun ray parallel projection to the ground (Rosskopf 301 

et al., 2017). This length L is actually computed from the knowledge of the ground sampling 302 

distance (GSD), the sun zenith angle (  ), and the tree height (     ) derived from the treetop 303 

position and the DSM: 304 

 305 

  
             

   
          (8) 306 

 307 

 308 

Fig. 5. Geometric configurations with an isolated tree for a) tree shadow framing and b) solid 309 

angle computation from a point C in tree shadow and for a tree crown modelled as an 310 

ellipsoid (for the annotations see Appendix B). 311 

 312 

 Once the dimensions of the rectangular box are known, a region growing technique is 313 

applied, consisting in gradually scanning the box area and looking for pixels that belong to the 314 

global shadow mask but do not fall into the labeled pixels of the tree label mask. Each 315 
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detected tree shaded pixel is assigned to the corresponding tree label to build a tree shadow 316 

label mask.  317 

 In case of overlapping tree shadows, the highest tree is assumed predominant over the 318 

others. Also, a shaded region cannot be associated with more than one tree. And a refinement 319 

step is applied to remove small tree shadows based on a criterion counting the number of 320 

pixels belonging to each tree label. 321 

 322 

3.4. Correction factor determination 323 

 324 

 The correction factor   is the product between the reference correction factor 325 

     (section 3.4.1) and a ratio of viewing solid angles            (section 3.4.2; Eq. 6). 326 

 327 

3.4.1. Reference correction factor 328 

 329 

 A regression model is built using a design of experiments based on a "reference tree 330 

model" for further empirical computation of     . 331 

 332 

3.4.1.1. Design of experiments with DART and sensitivity analysis 333 

 334 

 A simple scenario was considered in the form of an isolated tree on a flat ground, for 335 

urban mid-latitude conditions and considering a viewing direction at Nadir (Fig. 6). Table 1 336 

gives the DART input parameters that describe the scene and the "reference tree model" 337 

(Gastellu-Etchegorry et al, 1996). The latter has fixed arbitrary dimensions, an ellipsoid 338 

crown, and a trunk outside and inside the crown with a cylindrical and conical shape, 339 

respectively. The DART spatial discretization scheme was set to 0.4m (i.e. spatial resolution 340 

of the output image). 341 

 342 
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343 
Fig.6. "Reference tree model" building from the DART interface. 344 

 345 

Table 1. DART settings for the design of experiments (the abbreviations of the variables of 346 

interest are given in brackets and in bold) 347 

 Variables [units] Values 

Sun geometry 
Zenith angle [°] (SUN) 30 - 45 - 60 

Azimuth angle [°] 90 (relative value) 

Sensor geometry Zenith angle [°]/ azimuth angle [°] 0 / 0 

Spectral bands 
Number

a
/ Range [µm] 110/ 0.4 - 1.0 

FHWM
b
 [nm] 3.7 

Atmospheric 

conditions 

Gaseous atmospheric profile Mid-latitude summer 

Aerosol type Urban 

Visibility [km] (VISI) 10 - 23 

Scene 

Dimensions in x,y,z [m x m x m] For a zenith angle <60°: 22.8 x 

22.8 x 14.0 

For a zenith angle = 60°: 30.8 x 

30.8 x 14.0 

Voxel size in x,y,z [m x m x m] 0.4 x 0.4 x 0.4 

Ground reflectance (GROUND) Asphalt and grass (cf. Fig.7) 

Isolated tree 

Tree height [m]/ tree crown height [m] 14.2 / 9.4 

Tree crown ellipsoid axis in x,y [m x 

m] 

6 x 6 

Trunk diameter below crown [m] 0.4 
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Tree leaf area index [m
2
.m

-2
] (LAI) 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 

- 6 - 8 

Leaf angle distribution ellipsoidal 

Average leaf angle [°](ALA) 30 - 57.58 - 70 

Horizontal random distribution of 

holes in the tree crown [%] 

(POROSITY) 

0 - 30 - 70 

Leaf optical properties (LOP) Liquidambar, oak and poplar (cf. 

Fig.7) 

a
Spectral bands inside atmospheric water vapour windows are not considered 348 

b
 FHWM: Full-Half-Width-Maximum 349 

 350 

 In agreement with previous studies characterizing the canopy reflectance (Weiss et al., 351 

2000; Combal et al., 2002) or the tree crown transmittance (Sampson and Smith, 1993), seven 352 

variables of interest X are selected to study the variations of      : tree Leaf Area Index that is 353 

the product between Leaf Area Index of the scene and the vegetation cover of the scene (for 354 

simplicity referred in this paper as LAI; Norman and Welles, 1983), Average Leaf Angle 355 

(ALA) defined for an ellipsoidal angle distribution (Campbell, 1990), percentage of holes in 356 

the tree crown (POROSITY) approximating somehow the clumping effect, Leaf Optical 357 

Properties (LOP), ground reflectance (GROUND), sun zenith angle (SUN) and atmospheric 358 

visibility (VISI). Each variable is tuned between 2 and 10 values according to its sensitivity. 359 

The ground and trunk optical properties come from the DART spectral database while the leaf 360 

optical properties come from the ANGERS03 spectral database (Jacquemoud et al., 2003). 361 

The ground surface is assumed to be asphalt or grass (Fig. 7). Three representative urban tree 362 

species were chosen: liquidambar "liquidambar styraciflua", for its mean leaf optical 363 

properties, and oak "quercus palustris" and poplar "populus alba", for their extreme optical 364 

properties (Fig.7). 365 

 366 
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367 

Fig. 7. Optical properties of scene components: two ground types (asphalt and grass) and 368 

trunk (left), leaves for the "reference tree model" (right: reflectances are in solid lines and 369 

transmittances are in dashed lines). 370 

371 

A full factorial design was carried out to study the impact of each independent variable 372 

X, individually or in interactions with the others, on the variations of  (Droesbeke et al., 373 

1997). DART simulated a total of 3240 scenarios, corresponding to top-of-canopy 374 

hyperspectral images with 110 spectral bands. It provided the radiative quantities required to 375 

compute  per ground pixel in tree shadow. Mean values of  were stored in a look-up-376 

table and used to perform a global sensitivity analysis to find out the major variables X' for 377 

determining . A variance analysis (ANOVA) with a linear relationship between  and 378 

the variables X was performed to compute a sensitivity index noted   . This is the ratio "sum 379 

of squares values accounting for the single and combined effects of the variables on the 380 

variance of " over "total sum of square values" (Monod et al., 2006; Olejnik and Algina, 381 

2003). SUN and LAI are the major variables X' because they give the highest values of  (cf. 382 

Appendix A). SUN being usually known (e.g. from date, time and location), the issue is to 383 

estimate the LAI, which is therefore discussed below. 384 

385 
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3.4.1.2. Tree LAI estimation 386 

 387 

Tree LAI can be estimated through the use of spectral vegetation indices from which 388 

NDVI is the most used (Colombo et al., 2003 ; Jensen et al., 2012). An empirical LAI-NDVI 389 

relationship is built based on a Beer-Lambert exponential regression model with 3 coefficients 390 

(Baret and Guyot, 1991): 391 

 392 

                                           (9) 393 

 394 

where       is the NDVI value for a bare soil (i.e. LAI equals zero),       is the 395 

asymptotic value of NDVI if LAI tends to infinite and       is the extinction coefficient. 396 

 397 

 The training data is provided by the design of experiments. For each DART scenario 398 

with a fixed LAI value, the NDVI is computed as the mean over a mask of 6×6 pixel grid 399 

centred at the canopy treetop. Then for each scenario out of the total of 324 run with DART, 400 

10 pairs of LAI and NDVI are available. However, the estimation of the coefficients of the 401 

regression model in Eq.9 depends on the 6 remaining variables of X from the design of 402 

experiments (ALA, POROSITY, LOP, GROUND, SUN, VISI). Except when SUN = 60° 403 

(high solar incidence angle leading to odd fits), performance of the built regression models 404 

gave coefficients of determination   > 0.87 and root mean square errors     < 0.37 in the 405 

estimated LAI. 406 

 Then, regression models are applied in the NDVI image and the NDVI value for each 407 

tree is computed as a mean over a 3×3 pixel grid centred at the treetop (grid size can be 408 

chosen manually). In practice, due to the difficulty to have a priori knowledge about the 409 

variable values (ALA, POROSITY, LOP, GROUND, SUN, VISI) for each tree, they are 410 

arbitrarily fixed to their average values : ALA = 57° (close to the common spherical 411 

distribution), POROSITY = 0% (uniform leaf spatial distribution), LOP = liquidambar, 412 

GROUND = asphalt, SUN = 45° and VISI = 23km (good visibility). 413 

 414 

3.4.1.3. Multivariate regression analysis  415 

 416 

 From the previously determined major variables X' (i.e. SUN and LAI), a multivariate 417 

linear regression model is built to estimate the reference correction factor      by using a 418 
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stepwise strategy in order to decrease the number of terms in the regression expression 419 

(Burnham and Anderson, 2004). A second degree polynomial expression with first order 420 

interactions between X' (LAI, SUN) is chosen at first. After some tests, the following reduced 421 

equation was chosen for all spectral bands: 422 

          
           

  
      

      
           

        
    

        
    

  
 423 

     
  

   
  

       424 

with  

  
           

  
          

               

          (10) 425 

 426 

 The 9 regression coefficients   were bootstrapped over 1000 samples and their mean 427 

values were the coefficients of the final expression in Eq. 10. The confidence intervals for the 428 

bootstrap fit of Eq. 10 were: 0.87 ≤    ≤ 0.93 and 5.3% ≤      ≤ 8.3% (n = 2592). The 429 

estimated      corresponds to the ratio between        and      (Eq. 6). For instance for a sun 430 

zenith angle of 55°, its values reach more than 40%, and have a monotonous increase towards 431 

NIR bands for very low LAI values (LAI ≤ 1; Fig. 8).        is mainly dominated by the 432 

contribution of       
    due to few light interactions with tree crown elements (Eq.4). The more 433 

the LAI increases, the more      values have a curvature at red-edge position between 700nm 434 

and 800nm. This emphasizes the contribution of       
   

 in addition to       
    in       . As a 435 

matter of fact, this spectrally-dependant feature of      is consistent with the leaves optical 436 

property features (Fig.7). Hence with the strong light multiple scattering within the tree 437 

crown,      values account less than 10% for very high LAI values (LAI ≥ 5; Fig. 8). 438 

 439 
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440 
Fig. 8. Reference correction factor expressed in percentage (i.e.     ) for different LAI values 441 

and for a zenith angle of 55°. 442 

 443 

3.4.2. Tree viewing solid angle 444 

 445 

 Once the reference correction factor      is estimated for each tree, a pixel-based 446 

spatial correction factor is needed to account for the real dimensions of the tree compared to 447 

the one used as a "reference tree model" in the design of experiments with DART. In a real 448 

scene, each point in the shade views a specific part of the tree; the closer the shaded point is to 449 

the tree position, and the larger the occultation is. This occultation is represented by the solid 450 

angle   under which the tree crown is seen. For simplicity, each tree crown is modelled as an 451 

elliptic shape (Fig. 5b). However, the mathematical expression of   is not straightforward and 452 

is further detailed in Appendix B. Then, the spatial correction factor is the ratio of   for the 453 

real tree in the image over      for DART "reference tree model" (see Eq. 6). Ω values 454 

usually ranges between 0 and π in steradian unit.      equals to 0.4sr. 455 

 456 

3.5. Tree shadow reflectance correction 457 

 458 
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 ICARE-VEG corrects the ICARE reflectance of any pixels in a tree shadow by a 459 

specific factor   (see Eq. 6). Other pixels are not corrected. In order to compare ICARE and 460 

ICARE-VEG performances, the Mean Absolute Error (MAE) in retrieved reflectance in tree 461 

shadows, i.e.     , is compared with ground truth measurements when they are available, or 462 

ICARE sunlit retrieved reflectance of the same material type over another area, i.e.        , 463 

such as: 464 

 465 

    
 

 
                        

 
          (11) 466 

with N the number of spectral bands. 467 

 468 

 The threshold for best MAE accuracy is set to 0.04 according to the performance of 469 

ICARE (Lachérade et al., 2008). A second metric is used, the spectral angle mapper (SAM; 470 

Kruse et al., 1993), to inform about the spectral distortions in the retrieved reflectance. It is a 471 

similarity spectral index independent of illumination and shadowing conditions. It requires 472 

computing the spectral angle α between the reference reflectance, i.e.        , and the 473 

retrieved reflectance, i.e.     : 474 

 475 

        
                     

 
   

         
     

 
    

   
       

     
 
    

          (12) 476 

 477 

 The lower α value is, the more similar the spectral shape is between the reference and 478 

ICARE-VEG retrieved reflectances. 479 

 480 

4. Experimental data 481 

 482 

 ICARE-VEG was validated by using the data collected on October 24
th

 2012 over 483 

Toulouse, France, from the UMBRA campaign (Urban Material characterization in the sun 484 

and shade of Built-up structures and trees and their Retrieval from Airborne image 485 

acquisitions over two French cities; Adeline et al., 2013b).  486 

 487 

4.1. Airborne hyperspectral data 488 

 489 
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 Airborne hyperspectral images were acquired with the push-broom sensor HySpex-490 

VNIR1600 (NorskElektroOptikk) with 160 bands in the spectral range 0.4-1µm and a spectral 491 

resolution of 3.7nm. For further analysis, 22 spectral bands are kept after removing low 492 

instrumental signal-to-noise ratio and water vapour atmospheric windows, and after spectral 493 

aggregation at 18nm to be compatible with ICARE running with 6SV code. The acquisitions 494 

were at Nadir with a ground spatial resolution of 0.8 m. In addition, a DSM was derived by 495 

multi-stereoscopic acquisitions from a panchromatic camera with a horizontal accuracy of 496 

0.12 m (Pierrot-Deseilligny and Paparoditis, 2006). The aerial images were manually 497 

georeferenced based on the DSM. More than 20 ground control points were selected with the 498 

use of the ENVI software and the precision accuracy was inferior to the pixel size. At last, the 499 

images were radiometrically corrected with in-lab sensor calibration coefficients. 500 

 Three images were studied and extracted, namely image U1, U2 and U3 (Fig. 9). They 501 

corresponded respectively to an acquisition time of 12h40UTC for U1 and U2, and 502 

11h30UTC for U3, with a solar zenith and azimuth angles of respectively (57.2°; 198.1°) for 503 

U1 and U2, and (55.5°; 177.5°) for U3. They induced large shadows on aerial images 504 

specifically in urban areas. The image U1 contains 27% of shaded pixels, 34% for U2, and 505 

finally 30% for U3. The images U1 and U2 are located on a sports centre, and are largely 506 

dominated by vegetated areas, both well maintained grass lawns and isolated trees, with 507 

sports infrastructures. They are characteristics of open areas whereas image U3 is oppositely 508 

representative of dense urban areas with high buildings and tree rows alongside the "canal du 509 

Midi".  510 

 511 
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 512 

Fig. 9. RGB composite images used in this study associated with their greyscale DSM and 513 

their location on a Google Earth image over Toulouse, France. 514 

 515 

4.2. Field measurements and atmospheric conditions 516 

 517 

 Road asphalt and grass surface reflectance were measured over the spectral range 518 

0.35-1.0µm at 3nm spectral resolution and 1nm spectral sampling interval with a portable 519 

ASD (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer and a 520 

reflectance plate Spectralon® of known reflectance. The integrated water vapor content and 521 

the aerosol type and abundance were measured with a microwave radiometer and a 522 

sunphotometer from AERONET (AErosol RObotic NETwork). 523 

 524 

5. Results and discussion 525 

 526 

 ICARE-VEG is applied on the three images described in section 4. Results are 527 

discussed for each processing step, then ICARE-VEG performance is compared with those of 528 

ICARE in tree shadows and with ground truth. 529 

 530 
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5.1. Image processing steps performed on trees and their shadows 531 

 532 

 Tree crown delineation and tree shadow detection (sections 3.2 and 3.3, cf. Fig. 2) are 533 

the most critical steps in ICARE-VEG since a tree-specific correction is further applied 534 

accounting for each tree dimensions and position relatively to the location of the shaded 535 

pixels. 536 

 For tree crown delineation, the adjacency criterion was set to 5 pixels (i.e. 4 m) for U2 537 

and U3 images, and to 4 (i.e. 3.2m) for U1. The percentage of canopy pixels in the shade was 538 

set to 80% (except for U3, 70%), the minimum number of pixels per tree to 40 pixels, and the 539 

tree minimum height to 5m.The DSM of U1 and U3 images was smoothed with a 2×2 size 540 

Gaussian filter. From the original images in Fig. 11a, results of NDVI images and histogram 541 

thresholding are shown in Fig. 10a and 10c, leading to the tree label masks shown in Fig. 11b. 542 

Some advantages and drawbacks can be pointed out: 543 

(i) Vegetation detection with NDVI is often limited by changes in tree phenology, age 544 

and health (e.g. senescent leaves, diseases), and also by top of canopy anisotropic directional 545 

reflectance behavior. The UMBRA campaign took place at the early autumn season (Fig. 546 

11a). Then, LAI of deciduous trees was falling, inducing a decrease in NDVI and sometimes 547 

tree under-detection (trees located at bottom of U1 and middle of U2 have mean NDVI values 548 

of 0.40 and 0.44, below the thresholds of 0.49 and 0.46: Fig.10c and Fig. 11b). Furthermore, 549 

the presence of a large vegetation fraction in the image (e.g. both grass and trees) produces an 550 

irregular shaped NDVI histogram, thus impacting the bimodal thresholding step (U1: Fig. 551 

10c). As a perspective, a combination of vegetation spectral indices is recommended for a 552 

better discrimination with artificial materials (Iovan et al, 2014). 553 

(ii) Topography is assumed to be flat, which induces tree misdetection when local 554 

variations occur (vegetated hedges on a bridge, U3: Fig. 11b). Moreover, DSM accuracy may 555 

be degraded next to sudden slope changes (lawn close to high buildings, U3:Fig. 11b). 556 

However, these errors are generally corrected during the shadow detection step, since no 557 

shadow is usually associated to the false detected trees (e.g. false detection of grass as trees). 558 

(iii) The delineation of each tree crown is straightforward for isolated trees. For 559 

instance, good performances are achieved for trees in rows (left in U2 and along the canal in 560 

U3:Fig. 11b). Difficulties arise in presence of clustered trees (centre and top-left of U1 and on 561 

the right of U2, Fig. 11b) and pruned trees (middle-right of U3: Fig. 11b), sometimes due to 562 

the presence of homogeneous canopies or a lack in height variation among trees (Zheng et al., 563 

2016). 564 
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For tree shadow detection, the minimum number of pixels for a tree shadow was set to 565 

100. From the original images in Fig. 11a, results of intensity images and histogram 566 

thresholding are shown in Fig. 10b and 10d, leading to the global shadow masks shown in 567 

Fig. 11c, and finally to the tree label shadow masks in Fig. 11d. Usually urban scenes contain 568 

a high percentage of shadows, which makes easier the thresholding on the intensity image 569 

based on a bimodal histogram. However, dark materials in sunlit regions and bright materials 570 

in shaded regions may be falsely detected as shadows (Adeline et al., 2013a). To address 571 

these problems, the thresholding method of Nagao (1979) is used to remove water bodies 572 

(canal detected in U3 without shadow detection: Fig. 11c) and the morphological closing filter 573 

homogenizes shaded regions (white road lines and cars, U3: Fig. 11c). In the tree label 574 

shadow masks, the method visually performs well for trees in rows and less for clustered trees 575 

such as observed before. In some cases, the tree shadow is truncated or under-detected due to 576 

a local less accurate DSM horizontal and vertical description (tree in row at bottom-left in U3 577 

and the clustered tree at middle-left in U1: Fig. 11d). 578 

 579 

 580 
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Fig. 10.a) NDVI images, b) intensity images, c) NDVI histograms and d) intensity histograms 581 

(black dots indicates thresholds values). 582 

 583 

 584 

Fig. 11. a) RGB composite images, b) tree label masks, c) global shadow masks before 585 

applying the morphological filter and d) tree shadow label masks. 586 

 587 
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 LAI and tree viewing solid angle estimation (sections 3.4.1.2 and 3.4.2, cf. Fig. 2) are 588 

the last steps required to compute the final physics-based correction factor β of ICARE-VEG. 589 

 For LAI estimation, the application of the LAI-NDVI regression model to the images 590 

shows the diversity of low estimated LAI values during the start of the fall season (Fig. 12). 591 

Without ground truth measurements, no validation can be performed. But on visual 592 

examination and by knowledge about the study site, qualitative comparison from one LAI to 593 

another seems correct if LAI values are not extreme (LAI close to 0 or superior to 4). Their 594 

values range is 0.77-2.35m
2
.m

-2
 for U1, 0.63-2.06m

2
.m

-2
 for U2 and 0.61-2.21m

2
.m

-2
 for U3. 595 

Improvements can be investigated in the future by adding the contribution of textural indices 596 

or geostatistical information in cases of heterogeneous and patchy spectral information over 597 

tree crowns  (Colombo et al., 2003). 598 

 Finally for tree viewing solid angle estimation, Ω is computed for every pixel in each 599 

tree shadow. Its mean value is 0.16sr for U1 and U2, and 0.18sr for U3 (Fig. 12). For instance 600 

for the long cast shadow at the bottom right in U1, Ω values range between 2.0sr for the pixel 601 

the closest to the trunk and 0.36sr for the pixel the furthest to the trunk.  602 

 603 

 604 

Fig. 12. LAI estimated from the LAI-NDVI regression model (first row) and tree viewing 605 

solid angles   computed in each tree shadow (second row; treetops are indicated in red dots). 606 

 607 

5.2. Spectral analysis and comparison between ICARE and ICARE-VEG 608 
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 609 

 The improvement of ICARE-VEG over ICARE in tree shaded regions is analyzed for 610 

3 types of materials, namely grass (high variable reflectance), asphalt (intermediate flat 611 

reflectance), and water (very low reflectance), respectively for 2 trees with different LAI 612 

values (Fig. 13). Performances are assessed with the computation of the metrics, MAE and 613 

SAM (Eq. 12, Table 2), and by observing the spectral variability in the retrieved reflectance 614 

(Fig. 14). The results show that: 615 

 616 

(i) the mean reflectance of ICARE in the tree shade is always overestimated compared 617 

to its counterpart in the sun. This is strengthened if the material in the shade has a high 618 

reflectance (i.e. grass compared to asphalt) and if the LAI is small (since the tree crown 619 

transmittance increases; Fig. 13). The MAE for ICARE in the tree shade is at least 4 times 620 

higher than the one with ICARE in the sun when compared to the ground truth (Table 2), 621 

(ii) ICARE retrieved reflectance in the tree shade is distorted from visible to NIR 622 

bands, with a spectral increase starting at the red-edge position (particularly more visible for 623 

grass). This observation is in line with the previous comments on      (Fig. 12). ICARE-VEG 624 

correction attenuates this spectral distortion: SAM values are better by a multiplicative factor 625 

between 1.0 and 1.4 compared to ICARE (Table 2), 626 

(iii) ICARE-VEG retrieves lower reflectance values than ICARE, and have a better 627 

accuracy due to the correction brought by        : its MAE decreases by a multiplicative 628 

factor between 2 and 4.5 when considering ground truth as a reference, and by a 629 

multiplicative factor between 4.2 and 18.8 when considering ICARE in the sun as a reference 630 

(Table 2). ICARE-VEG correction is spectrally-dependent; it is less notable in the visible 631 

range but becomes important in the NIR where ICARE can achieve non physical reflectance 632 

values higher than 1 (e.g. grass; Fig. 13a and 13b), 633 

(iv) The spectral dispersion in ICARE retrieved reflectances increases from sunlit to 634 

shaded regions (Fig. 14). This may be due to penumbra and tree clumping effects impacting 635 

the spatial homogeneity of the tree shadow at ground. Globally, ICARE-VEG correction 636 

reduces this dispersion but not at the same order of magnitude of what ICARE in the sun 637 

does, 638 

(v) The correction applied to water is the most challenging because of its very low 639 

reflectance, smaller than the 4% threshold in MAE selected as the desired accuracy for 640 

atmospheric correction models (Fig. 13). However, ICARE-VEG correction is promising 641 
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since the order of magnitude in retrieved reflectances is correct as well as its global spectral 642 

shape, 643 

 (iv) The spectral differences between ICARE-VEG results and ground truth may be 644 

explained by the fact that ground truth has been measured close to tree shadow but in the 645 

sunny part, which induces spectral intra-class variability issue, and      factor brings a mean 646 

correction over the tree shadow, which cannot account for all local variations in tree shadow, 647 

especially when LAI is low. 648 

 At last, ICARE and ICARE-VEG are compared for all pixels belonging to the tree 649 

shadow label mask (U1: 5048 pixels, U2: 3843 pixels, U3: 4034 pixels). In the NIR band at 650 

800nm, the decrease in the mean ICARE-VEG retrieved reflectance compared to ICARE is 651 

43.3% for U1, 54.5% for U2 and 36.7% for U3. In the red band at 670nm, this decrease is 652 

36.4% for U1, 51.8% for U2 and 40.1% for U3. At 800nm, ICARE reflectance is larger than 1 653 

for 5.9%, 3.6% and 0.3% of pixels for U1, U2 and U3, respectively. ICARE-VEG reduces 654 

this percentage of pixels to 4.1%, 2.9% and 0.1%, respectively. 655 

 656 

 657 

Fig. 13. ICARE reflectances in the sun ("IC_sun") and both ICARE and ICARE-VEG 658 

reflectances in the shade ("IC_sh" and "ICV_sh") for 3 ground materials (grass: first column, 659 
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asphalt: second column, and water: third column) and for 2 different LAI values (high: first 660 

row and low: second row). In-situ measurements are also shown when available ("GT" : 661 

Ground Truth). 662 

 663 

Table 2. ICARE and ICARE-VEG performance (MAE : Mean Absolute Error expressed in 664 

percentage of reflectance unit, and SAM : Spectral Angle Mapper expressed in radian unit) 665 

for scenarios from a to f (please refer to Fig. 13). Reference reflectance is in-situ 666 

measurements or ICARE in the sun. Bold numbers indicate MAE values lower than 4%; "_" 667 

stands for unavailable data. 668 

Reference Test Metrics a) b) c) d) e) f) 

In-situ 

measurements 

(sun) 

ICARE (sun) 
MAE 

SAM 

7.6% 

0.22 

6.5% 

0.15  

0.5% 

0.05 

1.3% 

0.09 
_ _ 

ICARE 

(shadow) 

MAE 

SAM 

31.7% 

0.26  

29.0% 

0.21 

4.6% 

0.17 

25.2% 

0.23  
_ _ 

ICARE-VEG 

(shadow) 

MAE 

SAM 

13.1 

% 

0.25  

8.2% 

0.19 

2.3% 

0.13 

5.7% 

0.18  
_ _ 

ICARE  

(sun) 

ICARE 

(shadow) 

MAE 

SAM 

37.1% 

0.07  

34.2% 

0.07 

4.7% 

0.20  

24.0% 

0.30  

10.6% 

0.37  

7.1% 

0.49  

ICARE-VEG 

(shadow) 

MAE 

SAM 

14.2% 

0.05 

10.5% 

0.05  

2.3% 

0.15  

5.1% 

0.25  

6.0% 

0.34  

1.1% 

0.42 

 669 
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Fig. 14. Reflectance variability in red band (2 first rows) and NIR band (2 last rows) for 672 

ICARE in the sun ("IC_sun") and both ICARE and ICARE-VEG in the shade ("IC_sh" and 673 

"ICV_sh" respectively) for scenarios from a to f (please refer to Fig. 13). 674 

 675 

6. Conclusions 676 

 677 

 ICARE-VEG improves ICARE 3D atmospheric correction in order to correct retrieved 678 

surface reflectances in presence of tree shadows. It includes image-based techniques such as 679 

tree crown delineation and tree shadow detection, and then the application of a spectral and 680 

geometrical physics-based correction factor in tree shadow pixels following each tree crown 681 

characteristics. Since this issue is relatively new, the strategy was based on a complex 682 

exploratory methodology by using the DART 3D canopy radiative transfer model, and heads 683 

towards the development of a semi-automatic method. ICARE-VEG only considers deciduous 684 

trees with green healthy leaves and surfaces with a lambertian spectral behaviour. 685 

 The application of ICARE-VEG on VNIR hyperspectral high spatial resolution data 686 

and the comparison between ICARE and ICARE-VEG clearly stress that a large inaccuracy 687 

occurs if tree crown transmission is neglected. Globally, results were encouraging and showed 688 

that (i) neglecting the transmitted irradiance demonstrates an over-estimation in retrieved 689 

reflectances, the higher the material reflectance is and the lower the tree LAI is, (ii) this bias 690 

increases from visible to NIR at the red-edge position, which is due to the additive 691 

contribution of the diffuse over the direct transmitted irradiance in the total transmitted 692 

irradiance received at tree shadow; ICARE-VEG attenuated this spectral distortion by a 693 

multiplicative factor between 1.0 and 1.4 by means of spectral angle mapper performance, 694 

(iii) ICARE-VEG improves the mean absolute error in retrieved reflectances compared to 695 

ICARE in tree shadows by a multiplicative factor ranging between 4.2 and 18.8 for some test 696 

cases (taking ICARE in the sun as reference), and (iv) for a given wavelength, the spectral 697 

variability in the retrieved reflectances increases from sunlit to shaded regions due to 698 

penumbra and tree clumping effects, which makes difficult for the ICARE-VEG correction to 699 

exactly reduce at the same order of magnitude of what ICARE does in sunlit regions.  700 

 These results highlight the complexity to model physical natural processes with finer 701 

spatial resolutions. The difficulty relies on the high number of sources of variability to cope 702 

with, among them, the spectral and spatial dimensions for the tree shadow correction, the 703 

intra-class variability for a given material, and the intrinsic characteristics of urban areas 704 

(Small, 2001). 705 
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 Future work includes the validation of ICARE-VEG in the Short Wave Infrared 706 

Region (SWIR: 1.0-2.5µm), the replacement of 6SV atmospheric code with MODTRAN 707 

(MODerate resolution atmospheric TRANsmission; Berk et al, 1999) in ICARE-HS, and the 708 

comparison of 3D atmospheric codes in urban areas between the fusion of ICARE-VEG and 709 

ICARE-HS and ATCOR-4. Moreover, a better analysis of the direct and diffuse transmitted 710 

irradiance terms in presence of a tree crown is planned to better understand the possible 711 

sources of errors and improvements of ICARE-VEG. 712 

 713 
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Appendix A 723 

 724 

 To assess the most influent variables X', a global sensitivity analysis based on 725 

ANOVA is applied on a second degree polynomial expression with first order interactions 726 

between the inputs X={LAI, ALA, POROSITY, LOP, GROUND, SUN, VISI} and the output 727 

    . For each spectral band, the regression fit between X and      gives: R
2
> 0.98 and p-728 

value < 1%. The sensitivity index    is computed for 4 ranges of LAI from the results of 729 

ANOVA: full LAI range (0.5-8), low LAI (0.5-2), medium LAI (2-3.5) and high LAI (3.5-8). 730 

Results are shown in Table A.1. 731 

 732 

Table A.1. Median values of the sensitivity index   , expressed in total percentage accounting 733 

for the contribution of the variable in the variance of      computed over the spectral domain 734 

for different LAI ranges and based on ANOVA results. Each single variable represents its 735 

main effect (coefficient of the variable taken alone and squared except for the qualitative 736 

variables: LOP, GROUND, VISI); the interaction effect is the sum of all combinations 737 
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between the variables; residuals stand for the missing contribution from other variables or 738 

errors in the fitting regression model of     . 739 

 LAI range 

Variables (Df)
a
 0.5 ≤ LAI ≤ 8 

(n=3490) 

0.5 ≤ LAI ≤ 2 

(n=1296) 

2 ≤ LAI ≤ 3.5 

(n=1296) 

3.5 ≤ LAI ≤ 8 

(n=1296) 

LAI (2) 72.1 41.6 24.1 15.2 

ALA (2) 1.5 1.1 5.4 8.5 

POROSITY (2) 0.9 0.2 2.3 8.3 

LOP (2) 0.0 0.0 0.0 0.0 

GROUND (1) 0.0 0.0 0.0 0.0 

SUN (2) 18.2 38.1 51.2 50.2 

VISI (1) 3.6 13.8 9.1 6.2 

Interactions (27) 2.6 3.2 7.1 10.0 

Residuals 1.1 2.0 0.8 1.6 

a
Degree of Freedom 740 

 741 

 Whatever the LAI range,    values showed few spectral dependence except locally on 742 

the red-edge with around 10% maximum variation (data not shown). In one side for the full 743 

LAI range (0.5 ≤ LAI ≤ 8) and by order of importance, LAI and SUN contribute the most to 744 

     variance, then VISI, the interactions (mainly dominated by ALA with SUN), ALA, 745 

POROSITY, and at last no contribution for LOP and GROUND. These two last variables 746 

might interfere in the radiative budget (i.e.     ) at a second level compared to LAI and SUN 747 

since the contribution of the direct light is predominant over the diffuse light within the 748 

canopy. On the other side, by considering LAI ranges, the more LAI increases, the more the 749 

influence of LAI and VISI is reduced for the increasing benefit of SUN, ALA, the interactions 750 

(e.g. ALA with SUN) and POROSITY. Indeed, increasing tree clumping and both sun zenith 751 

angle and leaf orientation gets more transparency in a very closed canopy (i.e. high LAI). 752 

Finally, LAI and SUN are selected as X' variables to estimate     . 753 

 754 

Appendix B 755 

 756 

 The solid angle viewing a surface situated in the upper space from any point is usually 757 

defined by: 758 
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 759 

                
    

    

   

 
                

   

 
     (B.1) 760 

 761 

 θ denotes the elevation angle (which is not the standard notation in spherical 762 

coordinate system), and φ the azimuth angle (anticlockwise from South direction, e.g. X axis). 763 

                      is the partial angle of the object for a given θ and is set to 0 764 

when the object is out of reach for a given direction (    . However, here the tree crown is 765 

assumed to have an ellipsoid shape (Essery et al., 2008; Fig. 5), hence       expression is 766 

not trivial to determine and to integrate since it depends on θ variations.  767 

 Let’s consider a given point C(0,0,0) situated in the tree shadow. C is the centre of the 768 

Cartesian coordinates system. The coordinates of the base of the trunk T are (x0,y0,0), the total 769 

tree height is      , the trunk height               , the tree crown has a diameter of       770 

and is modelled by an ellipsoid with a revolution symmetry in Z axis: 771 

 772 

               

  
  

       

  
            (B.2) 773 

 774 

with            denotes the horizontal tree radius of the crown diameter,           775 

          is the vertical radius, and                   is the altitude of the ellipsoid 776 

centre. For any ray beam emitted from point C(0,0,0) in a given direction denoted by the 777 

couple of angles (θ, φ), the parametric equation is: 778 

 779 

      
               

               

        
          (B.3) 780 

 781 

 l stands for the parametric distance. In order to find the intersection between the beam 782 

and the crown, Eq. B.2 is substituted into Eq. B.3. This gives a quadratic equation with three 783 

coefficients              determined by: 784 

 785 

 
 
 

 
   

       

  
  

       

  
 

  
                               

  
  

           

  
 

  
  

    
 

  
  

  
 

  
   

       (B.4) 786 
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 787 

    is defined as the azimuth of point T. The expression of parameter b can be 788 

rewritten as follows:  789 

                       with

 
 

 
       

            
    

 

  
 

       
           

  
 

     (B.5) 790 

 791 

 In order to find only one solution to this quadratic equation, i.e. when the ray intersects 792 

the tree crown surface at only one point located at the borders of the tree crown, the equality 793 

         must comply with: 794 

 795 

                 
       

  
  

       

  
   

  
    

 

  
  

  
 

  
        (B.6) 796 

 797 

 Thus, two solutions are resulting for  : 798 

          with           
           

     
       (B.7) 799 

 800 

 Since the azimuth of the two borders are symmetric,    is centred on the azimuth of 801 

the trunk (i.e.   ). By reporting Eq. B.6 and Eq. B.5 in Eq. B.1, the integration will be solved 802 

numerically by using the Riemann integral, further validated with a Monte Carlo method.    803 

will be set to 0 when the tree is out of reach, i.e. for values of θ leading to  
           

     
   , 804 

where the arcos function is not defined. 805 
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