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ICARE-VEG: A 3D PHYSICS-BASED ATMOSPHERIC CORRECTION METHOD 1 FOR TREE SHADOWS IN URBAN AREAS 2 3
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Many applications dedicated to urban areas (e.g. land cover mapping and biophysical 23

Infrared Region (V-NIR: 0.4-1.0µm) with hyperspectral airborne data at 0.8m resolution on 43 three ground materials types, grass, asphalt and water. Results show that (i) ICARE-VEG 44 improves the mean absolute error in retrieved reflectances compared to ICARE in tree 45 shadows by a multiplicative factor ranging between 4.2 and 18.8, and (ii) reduces the spectral 46 bias in reflectance from visible to NIR (due to light transmission through the tree crown) by a 47 multiplicative factor between 1.0 and 1.4 in terms of spectral angle mapper performance. 48 ICARE-VEG opens the way to a complete interpretation of remote sensing images (sunlit, 49 shade cast by both buildings and trees) and the derivation of scientific value-added products 50 over all the entire image without the preliminary step of shadow masking. 51

52

. Although sufficient 70 for coarse classification of urban material types, it is unsatisfactory for the intra-class 71 variability quantification and the retrieval of physico-chemical properties of surface materials, 72 which requires the accurate spectral reflectance of each material. The second category of de-73 shadowing methods uses atmospheric correction codes to convert at-sensor radiance into 74 reflectance units. They are physics-based methods which correct the radiometrical bias 75 occurring in shaded pixels by considering atmospheric conditions and sometimes the scene 76 3D topography (e.g. Digital Surface Model -DSM or a vector model). To our knowledge, 77 only a few atmospheric correction codes are adapted to urban environments: the semi-78 empirical model of Chen et al., 2013, ICARE (Inversion Code for urban Areas Reflectance 79 Extraction, Lachérade et al., 2008) and ATCOR-4 (Atmospheric/topographic correction for 80 airborne imagery, Richter and Schläpfer, 2002). However, only the two last codes can achieve 81 an exact calculation of the 3D radiative terms to retrieve surface reflectance. 82

properties estimation) using high spatial resolution remote sensing images require the use of 24 3D atmospheric correction methods, able to model complex light interactions within urban 25 topography such as buildings and trees. Currently, one major drawback of these methods is 26 their lack in modelling the radiative signature of trees (e.g. the light transmitted through the 27 tree crown), which leads to an over-estimation of ground reflectance at tree shadows. No 28 study has been carried out to take into account both optical and structural properties of trees in 29 the correction provided by these methods. The aim of this work is to improve an existing 3D 30 atmospheric correction method, ICARE (Inversion Code for urban Areas Reflectance

Introduction 53 54

The potential of hyperspectral remote sensing imagery with high spatial resolution in 55 the reflective domain 0.4-2.5µm has long been studied to increase the characterization of 56 surface materials for ecosystem monitoring [START_REF] Wulder | High spatial resolution remotely 993 sensed data for ecosystem characterization[END_REF], and particularly for urban 57 environments [START_REF] Jensen | Remote sensing of urban/suburban infrastructure and 898 socioeconomic attributes[END_REF][START_REF] Small | Spectral dimensionality and scale of urban radiance[END_REF][START_REF] Puissant | Les images à très haute résolution spatiale: une source 938 d'information géographique en milieu urbain ? état des lieux et perspectives[END_REF], such as for 58 vegetation biodiversity assessment [START_REF] Alonzo | Urban tree species mapping using hyperspectral 827 and lidar data fusion[END_REF], road traffic monitoring (Rosenbaum 59 et al., 2010) and land cover classification [START_REF] Roessner | Automated differentiation of urban 949 surfaces based on airborne hyperspectral imagery[END_REF]. For urban applications, one 60 major limitation comes from the complex topography of urban landscapes combined with low 61 solar elevation, which induces many shaded pixels in aerial and satellite images at high spatial 62 resolution. In image processing, shaded region areas are often neglected, with shadows 63 classified as a material class [START_REF] Dell'acqua | Urban land cover mapping using hyperspectral 868 and multispectral vhr sensors: spatial versus spectral resolution[END_REF][START_REF] Yuan | Mapping impervious surface area using high resolution imagery: 996 A comparison of object-based and per pixel classification[END_REF] or used to 64 retrieve the dimensions of nearby buildings [START_REF] Liow | Use of shadows for extracting buildings in aerial 914 images[END_REF]. 65 ATCOR-4 is currently the most used atmospheric correction code by the scientific 83 community that has been tested for a large panel of hyperspectral airborne sensors over the 84 spectral range 0.4-2.5µm. For a flat terrain composed of lambertian materials (i.e. 85 corresponding to an isotropic light reflection), ATCOR-4 performance achieves an error in 86 the retrieved reflectance of 0.02 and 0.04 for an initial reflectance of less than 0.10 and 0.40, 87 respectively (Rese ATCOR-4 User Guide; [START_REF] Richter | Geo-atmospheric processing of airborne imaging 945 spectrometry data.part 2: Atmospheric/topographic correction[END_REF]. For a rugged terrain, 88 ATCOR-4 performance is not quantified since it strongly depends on the DSM accuracy and 89 the registration between the image and the DSM (Rese ATCOR-4 User Guide ;Schläpfer et 90 al., 2000). An improved version of ATCOR named BREFCOR is able to correct the effects of 91 bidirectional reflectance distribution function of materials [START_REF] Schläpfer | Operational BRDF Effects Correction for 974 Wide-Field-of-View Optical Scanners (BREFCOR)[END_REF]. ICARE is a 92 3D atmospheric correction method dedicated to urban areas with lambertian materials. It was 93 initially developed to process airborne multispectral images acquired by the PELICAN image 94 system (Duffaut and Deliot, 2005) with spectral bandwidth of 30nm at a spatial resolution of 95 20cm, and with limited spatial extent. Its performance showed a maximum peak to peak 96 accuracy of 0.04 in the retrieved reflectance for eight spectral bands from 420 to 917nm and 97 for pixels located in shadows cast by buildings [START_REF] Lachérade | Icare: A 909 physically-based model to correct atmospheric and geometric effects from high spatial and 910 spectral remote sensing images over 3d urban areas[END_REF]. Currently, ICARE is 98 being improved to process hyperspectral images. The improved method named ICARE-HS 4 (ICARE using HyperSpectral imagery) was tested with airborne HySpex hyperspectral data 100 with 160 spectral bands in the Visible-Near Infrared (V-NIR: 0.4-1.0µm) at a spatial 101 resolution of 80cm [START_REF] Ceamanos | Using 3D information 844 for atmospheric correction of airborne hyperspectral images of urban areas[END_REF]. The performance of this new ICARE version was 102 not quantitatively validated. 103 Atmospheric correction codes succeed in modeling opaque objects governed by 104 absorption and reflection processes (e.g. buildings). However, the main issue lies in the lack 105 of modeling of transmittance processes resulting from semi-transparent and transparent 106 surfaces (e.g. trees and windows). For trees, ATCOR-4 and ICARE neglect the fraction of the 107 incident solar radiation that is transmitted through tree crown, thus generating a bias in the 108 retrieved reflectance in tree shadows [START_REF] Adeline | Material reflectance retrieval in shadow due 820 to urban vegetation from 3D lidar data and hyperspectral airborne imagery[END_REF][START_REF] Schläpfer | Correction Of Shadowing In Imaging 970 Spectroscopy Data By Quantification Of The Proportion Of Diffuse Illumination[END_REF]Damm et al, 109 2015). Actually, the under-estimation of total irradiance in the shade produces an over-110 estimation of retrieved reflectance, which is higher in the NIR bands than in the visible with a 111 transition close to the red-edge [START_REF] Adeline | Material reflectance retrieval in shadow due 820 to urban vegetation from 3D lidar data and hyperspectral airborne imagery[END_REF][START_REF] Damm | Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived 862 from spectroscopy data[END_REF]. With ICARE, 112 [START_REF] Adeline | Material reflectance retrieval in shadow due 820 to urban vegetation from 3D lidar data and hyperspectral airborne imagery[END_REF] showed that the retrieved reflectance in tree shadows compared to their 113 counterpart in sunlit areas for the same material type (asphalt and grass) gave mean root mean 114 square error values up to 0.09. With ATCOR-4, [START_REF] Damm | Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived 862 from spectroscopy data[END_REF] showed that an inaccurate 115 estimation of irradiance can lead to a difference in tree shadows in NDVI values (Normalized 116 Difference Vegetation Index; Rouse, 1974) up to 13% and in PRI values (Photochemical 117 Reflectance Index; [START_REF] Gamon | A narrow-waveband spectral index that tracks diurnal 884 changes in photosynthetic efficiency[END_REF] up to 32% for some test scenarios over grass. One of 118 the required steps to solve this issue is to carry out a sensitivity analysis in order to know 119 which tree canopy parameters, both spectral (e.g. optical properties of leaves and wood) and 120 structural (e.g. leaf area index, leaf angular distribution, clumping, tree dimensions) have the 121 most impact on light transmission through the tree crown. To our best knowledge, such an 122 analysis has not been performed yet for radiative transfer budget estimation. 123

The objective of this work is to improve the existing 3D atmospheric correction code 124 ICARE to cope with the presence of trees. The new version is further named ICARE-VEG 125 (ICARE with VEGetation). It is based on the building of a physics-based correction factor to 126 apply to ICARE's outputs in order to provide a better estimation of surface reflectance in tree 127 shadows. The challenge is to define a general correction baseline adapted to any urban trees 128 and requiring a small number of relevant variables to study. To this end, ICARE-VEG relies 129 on the decoupling between a spectral reference correction based on a "reference tree model" 130 with fixed geometrical dimensions, and a spatial correction accounting for the real dimensions 131 of the tree processed in the image. The spectral reference correction is built from the results of 132 a sensitivity analysis based on a design of experiments to derive the most important factors 133 contributing to light transmission through the tree crown. The spatial correction factor is 134 computed from the tree dimensions and the location of the pixel within the tree shadow. At 135 last, ICARE-VEG only considers deciduous trees with green healthy leaves and surfaces with 136 a lambertian spectral behaviour. 137

This paper is organized as follows. Section 2 introduces the physical principles of 138 radiative transfer modeling for ICARE-VEG. Section 3 describes each step implemented in 139 ICARE-VEG. Section 4 presents the airborne and field data used for validation. Finally, the 140 performance of ICARE-VEG for surface reflectance retrieval in tree shadows is presented in 141 section 5. Conclusion and perspectives are given in section 6. 142 143

Physical modeling for ICARE-VEG 144 145

For a given wavelength λ in the optical domain 0.4-2.5μm, the surface reflectance ρ of 146 a target is derived from the direct upwelling radiance coming from the target and 147 reaching a given pixel of the sensor detector matrix, the total downwelling irradiance 148 received at ground, and the upwelling direct atmospheric transmission (Fig. 1; Lachérade 149 et al., 2008) , is the sum of the direct radiance, , the environment radiance due to the 162 atmospheric light scattering, , and the atmospheric radiance (the so-called path radiance), 163 (Fig. 1). Also, the total irradiance, , is the sum of the direct solar irradiance, , the 164 atmospheric diffuse solar irradiance, , the irradiance due to scattering by the surrounding 165 environment,

, and the earth-atmosphere coupling irradiance, (Fig. 1). 166 167 ICARE (noted IC) considers that surfaces have lambertian reflectances and the 168 viewing direction is Nadir. The surface spectral bidirectional reflectance for any pixel P at the 169 wavelength is simply named . ICARE analytically determines the surface reflectance 170 for a pixel A in a sunlit region (Fig. 1a , must be considered in addition to (Fig. 1c). 182

The term can be split into , the light directly transmitted without interactions with 183 the tree elements, and , the light that is transmitted after at least one scattering with 184 crown elements, either leaves or woody stems (Fig. 1c). Consequently, Eq. 3 needs to be 185 modified for a pixel C in tree shadow with a more accurate estimation of total irradiance 186 The factor depends on the wavelength , and the solid angle under which the tree 199 crown that casts the shadow is seen from any pixel C in the shadow. The analytical 200 determination of is not straightforward due to both the spectral and spatial dependence of 201 the ratio . Here, the main assumption is that the spectral and spatial response of 202 can be linearly decorrelated. Thus, is decomposed as follows: 203 204 with (6) 205 206 is the mean spectral response of according to a "reference tree model" with 207 fixed geometric dimensions.

received
is further called the reference correction factor. It is 208 associated with a reference solid angle . is the solid angle at the location of the pixel 209 C for the real geometrical dimensions of the tree in the scene. 210 211

ICARE-VEG method implementation 212 213

The semi-automatic ICARE-VEG correction code is structured as depicted in Fig. 2. 214

The original ICARE code is executed as a preliminary step (section 3.1). Individual trees and 215 their associated shadows are then identified to perform a tree-specific local correction for each 216 pixel in tree shadow (sections 3.2 and 3.3). The physics-based correction factor (section 3.4) 217 is divided into the determination of the reference correction factor (section 3.4.1) and the 218 solid angles, and (section 3.4.2). is evaluated in 3 steps. They rely on a 219 "reference tree model" with fixed geometrical dimensions to study how is impacted by 220 tree crown biophysical and structural variables, and other external variables. For that purpose, 221 the DART 3D radiative transfer code is used to simulate light interactions within a tree crown 222 (Discrete Anisotropic Radiative Transfer;[START_REF] Gastellu-Etchegorry | Modeling radiative 887 transfer in heterogeneous 3-d vegetation canopies[END_REF]. The results are 223 stored in a look-up table and a sensitivity analysis aims at defining the major variables 224 required to assess (section 3.4.1.1). Then, these major variables are derived from the 225 processed image (section 3.4.1.2) and they are used to empirically compute thanks to 226 statistical multivariate strategies (section 3.4.1.3). At last, ICARE-VEG correction provides 227 an improved reflectance retrieval for the pixels in tree shadows, while pixels in the sun and in 228 the shadow of buildings are not updated from ICARE outputs (section 3.5). 229 [START_REF] Lachérade | Icare: A 909 physically-based model to correct atmospheric and geometric effects from high spatial and 910 spectral remote sensing images over 3d urban areas[END_REF] requires 3 inputs: an at-sensor image expressed in 237 spectral radiance unit, a DSM and the geometry conditions (e.g. flight altitude, sensor spatial 238 and spectral characteristics, sun and viewing angles) and the atmospheric conditions. 239 Atmospheric radiative components are computed with the radiative transfer code 6SV 240 [START_REF] Vermote | Second Simulation 985 of the Satellite Signal in the Solar Spectrum, 6S: An Overview[END_REF]. The output is an image of spectral surface reflectance. 241 2014) is used to delineate the tree 265 crowns. In short, the method detects local maxima in the DSM from the high vegetation mask, 266 attributes a tree label to each treetop, and then performs a gradient descent technique to give a 267 tree label to all pixels in the high vegetation mask. This step provides a tree label mask. 268

To avoid the detection of several treetops for the same tree, an adjacency condition 269 sets the minimum distance between two treetops. This distance, expressed in a number of 270 pixels, essentially depends on the image spatial resolution. The tree label mask is refined with 271 two other criteria. The first removes trees with very small crowns, using a minimum number 272 of pixels per tree label. The second one eliminates tree crowns that are partially in the shade 273 of other trees or buildings. For that, it uses a maximum percentage of shaded pixels for a tree 274 crown. 275 276

Tree shadow detection 277 278

The identification of tree shadows is twofold: detection of all the shadows in the image 279 and assignation of tree labels for tree shadows pixels (Fig. 4). thresholding following the first valley detection method of [START_REF] Nagao | Region extraction and shape analysis in aerial 921 photographs[END_REF]. This method 292 has shown good performance for high spatial resolution aerial images (Adeline et al, 2013a). 293

A morphological closing filter is applied in order to spatially homogenize the tree shadows 294 possibly containing many penumbra areas. 295

Second, the detection of tree shaded pixels is achieved by framing each individual tree 296 shadow with a rectangular box with vertices (Fig. 5a). The edge of 297 this box represents the tree crown diameter, which is the segment intersecting the treetop in 298 the direction perpendicular to the sun azimuth angle . The orientation of the adjacent edges 299 of the box, namely and , is driven by while their length is dependent on the 300 tree shadow length (Fig. 5a) following sun ray parallel projection to the ground (Rosskopf 301 et al., 2017). This length L is actually computed from the knowledge of the ground sampling 302 applied, consisting in gradually scanning the box area and looking for pixels that belong to the 314 global shadow mask but do not fall into the labeled pixels of the tree label mask. Each 315 13 detected tree shaded pixel is assigned to the corresponding tree label to build a tree shadow 316 label mask. 317

In case of overlapping tree shadows, the highest tree is assumed predominant over the 318 others. Also, a shaded region cannot be associated with more than one tree. And a refinement 319 step is applied to remove small tree shadows based on a criterion counting the number of 320 pixels belonging to each tree label. 321 322

Correction factor determination 323 324

The correction factor is the product between the reference correction factor 325 (section 3.4.1) and a ratio of viewing solid angles (section 3.4.2; Eq. 6). 326 327

Reference correction factor 328 329

A regression model is built using a design of experiments based on a "reference tree 330 model" for further empirical computation of . 331 332

Design of experiments with DART and sensitivity analysis 333 334

A simple scenario was considered in the form of an isolated tree on a flat ground, for 335 urban mid-latitude conditions and considering a viewing direction at Nadir (Fig. 6). Table 1 336 gives the DART input parameters that describe the scene and the "reference tree model" 337 [START_REF] Gastellu-Etchegorry | Modeling radiative 887 transfer in heterogeneous 3-d vegetation canopies[END_REF]. The latter has fixed arbitrary dimensions, an ellipsoid 338 crown, and a trunk outside and inside the crown with a cylindrical and conical shape, 339 respectively. The DART spatial discretization scheme was set to 0.4m (i.e. spatial resolution 340 of the output image). 341 In agreement with previous studies characterizing the canopy reflectance (Weiss et al., 351 2000;[START_REF] Combal | Retrieval of canopy biophysical variables from bidirectional 857 reflectance -using prior information to solve the ill-posed inverse problem[END_REF] or the tree crown transmittance [START_REF] Sampson | Influence of canopy architecture on light penetration in 963 lodgepole pine (Pinuscontorta var. latifolia) forests[END_REF], seven 352 variables of interest X are selected to study the variations of : tree Leaf Area Index that is 353 the product between Leaf Area Index of the scene and the vegetation cover of the scene (for 354 simplicity referred in this paper as LAI; [START_REF] Norman | Radiative transfer in an array of canopies[END_REF], Average Leaf Angle 355 (ALA) defined for an ellipsoidal angle distribution [START_REF] Campbell | Derivation of an angle density function for canopies with ellipsoidal leaf 841 angle distributions[END_REF], percentage of holes in 356 the tree crown (POROSITY) approximating somehow the clumping effect, Leaf Optical 357 Properties (LOP), ground reflectance (GROUND), sun zenith angle (SUN) and atmospheric 358 visibility (VISI). Each variable is tuned between 2 and 10 values according to its sensitivity. 359

The ground and trunk optical properties come from the DART spectral database while the leaf 360 optical properties come from the ANGERS03 spectral database [START_REF] Jacquemoud | ANGERS leaf optical properties 895 database[END_REF]. 361

The ground surface is assumed to be asphalt or grass (Fig. 7). Three representative urban tree 362 species were chosen: liquidambar "liquidambar styraciflua", for its mean leaf optical 363 properties, and oak "quercus palustris" and poplar "populus alba", for their extreme optical 364 properties (Fig. 7). 365 366 16 367 Fig. 7. Optical properties of scene components: two ground types (asphalt and grass) and 368 trunk (left), leaves for the "reference tree model" (right: reflectances are in solid lines and 369 transmittances are in dashed lines). 370 371 A full factorial design was carried out to study the impact of each independent variable 372 X, individually or in interactions with the others, on the variations of (Droesbeke et al., 373 1997). DART simulated a total of 3240 scenarios, corresponding to top-of-canopy 374 hyperspectral images with 110 spectral bands. It provided the radiative quantities required to 375 compute per ground pixel in tree shadow. Mean values of were stored in a look-up-376 table and used to perform a global sensitivity analysis to find out the major variables X' for 377 determining

. A variance analysis (ANOVA) with a linear relationship between and 378 the variables X was performed to compute a sensitivity index noted . This is the ratio "sum 379 of squares values accounting for the single and combined effects of the variables on the 380 variance of " over "total sum of square values" [START_REF] Monod | Working with Dynamic Crop Models -Chapter 3 917 39 Uncertainty and sensitivity analysis for crop models[END_REF]Olejnik and Algina, 381 2003). SUN and LAI are the major variables X' because they give the highest values of (cf. 382 Appendix A). SUN being usually known (e.g. from date, time and location), the issue is to 383 estimate the LAI, which is therefore discussed below. 384 385

Tree LAI estimation 386 387

Tree LAI can be estimated through the use of spectral vegetation indices from which 388 NDVI is the most used [START_REF] Colombo | Retrieval of leaf area index in 852 different vegetation types using high resolution satellite data[END_REF][START_REF] Jensen | Estimating Urban Leaf Area Index (LAI) of 901 Individual Trees with Hyperspectral Data[END_REF]). An empirical LAI-NDVI 389 relationship is built based on a Beer-Lambert exponential regression model with 3 coefficients 390 [START_REF] Baret | Potentials and limits of vegetation indices for lai and apar 830 assessment[END_REF] The training data is provided by the design of experiments. For each DART scenario 398 with a fixed LAI value, the NDVI is computed as the mean over a mask of 6×6 pixel grid 399 centred at the canopy treetop. Then for each scenario out of the total of 324 run with DART, 400 10 pairs of LAI and NDVI are available. However, the estimation of the coefficients of the 401 regression model in Eq.9 depends on the 6 remaining variables of X from the design of 402 experiments (ALA, POROSITY, LOP, GROUND, SUN, VISI). Except when SUN = 60° 403 (high solar incidence angle leading to odd fits), performance of the built regression models 404 gave coefficients of determination > 0.87 and root mean square errors < 0.37 in the 405 estimated LAI. 406 Then, regression models are applied in the NDVI image and the NDVI value for each 407 tree is computed as a mean over a 3×3 pixel grid centred at the treetop (grid size can be 408 chosen manually). In practice, due to the difficulty to have a priori knowledge about the 409 variable values (ALA, POROSITY, LOP, GROUND, SUN, VISI) for each tree, they are 410 arbitrarily fixed to their average values : ALA = 57° (close to the common spherical 411 distribution), POROSITY = 0% (uniform leaf spatial distribution), LOP = liquidambar, 412 GROUND = asphalt, SUN = 45° and VISI = 23km (good visibility). 413 414

Multivariate regression analysis 415 416

From the previously determined major variables X' (i.e. SUN and LAI), a multivariate 417 linear regression model is built to estimate the reference correction factor by using a 418 stepwise strategy in order to decrease the number of terms in the regression expression 419 [START_REF] Burnham | Multimodel inference understanding aic and bic in 838 model selection[END_REF]. A second degree polynomial expression with first order 420 interactions between X' (LAI, SUN) is chosen at first. After some tests, the following reduced 421 equation was chosen for all spectral bands: 422 423 424 with (10) 425 426

The 9 regression coefficients were bootstrapped over 1000 samples and their mean 427 values were the coefficients of the final expression in Eq. 10. The confidence intervals for the 428 bootstrap fit of Eq. 10 were: 0.87 ≤ ≤ 0.93 and 5.3% ≤ ≤ 8.3% (n = 2592). The 429 estimated corresponds to the ratio between and (Eq. 6). For instance for a sun 430 zenith angle of 55°, its values reach more than 40%, and have a monotonous increase towards 431 NIR bands for very low LAI values (LAI ≤ 1; Fig. 8).

is mainly dominated by the 432 contribution of due to few light interactions with tree crown elements (Eq.4). The more 433 the LAI increases, the more values have a curvature at red-edge position between 700nm 434 and 800nm. This emphasizes the contribution of in addition to in . As a 435 matter of fact, this spectrally-dependant feature of is consistent with the leaves optical 436 property features (Fig. 7). Hence with the strong light multiple scattering within the tree 437 crown, values account less than 10% for very high LAI values (LAI ≥ 5; Fig. 8). 438 Once the reference correction factor is estimated for each tree, a pixel-based 446 spatial correction factor is needed to account for the real dimensions of the tree compared to 447 the one used as a "reference tree model" in the design of experiments with DART. In a real 448 scene, each point in the shade views a specific part of the tree; the closer the shaded point is to 449 the tree position, and the larger the occultation is. This occultation is represented by the solid 450 angle under which the tree crown is seen. For simplicity, each tree crown is modelled as an 451 elliptic shape (Fig. 5b). However, the mathematical expression of is not straightforward and 452 is further detailed in Appendix B. Then, the spatial correction factor is the ratio of for the 453 real tree in the image over for DART "reference tree model" (see Eq. 6). Ω values 454 usually ranges between 0 and π in steradian unit. equals to 0.4sr. 455 456 3.5. Tree shadow reflectance correction 457 458 20 ICARE-VEG corrects the ICARE reflectance of any pixels in a tree shadow by a 459 specific factor (see Eq. 6). Other pixels are not corrected. In order to compare ICARE and 460 ICARE-VEG performances, the Mean Absolute Error (MAE) in retrieved reflectance in tree 461 shadows, i.e.

, is compared with ground truth measurements when they are available, or 462 ICARE sunlit retrieved reflectance of the same material type over another area, i.e.

, 463 such as: 464 465 ( 11) 466

with N the number of spectral bands. 467 468

The threshold for best MAE accuracy is set to 0.04 according to the performance of 469 ICARE [START_REF] Lachérade | Icare: A 909 physically-based model to correct atmospheric and geometric effects from high spatial and 910 spectral remote sensing images over 3d urban areas[END_REF]. A second metric is used, the spectral angle mapper (SAM; 470 [START_REF] Kruse | The Spectral Image Processing System (SIPS) -Interactive visualization 906 and analysis of Imaging Spectrometer data[END_REF], to inform about the spectral distortions in the retrieved reflectance. It is a 471 similarity spectral index independent of illumination and shadowing conditions. It requires 472 computing the spectral angle α between the reference reflectance, i.e.

, and the 473 retrieved reflectance, i.e.

: 474

(12) 476 477

The lower α value is, the more similar the spectral shape is between the reference and 478 ICARE-VEG retrieved reflectances. 479 Airborne hyperspectral images were acquired with the push-broom sensor HySpex-490 VNIR1600 (NorskElektroOptikk) with 160 bands in the spectral range 0.4-1µm and a spectral 491 resolution of 3.7nm. For further analysis, 22 spectral bands are kept after removing low 492 instrumental signal-to-noise ratio and water vapour atmospheric windows, and after spectral 493 aggregation at 18nm to be compatible with ICARE running with 6SV code. The acquisitions 494 were at Nadir with a ground spatial resolution of 0.8 m. In addition, a DSM was derived by 495 multi-stereoscopic acquisitions from a panchromatic camera with a horizontal accuracy of 496 0.12 m (Pierrot-Deseilligny and Paparoditis, 2006). The aerial images were manually 497 georeferenced based on the DSM. More than 20 ground control points were selected with the 498 use of the ENVI software and the precision accuracy was inferior to the pixel size. At last, the 499 images were radiometrically corrected with in-lab sensor calibration coefficients. 500 Three images were studied and extracted, namely image U1, U2 and U3 (Fig. 9). They 501 corresponded respectively to an acquisition time of 12h40UTC for U1 and U2, and 502 11h30UTC for U3, with a solar zenith and azimuth angles of respectively (57.2°; 198.1°) for 503 U1 and U2, and (55.5°; 177.5°) for U3. They induced large shadows on aerial images 504 specifically in urban areas. The image U1 contains 27% of shaded pixels, 34% for U2, and 505 finally 30% for U3. The images U1 and U2 are located on a sports centre, and are largely 506 For tree shadow detection, the minimum number of pixels for a tree shadow was set to 565 100. From the original images in Fig. 11a, results of intensity images and histogram 566 thresholding are shown in Fig. 10b and10d, leading to the global shadow masks shown in 567 Fig. 11c, and finally to the tree label shadow masks in Fig. 11d. Usually urban scenes contain 568 a high percentage of shadows, which makes easier the thresholding on the intensity image 569 based on a bimodal histogram. However, dark materials in sunlit regions and bright materials 570 in shaded regions may be falsely detected as shadows (Adeline et al., 2013a). To address 571 these problems, the thresholding method of [START_REF] Nagao | Region extraction and shape analysis in aerial 921 photographs[END_REF] is used to remove water bodies 572 (canal detected in U3 without shadow detection: Fig. 11c) and the morphological closing filter 573 homogenizes shaded regions (white road lines and cars, U3: Fig. 11c). In the tree label 574 shadow masks, the method visually performs well for trees in rows and less for clustered trees 575 such as observed before. In some cases, the tree shadow is truncated or under-detected due to 576 a local less accurate DSM horizontal and vertical description (tree in row at bottom-left in U3 577 and the clustered tree at middle-left in U1: Fig. 11d). 578 For LAI estimation, the application of the LAI-NDVI regression model to the images 590 shows the diversity of low estimated LAI values during the start of the fall season (Fig. 12). 591 Without ground truth measurements, no validation can be performed. But on visual 592 examination and by knowledge about the study site, qualitative comparison from one LAI to 593 another seems correct if LAI values are not extreme (LAI close to 0 or superior to 4). Their 594 values range is 0.77-2.35m 2 .m -2 for U1, 0.63-2.06m 2 .m -2 for U2 and 0.61-2.21m 2 .m -2 for U3. 595

Improvements can be investigated in the future by adding the contribution of textural indices 596 or geostatistical information in cases of heterogeneous and patchy spectral information over 597 tree crowns [START_REF] Colombo | Retrieval of leaf area index in 852 different vegetation types using high resolution satellite data[END_REF]. 598

Finally for tree viewing solid angle estimation, Ω is computed for every pixel in each 599 tree shadow. Its mean value is 0.16sr for U1 and U2, and 0.18sr for U3 (Fig. 12). For instance 600 for the long cast shadow at the bottom right in U1, Ω values range between 2.0sr for the pixel 601 the closest to the trunk and 0.36sr for the pixel the furthest to the trunk. 602 

Spectral analysis and comparison between ICARE and ICARE-VEG 608 609

The improvement of ICARE-VEG over ICARE in tree shaded regions is analyzed for 610 3 types of materials, namely grass (high variable reflectance), asphalt (intermediate flat 611 reflectance), and water (very low reflectance), respectively for 2 trees with different LAI 612 values (Fig. 13). Performances are assessed with the computation of the metrics, MAE and 613 SAM (Eq. 12, Table 2), and by observing the spectral variability in the retrieved reflectance 614 (Fig. 14). The results show that: 615 616 (i) the mean reflectance of ICARE in the tree shade is always overestimated compared 617 to its counterpart in the sun. This is strengthened if the material in the shade has a high 618 reflectance (i.e. grass compared to asphalt) and if the LAI is small (since the tree crown 619 transmittance increases; Fig. 13). The MAE for ICARE in the tree shade is at least 4 times 620 higher than the one with ICARE in the sun when compared to the ground truth (Table 2), 621 (ii) ICARE retrieved reflectance in the tree shade is distorted from visible to NIR 622 bands, with a spectral increase starting at the red-edge position (particularly more visible for 623 grass). This observation is in line with the previous comments on (Fig. 12). ICARE-VEG 624 correction attenuates this spectral distortion: SAM values are better by a multiplicative factor 625 between 1.0 and 1.4 compared to ICARE (Table 2), 626 (iii) ICARE-VEG retrieves lower reflectance values than ICARE, and have a better 627 accuracy due to the correction brought by : its MAE decreases by a multiplicative 628 factor between 2 and 4.5 when considering ground truth as a reference, and by a 629 multiplicative factor between 4.2 and 18.8 when considering ICARE in the sun as a reference 630 (Table 2). ICARE-VEG correction is spectrally-dependent; it is less notable in the visible 631 range but becomes important in the NIR where ICARE can achieve non physical reflectance 632 values higher than 1 (e.g. grass; Fig. 13a and13b), 633 (iv) The spectral dispersion in ICARE retrieved reflectances increases from sunlit to 634 shaded regions (Fig. 14). This may be due to penumbra and tree clumping effects impacting 635 the spatial homogeneity of the tree shadow at ground. Globally, ICARE-VEG correction 636 reduces this dispersion but not at the same order of magnitude of what ICARE in the sun 637 does, 638 (v) The correction applied to water is the most challenging because of its very low 639 reflectance, smaller than the 4% threshold in MAE selected as the desired accuracy for 640 atmospheric correction models (Fig. 13). However, ICARE-VEG correction is promising 641 since the order of magnitude in retrieved reflectances is correct as well as its global spectral 642 shape, 643 (iv) The spectral differences between ICARE-VEG results and ground truth may be 644 explained by the fact that ground truth has been measured close to tree shadow but in the 645 sunny part, which induces spectral intra-class variability issue, and factor brings a mean 646 correction over the tree shadow, which cannot account for all local variations in tree shadow, 647 especially when LAI is low. 648 At last, ICARE and ICARE-VEG are compared for all pixels belonging to the tree 649 shadow label mask (U1: 5048 pixels, U2: 3843 pixels, U3: 4034 pixels). In the NIR band at 650 800nm, the decrease in the mean ICARE-VEG retrieved reflectance compared to ICARE is 651 43.3% for U1, 54.5% for U2 and 36.7% for U3. In the red band at 670nm, this decrease is 652 36.4% for U1, 51.8% for U2 and 40.1% for U3. At 800nm, ICARE reflectance is larger than 1 653 for 5.9%, 3.6% and 0.3% of pixels for U1, U2 and U3, respectively. ICARE-VEG reduces 654 this percentage of pixels to 4.1%, 2.9% and 0.1%, respectively. 655 656 657 Fig. 13. ICARE reflectances in the sun ("IC_sun") and both ICARE and ICARE-VEG 658 reflectances in the shade ("IC_sh" and "ICV_sh") for 3 ground materials (grass: first column, 659 29 asphalt: second column, and water: third column) and for 2 different LAI values (high: first 660 row and low: second row). In-situ measurements are also shown when available ("GT" : 661 Ground Truth). 662 663 Table 2. ICARE and ICARE-VEG performance (MAE : Mean Absolute Error expressed in 664 percentage of reflectance unit, and SAM : Spectral Angle Mapper expressed in radian unit) 665 for scenarios from a to f (please refer to Fig. 13). Reference reflectance is in-situ 666 measurements or ICARE in the sun. ICARE in the sun ("IC_sun") and both ICARE and ICARE-VEG in the shade ("IC_sh" and 673 "ICV_sh" respectively) for scenarios from a to f (please refer to Fig. 13). 674 675 6. Conclusions 676 677 ICARE-VEG improves ICARE 3D atmospheric correction in order to correct retrieved 678 surface reflectances in presence of tree shadows. It includes image-based techniques such as 679 tree crown delineation and tree shadow detection, and then the application of a spectral and 680 geometrical physics-based correction factor in tree shadow pixels following each tree crown 681 characteristics. Since this issue is relatively new, the strategy was based on a complex 682 exploratory methodology by using the DART 3D canopy radiative transfer model, and heads 683 towards the development of a semi-automatic method. ICARE-VEG only considers deciduous 684 trees with green healthy leaves and surfaces with a lambertian spectral behaviour. 685

The application of ICARE-VEG on VNIR hyperspectral high spatial resolution data 686 and the comparison between ICARE and ICARE-VEG clearly stress that a large inaccuracy 687 occurs if tree crown transmission is neglected. Globally, results were encouraging and showed 688 that (i) neglecting the transmitted irradiance demonstrates an over-estimation in retrieved 689 reflectances, the higher the material reflectance is and the lower the tree LAI is, (ii) this bias 690 increases from visible to NIR at the red-edge position, which is due to the additive 691 contribution of the diffuse over the direct transmitted irradiance in the total transmitted 692 irradiance received at tree shadow; ICARE-VEG attenuated this spectral distortion by a 693 multiplicative factor between 1.0 and 1.4 by means of spectral angle mapper performance, 694 (iii) ICARE-VEG improves the mean absolute error in retrieved reflectances compared to 695 ICARE in tree shadows by a multiplicative factor ranging between 4.2 and 18.8 for some test 696 cases (taking ICARE in the sun as reference), and (iv) for a given wavelength, the spectral 697 variability in the retrieved reflectances increases from sunlit to shaded regions due to 698 penumbra and tree clumping effects, which makes difficult for the ICARE-VEG correction to 699 exactly reduce at the same order of magnitude of what ICARE does in sunlit regions. 700

These results highlight the complexity to model physical natural processes with finer 701 spatial resolutions. The difficulty relies on the high number of sources of variability to cope 702 with, among them, the spectral and spatial dimensions for the tree shadow correction, the 703 intra-class variability for a given material, and the intrinsic characteristics of urban areas 704 [START_REF] Small | Spectral dimensionality and scale of urban radiance[END_REF]. 705 Future work includes the validation of ICARE-VEG in the Short Wave Infrared 706 Region (SWIR: 1.0-2.5µm), the replacement of 6SV atmospheric code with MODTRAN 707 (MODerate resolution atmospheric TRANsmission; [START_REF] Berk | 834 MODTRAN4 radiative transfer modeling for atmospheric correction[END_REF] in ICARE-HS, and the 708 comparison of 3D atmospheric codes in urban areas between the fusion of ICARE-VEG and 709 ICARE-HS and ATCOR-4. Moreover, a better analysis of the direct and diffuse transmitted 710 irradiance terms in presence of a tree crown is planned to better understand the possible 711 sources of errors and improvements of values showed few spectral dependence except locally on 742 the red-edge with around 10% maximum variation (data not shown). In one side for the full 743 LAI range (0.5 ≤ LAI ≤ 8) and by order of importance, LAI and SUN contribute the most to 744 variance, then VISI, the interactions (mainly dominated by ALA with SUN), ALA, 745 POROSITY, and at last no contribution for LOP and GROUND. These two last variables 746 might interfere in the radiative budget (i.e.

) at a second level compared to LAI and SUN 747 since the contribution of the direct light is predominant over the diffuse light within the 748 canopy. On the other side, by considering LAI ranges, the more LAI increases, the more the 749 influence of LAI and VISI is reduced for the increasing benefit of SUN, ALA, the interactions 750 (e.g. ALA with SUN) and POROSITY. Indeed, increasing tree clumping and both sun zenith 751 angle and leaf orientation gets more transparency in a very closed canopy (i.e. high LAI). 752 Finally, LAI and SUN are selected as X' variables to estimate . 753 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q IC_sun IC_sh ICV_sh IC_sun IC_sh ICV_sh c) LAI = 1.34 q q q q q q q q q q IC_sun IC_sh ICV_sh e) LAI = 1.57 q q q q q q q q q q IC_sun IC_sh ICV_sh 0.00 b) LAI = 1.14 q q q q q q q q q q IC_sun IC_sh ICV_sh 0.0 0.2 0.4 0.6 0.8 reflectance at 670nm d) LAI = 1.16 q q q q q q q q q q q q IC_sun IC_sh ICV_sh 0.00 q q q q q q q q q q q q q q q q q q IC_sun IC_sh ICV_sh 0.0 0.5 1.0 1.5 2.0 2.5 3.0 grass reflectance at 800nm a) LAI = 1.36 q q q q q q q q q q q q IC_sun IC_sh ICV_sh 0.00 0.10 0.20 0.30 asphalt reflectance at 800nm IC_sun IC_sh ICV_sh c) LAI = 1.34 q q q q q q q q q q q q q q q q IC_sun IC_sh ICV_sh -0.15 -0.10 -0.05 0.00 0.05 water reflectance at 800nm e) LAI = 1.57 q q q q IC_sun IC_sh ICV_sh 0.0 0.5 1.0 1.5 2.0 2.5 3.0 reflectance at 800nm b) LAI = 1.14 q q q q q q q IC_sun IC_sh ICV_sh 0.0 0.2 0.4 0.6 0.8 1.0 1.2 reflectance at 800nm d) LAI = 1.16 q q q q q q q q q q IC_sun IC_sh ICV_sh -0.15 -0.10 -0.05 0.00 0.05 reflectance at 800nm f) LAI = 0.97 

  Taxonomy of the radiative transfer components for ICARE (IC) and ICARE-VEG 155 (ICV) for an urban scene and for a target a) in the sun, b) in a building shadow and c) in a topography inducing downwelling and upwelling multiple reflections on 160 surrounding surface elements, and to local atmospheric multiple scattering. The total at-sensor 161 radiance,

  for is only valid for shadows cast by opaque 180 surface materials such as buildings. In shaded regions cast by trees, however, the incoming 181 light transmitted through tree crowns,

  ICARE-VEG method workflow (3.1 existing ICARE method, from 3.2 to 3.5 new 232 developments presented in this paper, highlighted by bold boxes). 233 234 3.1. Atmospheric correction by ICARE 235 236 ICARE

(

  segmentations are performed for delineating the individual 245 tree crowns: detection of tree clusters, and separation of individual tree crowns in each cluster 246 of vegetation are extracted in the image by computing the NDVI with the 252 red band at 670nm and the NIR band at 800nm. The histogram of the NDVI image is 253 thresholded with the bimodal technique of Otsu (1979) to create a binary vegetation mask. 254 Then, a refinement step uses the DSM to separate high vegetation (e.g. trees) and low 255 vegetation (e.g. grass). The histogram of the DSM image is classified with a user-defined 256 threshold based on the minimum tree height the user wants to consider. The overlap between 257 the resulting DSM mask and the vegetation mask generates the high tree vegetation mask (i.e. 258 tree clusters location). 259 Afterwards, individual tree crowns are delineated within each tree cluster. Zheng et al., 260 2016 give a relevant review of long studied techniques in the literature. The most used 261 technique is rasted-based using extrapolation, interpolation and smoothing procedures for 262 treetop detection and crown segmentation. First, the DSM mask is smoothed with a Gaussian 263 filter in order to flatten the strong irregularities on top of tree canopies. Second, a region 264 growing segmentation based on the method of Iovan et al. (

  Flowchart of the individual tree shadow detection. 283 284 First, the shadow mask is created using an intensity image (noted I) computed from 285 the combination of four radiance (R) spectral images (B: 470nm, G: 550nm, R: shadow binary mask is derived from this intensity image by histogram 291

  distance (GSD), the sun zenith angle ( ), and the tree height ( Geometric configurations with an isolated tree for a) tree shadow framing and b) solid 309 angle computation from a point C in tree shadow and for a tree crown modelled as an 310 ellipsoid (for the annotations see Appendix B). 311 312 Once the dimensions of the rectangular box are known, a region growing technique is 313

  . "Reference tree model" building from the DART interface. 344 345 Table 1. DART settings for the design of experiments (the abbreviations of the variables of 346 interest are given in brackets and in bold) x,y,z [m x m x m] For a zenith angle <60°: 22.8 x 22.8 x 14.0 For a zenith angle = 60°: 30.8 x 30.8 x 14.0 Voxel size in x,y,z [m x m x m] 0.4 x 0.4 x 0.4 Ground reflectance (GROUND) Asphalt and grass (cf. Fig.7) Isolated tree Tree height [m]/ tree crown height [m] 14.2 / 9.4 Tree crown ellipsoid axis in x,y [m x m] 6 x 6 Trunk diameter below crown [m] 0.4Tree leaf area index [m 2 .m -2 ] (LAI) 0.5 -1 -1.5 -2 -2.5 -3 -3.5 optical properties (LOP) Liquidambar, oak and poplar (cf.

Fig. 7 )a

 7 Fig.7) a Spectral bands inside atmospheric water vapour windows are not considered 348 b FHWM: Full-Half-Width-Maximum 349 350

  was validated by using the data collected on October 24 th 2012 over 483 Toulouse, France, from the UMBRA campaign (Urban Material characterization in the sun 484 and shade of Built-up structures and trees and their Retrieval from Airborne image 485 acquisitions over two French cities;Adeline et al., 2013b). 486 487 4.1. Airborne hyperspectral data 488 489 21

  dominated by vegetated areas, both well maintained grass lawns and isolated trees, with 507 sports infrastructures. They are characteristics of open areas whereas image U3 is oppositely 508 representative of dense urban areas with high buildings and tree rows alongside the "RGB composite images used in this study associated with their greyscale DSM and 513 their location on a Google Earth image over Toulouse, France. 514 5154.2. Field measurements and atmospheric conditions 516 517Road asphalt and grass surface reflectance were measured over the spectral range 518 0.35-1.0µm at 3nm spectral resolution and 1nm spectral sampling interval with a portable 519 ASD (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer and a 520 reflectance plate Spectralon® of known reflectance. The integrated water vapor content and 521 the aerosol type and abundance were measured with a microwave radiometer and a is applied on the three images described in section 4. Results are 527 discussed for each processing step, then ICARE-VEG performance is compared with those of 528 ICARE in tree shadows and with ground truth. 529 530

  Fig. 10.a) NDVI images, b) intensity images, c) NDVI histograms and d) intensity histograms 581 (black dots indicates thresholds values). 582 583

  . LAI estimated from the LAI-NDVI regression model (first row) and tree viewing 605 solid angles computed in each tree shadow (second row; treetops are indicated in red dots). 606 607

  Figure1 Click here to download Figure: Fig1.pdf

  Figure14aClick here to download Figure: Fig14a.pdf

Figure14b

  Figure14bClick here to download Figure: Fig14b.pdf

Figure

  Figure Click here to download Figure: Fig2_revised.pdf

  

  

  

  

  

  

  

  

  

Extraction), to account for trees in its new version, ICARE-VEG (ICARE with VEGetation).
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ANOVA is applied on a second degree polynomial expression with first order interactions 726 between the inputs X={LAI, ALA, POROSITY, LOP, GROUND, SUN, VISI} and the output 727 . For each spectral band, the regression fit between X and gives: R 2 > 0.98 and p-728 value < 1%. The sensitivity index is computed for 4 ranges of LAI from the results of 729 ANOVA: full LAI range (0.5-8), low LAI (0.5-2), medium LAI (2-3.5) and high . 730 for the contribution of the variable in the variance of computed over the spectral domain 734 for different LAI ranges and based on ANOVA results. Each single variable represents its 735 main effect (coefficient of the variable taken alone and squared except for the qualitative 736 variables: LOP, GROUND, VISI); the interaction effect is the sum of all combinations 737

Results are shown in

Appendix B 755 756

The solid angle viewing a surface situated in the upper space from any point is usually 757 defined by: 758 34 759 (B.1) 760 761 θ denotes the elevation angle (which is not the standard notation in spherical 762 coordinate system), and φ the azimuth angle (anticlockwise from South direction, e.g. X axis). 763 is the partial angle of the object for a given θ and is set to 0 764 when the object is out of reach for a given direction ( . However, here the tree crown is 765 assumed to have an ellipsoid shape (Essery et al., 2008; Fig. 5), hence expression is 766 not trivial to determine and to integrate since it depends on θ variations. 767

Let's consider a given point C(0,0,0) situated in the tree shadow. C is the centre of the 768 Cartesian coordinates system. The coordinates of the base of the trunk T are (x 0 ,y 0 ,0), the total 769 tree height is , the trunk height , the tree crown has a diameter of 770 and is modelled by an ellipsoid with a revolution symmetry in Z axis: 771 the trunk (i.e. ). By reporting Eq. B.6 and Eq. B.5 in Eq. B.1, the integration will be solved 802 numerically by using the Riemann integral, further validated with a Monte Carlo method. 803 will be set to 0 when the tree is out of reach, i.e. for values of θ leading to , 804 where the arcos function is not defined. 805 806