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Abstract. We study two different descriptions of incidence projective
geometry: a synthetic, mathematics-oriented one and a more practical,
computation-oriented one, based on the combinatorial concept of rank
of a set of points. Using both axiom systems, we prove that some specific
finite planes (resp. spaces) verify the axioms of projective plane (resp.
space) geometry and Desargues’ property. It requires using repeated case
analysis on all variables of some finite inductive data-types and leads to
numerous (sub-)goals in the Coq proof assistant. We thus investigate to
what extend Coq can deal with such a combinatorial explosion in the
number of cases to handle. We propose some easy-to-implement but rel-
evant proof optimizations which, combined together, lead to an efficient
way to deal with such large proofs.

Keywords: Coq, proof automation, combinatorial explosion, finite in-
ductive types, projective geometry, finite geometry, Desargues’ property

1 Introduction

Incidence projective geometry is one of the simplest and most expressive frame-
works used to describe some aspects of geometry. It is a good candidate for
formalization: few axioms are needed and some key geometric properties such as
Desargues’ one can be formally stated and proved correct under some specific
assumptions (see [11, 12]).

The notion of incidence projective plane is mainly defined by two axioms:
two distinct points define a single line and two lines concur in a single point. A
third axiom is usually used to catch precisely the dimension of geometry. For
higher dimensions, the second axiom is a bit more complicated and defined as
the two following statements: (1) two lines concur in at most one point and (2)
Pasch’s axiom: given four different points A, B, C and D, if lines AB and CD
concur, so do lines AC and BD. Moreover, other axioms can be added to avoid
degenerate cases.

Proving properties in projective geometry or proving that some planes or
spaces are actual models of projective geometry is usually based on analyzing a
few general configurations as well as numerous degenerate cases. Using a proof
assistant such as Coq [3, 6] makes it easier for the user to write a correct and
comprehensive proof. Indeed, Coq forces the programmer to handle each possible
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case in the proof. In addition, all details of the proof must be provided, which
improves the confidence in it and allows the system to verify the proofs (by type-
checking). The drawback is that it represents a tremendous amount of work for
the proof developer. Thankfully, the Coq proof assistant and its tactic language
Ltac allow to build ad-hoc tactics to automate large parts of the proofs efficiently.

We use two equivalent formal descriptions of projective geometry: a synthetic
one and an alternative one using a matroid structure operating on points [4]. We
check to what extent each of them allows to perform tractable, readable, easy-to-
write and easy-to-process proofs. To achieve this goal, we work with some finite
models of projective geometry: pg(2, 2), also known as Fano plane, pg(2, 3) and
pg(2, 5); as well as the smallest finite projective space pg(3, 2) (see subsection
2.3). As models grow bigger, we need smarter proof techniques to cope with the
inherent complexity and to keep memory usage, proof search and compile time
under control.

Related Work Finite geometry has been studied since the late 19th century
and is intrinsically linked to the development of algebraic structures like division
rings, near fields or ternary rings. There has been a renewed interest with its
application to computational domains like cryptography or planning (see [2, 5]
for a comprehensive state of the art). The theoretical aspects are out of the
scope of this paper. Rather we are interested in efficiently automating proofs
with numerous cases within the Coq proof assistant. The use of ranks to carry
out proofs in projective geometry was first introduced by Michelucci and Schreck
[14]. Our work reuses some ideas of the mathematical components library about
finite types [13] but we choose to refactor parts of it to suit our own needs.

Outline This article is organized as follows. In Section 2, we present two differ-
ent ways of specifying projective geometry, directly or by using rank theory. We
also introduce some common properties (e.g. Desargues’ property) and describe
some finite models of projective geometry. In Section 3, we study the inherent
complexity of the finite models and describe some techniques to handle these
complexity issues properly in Coq. In Section 4, we present some more practical
tools to help the user to write formal proofs easily via proof structuring and
automation. Finally, in Section 5, we summarize our contributions and present
some suitable perspectives.

Notation We name axioms AXYN. A stands for axiom, X is the axiom number,
Y may take two values (P = projective, R = rank) and N denotes the dimension.

2 Formal Specification of Projective Geometry, Rank
Theory and Finite fields

We define two equivalent axiom systems for incidence projective geometry: one
based on the usual synthetic description, and another one based on the combi-
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natorial notion of rank provided by the matroid structure of incidence projec-
tive geometry. Then, we prove, using these two specifications, that some finite
planes/spaces are models of incidence projective geometry and we study Desar-
gues’ theorem.

2.1 Axiom Systems for Incidence Projective Geometry

Incidence Geometry is a simple view of geometry, where only points and lines,
together with the incidence relation linking them are kept. Projective geometry is
obtained by assuming that two coplanar lines always meet. Incidence projective
geometry can be easily described as a small set of axioms, as shown in Coxeter’s
book [7].

Plane The axiom system for projective plane geometry consists of five axioms
presented in Fig. 1. Axioms (A1P2) and (A2P2) deal with construction of points
and lines. Axiom (A3P2) concerns uniqueness of points and lines. Finally, axiom
(A4P2) states that each line contains at least three points; and axiom (A5P2)
expresses that there always exists two distinct lines.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧
A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m: Line, l 6= m

Fig. 1: Axiom system for projective plane geometry

Space and higher dimensions Similarly, we define an axiom system to cap-
ture projective space geometry in Fig. 2 by extending the previous one. The sys-
tem still contains five axioms with three of them remaining unchanged (A1P3,
A3P3, A4P3). Pasch’s axiom replaces (A2P2) and assumes that two coplanar
lines always meet. Furthermore, we modify the axiom Lower-Dimension to cap-
ture projective geometry for spaces of dimension greater or equal than 3. It is
possible to limit this to spatial geometry by adding the optional axiom (A6P3)
to constrain the dimension to be exactly 3.
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(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAC ∧ J ∈ lBD)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ p : Point, p /∈ l ∨ p /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point, P1 ∈ l1 ∧
P1 ∈ l4 ∧ P2 ∈ l2 ∧ P2 ∈ l4 ∧ P3 ∈ l3 ∧ P3 ∈ l4

Fig. 2: Axiom system for projective space geometry

2.2 A Rank-based Axiom Systems

Ranks are based on matroids [16] and they allow a combinatorial approach to
theorem proving in projective geometry. Matroid theory allows us to capture
and generalize the main set of properties of linear dependence in vector spaces.
When combined with a finite set of points, it captures incidence (collinearity,
coplanarity, ...) between these points without handling directly lines or planes.
It makes the computational content of projective geometry more accessible, the
price to pay being less readable statements and proofs. It is quite similar to
analytic geometry which also favors computability at the expense of readability.

A rank function is an integer-valued function on a finite set of objects E that
can be associated to a matroid if and only if the following conditions of Fig. 3
are satisfied. To illustrate rank function, we give an intuitive interpretation of
how the synthetic and rank-based descriptions correspond (see Tab. 1).

(A1R2-R3) nonnegative and subcardinal : ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|

(A2R2-R3) nondecreasing : ∀ X ⊆ Y, rk(X) ≤ rk(Y)

(A3R2-R3) submodular : ∀ X,Y ⊆ E, rk(X∪Y) + rk(X∩Y) ≤ rk(X) + rk(Y)

Fig. 3: Matroid properties for the rank function
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rk{A,B} = 1 A = B
rk{A,B} = 2 A 6= B
rk{A,B,C} = 2 A,B,C are collinear with at least two of them distinct
rk{A,B,C} ≤ 2 A,B,C are collinear
rk{A,B,C} = 3 A,B,C are not collinear
rk{A,B,C,D} = 3 A,B,C,D are coplanar, not all collinear
rk{A,B,C,D} = 4 A,B,C,D are not coplanar

Tab. 1: Some rank statements and their geometric interpretations

Plane To capture projective geometry entirely, we need to add some more
geometry-oriented axioms. These five additional axioms are presented in Fig. 4.
The first two ones establish the non-degeneracy of the rank function. The other
ones are more or less direct translations of the axioms of projective geometry.

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R2) Rk-Couple : ∀ P Q: Point, P 6= Q ⇒ rk{P, Q} ≥ 2

(A6R2) Rk-Inter : ∀ A B C D, ∃ J, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C, rk{A, B, C} ≥ 3

Fig. 4: Rank-based axiom system for projective plane geometry

Space Finally, we define a rank-based axiom system to describe projective space
in Fig 5. Again, only the axioms Pasch and Lower-Dimension are modified. To
restrict the dimension to 3, we add the optional axiom (A9R3).

Equivalence proof We recently proved [4] that the two descriptions of inci-
dence geometry presented above are equivalent:

Theorem. The axiom system based on incidence projective geometry and the
rank-based axiom system are equivalent respectively in 2D , ≥3D and 3D.

This equivalence gives us the possibility to choose the most adequate the-
ory to prove a lemma. Indeed, statements can be bilaterally translated. This
important fact allows us both to compare proofs carried out with two differ-
ent approaches but also to complete some demonstrations when one of the two
theories is not conducive to a tractable proof.



6

(A4R3) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R3) Rk-Couple : ∀ P Q: Point, P 6= Q ⇒ rk{P, Q} ≥ 2

(A6R3) Rk-Pasch : ∀ A B C D, rk{A, B, C, D} ≤ 3 ⇒ ∃ J,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A, C} = 2

(A8R3) Rk-Lower-Dimension : ∃ A B C D, rk{A, B, C, D} ≥ 4

(A9R3) Rk-Upper-Dimension : ∀ A B C D E, rk{A, B, C, D, E} ≤ 4

Fig. 5: Rank-based axiom system for projective space geometry

2.3 Finite models

The first examples of incidence geometries are built with fields. For instance,
affine planes often arise from F 2, where F is a field, via a coordinate system and
projective planes from F 3 via a homogeneous coordinate system. Considering
finite fields leads to classical examples of finite geometries. For instance, Fano
spaces come from field Z/2Z.

A E F

L B J

K I C

M

G

D

H

Fig. 6: A configuration of pg(2, 3): 13 points and 13 lines (e.g. AEFG, CELM, DILF).

Finite fields of cardinality n denoted by GF (n) are called Galois fields as
they are isomorphic to the field Zp[X]/f(X) where p is a prime number, Zp
stands for Z/pZ and f is an irreducible polynomial over Zp[X]. It follows that,
k being the degree of f , such a finite field has cardinality n = pk and each line
of a corresponding affine space (resp. projective space) has cardinality n (resp.
n+ 1). Finite projective spaces arising from GF (n) are then denoted by pg(d, n)
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point(s) line(s) plane(s)

pg(2,2) 7 7 1

pg(2,3) 13 13 1

pg(2,4) 21 21 1

pg(2,5) 31 31 1

pg(3,2) 15 35 15

Tab. 2: Description of several finite projective plane/space.

where d is the dimension of the space and n the order of the underlying field.
Tab. 2 summarizes cardinalities and Fig. 6 represents pg(2, 3).

Forgetting the way that such spaces are built, pg(d, n) spaces offer a conve-
nient benchmark to test our strategies for mechanizing proofs in Coq. Although
we work in the context of pg(d, n), we only take into account its geometric char-
acteristics. This means that while keeping in mind the theoretical results, we do
not use coordinates in our formalization.

2.4 Desargues’ property

P

Q

R

O

P ′

R′

Q′

β γ

α

Fig. 7: A configuration of Desargues’ property.

It is well known that Desargues’ property (see Fig. 7) holds in any projective
space of dimension higher or equal to 3. This was formally proven in [12]. How-
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ever, when considering projective planes, Desargues’ property is independent
of the axiom system of Fig. 1. This means that there exists Desarguesian and
non-Desarguesian planes. For instance, Moulton’s plane (see [11, 15] for details)
or Hall’s [9] planes of order 9 are non-Desarguesian planes. Desargues’ theorem
states:

Theorem. If the three lines joining the corresponding vertices of two triangles
PQR and P ′Q′R′ all meet in a point O called the perspector1, then the three
intersections of pairs of corresponding triangle sides lie on a line αβγ. Equiv-
alently, if two triangles are perspective from a point, then they are perspective
from a line.

Now that the geometric framework is depicted, we shall investigate possi-
bilities of automation within proofs. Throughout this paper, we aim at proving
that some finite structures described using only points, lines and an incidence
relation are models of these axiom systems. When dealing with plane projective
geometry, we also analyze whether Desargues’ property actually holds.

3 Dealing with complexity in building some finite models
of incidence projective geometry

3.1 Plane

We use finite projective models to study the large-scale automation of proofs of
geometric properties. One can prove fairly easily that the axioms of projective
plane geometry hold for pg(2, 2), pg(2, 3) and pg(2, 5). In the same way, we
show that the axioms of rank theory hold for pg(2, 2) and pg(2, 3). We use these
examples to show how to manage the proof complexity in Coq.

We identify several criteria (e.g. the geometric context, the formulation of
the statements) which can strongly influence the complexity of the proofs. As
an example, we compare some proofs which have been mechanized in Coq using
both incidence projective geometry and rank theory.

Finite model First of all, we work on a finite domain. In this context, to carry
out geometric reasoning, it is necessary to know all the points and lines (and
planes) that describe our finite projective plane (resp. projective space). For
instance the description of pg(2, 3) contains 13 points and 13 lines (see Fig. 6)
in incidence projective geometry and looks like:

Inductive ind_Point : Set := A | B | C | ... | K | L | M.

Inductive ind_line : Set := ABCD | AEFG | AIJM | AHKL | BEHI | BGJL

| BFKM | CELM | CFHJ | CGIK | DEJK | DGHM | DFIL.

1 The perspector is the point at which the three lines connecting the vertices of two
perspective triangles concur.
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Definition Incid_bool (P:Point) (l:Line) : bool := match P with

| A => match l with

| ABCD | AEFG | AIJM | AHKL => true

| _ => false

end

[...]

end.

The description of finite models can be easily generated algorithmically by
only specifying all points and lines. In this way, the relation of incidence linking
these two objects is thus automatically created. The size of the specification of
pg(2, n) increases quickly as n grows bigger, indeed pg(2, n) has n2 +n+1 points
and as many lines.

Case analysis In such a finite model, to prove a geometric statement requires to
check all the possible configurations of this theorem, i.e. to perform case analysis
on both points and lines. Most often a brute-force approach leads to too many
cases, which makes the proof not tractable in Coq. Let us illustrate this case
analysis issue on one of the axioms of the incidence projective geometry in the
finite projective plane pg(2, 3). For instance, the (A3P2) Uniqueness axiom:

Lemma uniqueness : forall A B :Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

As pg(2, 3) contains 13 points and 13 lines, basic case analysis leads to
134 = 28 051 cases to be dealt with. This situation is not yet critical, such a proof
is still easily performed. It becomes more tedious when dealing with pg(2, 5) and
its 31 points and 31 lines, where 923 521 cases must be studied. For a given
n, the projective plane pg(2, n) has (n2 + n + 1)4 possible combinations to be
investigated, so such proofs are tractable only for some small n.

Formulation and choice of theory A second factor strongly influencing com-
plexity is the formulation of statements. This question is well known and studied
in the theory of complexity especially in the problem SAT[1, 17]. Criteria such
as the size of the clauses, number of propositions and the order of propositions
have a significant impact on the resolution time of a proof. For example, let
us consider the two definitions of intersection existence in pg(2, 3) first using
incidence geometry, and second using ranks.

Lemma point_existence : forall (l1 l2 :Line),

exists A : Point, Incid A l1 /\ Incid A l2.

Lemma rk_inter : forall A B C D : Point,

exists J, rk(triple A B J) = 2 /\ rk(triple C D J) = 2.



10

Case analysis in the first description generates 132 = 169 cases before pro-
viding a witness to the existential quantifier whereas in the second statement
we again face 134 = 28 051 cases. It would be necessary to create a method of
resolution of the existential formula one hundred times faster in rank theory to
obtain the same execution time as in incidence projective geometry. So choosing
an appropriate description of a formula is utterly relevant to make the proofs
doable in practise. The best way to deal properly with the combinatorial explo-
sion caused by successive case analysis is to manage the pruning of the proof
tree as early as possible.

Proof tree pruning Let us consider again the axiom of Uniqueness (A3P2)
and its proof in the finite projective plane pg(2, 3):

Lemma uniqueness : forall A B : Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

Proof.

induction A;induction B;induction l;induction m;

try discriminate;try (left;reflexivity);try (right;reflexivity).

Qed.

Basic case analysis without pruning and quantifier management gives rise
to 28 051 cases. A brute-force execution takes on a standard machine2 about
40 seconds in this situation. More clever strategies are required to ensure that
the proofs remain tractable. The variable A is linked to l in the hypothesis
Incid A l. It is thus possible to prune the proof tree after the induction on line
l when the point A is not incident to the line l. Another improvement consists
in solving directly the left hand side of the goals right after the induction on B
when the equality A = B (i.e. the left side of the disjonction) holds. It is not
necessary to carry on and perform case analysis on the next variable m if the
goal can be discarded or is already verified. These two adjustments allow the
proof to be built in less than 1 second.

Lemma uniqueness : forall A B : Point, forall l m : Line,

Incid A l -> Incid B l -> Incid A m -> Incid B m -> A=B \/ l=m.

Proof.

induction A;induction l;try discriminate;

induction B;try discriminate;try (left;reflexivity);

induction m;try discriminate;try (right;reflexivity).

Qed.

Constraining hypothesis Scheduling quantifiers based on assumptions can
have a strong impact on proof tree pruning. In other words, the order in which
the case analysis is performed is important. Furthermore, it is important to
consider the pruning power of each hypothesis. The idea is to use first the most

2 Computer setup : Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz with 16G of memory
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restrictive assumptions to prune as much as possible and as soon as possible
to limit the width of the proof tree. Let us consider the assumptions A 6= B
and Incid A l in pg(2, 3). After performing induction on all variables, the first
assumption allows to eliminate 7 cases out of 49 while the second one removes 28
cases out of 49. It is therefore more interesting to take the incidence hypothesis
into account to quickly eliminate goals.

Pseudo depth-first search In highly-branching proofs, when the previous
optimizations are not sufficient (because memory consumption is too big), we
adapt the classical breadth-first search of Coq (tac1;tac2;tac3). By taking ad-
vantage of the right assiociativity, we carry out pseudo depth-first search in order
to limit number of cases at each level of the demonstration (tac1;(tac2;tac3)).
Finally, we work with the abstract [6] tactic to prove a sub-goal as a separate
lemma to structure huge proof terms and to facilitate type checking.

These optimizations are independent of each others and allow to prove more
lemmas, even when the combinatorial is huge.

3.2 Space

The above-mentioned techniques are even more relevant when dealing with the
smallest projective space pg(3, 2)3. It features 15 points and 35 lines. In the same
way as in the plane, we can prove that the axioms of projective space geometry
hold for pg(3, 2). However, it is a little more challenging to prove this. Indeed,
while writing and feeding Coq with the proofs, we face strong limitations related
to memory usage. Tactics have to be carefully designed and decomposition should
be smart enough to avoid facing thousands of millions of sub-goals at the same
level. Consider for instance the statement of Pasch’ s axiom in pg(3, 2):

Lemma pasch : forall A B C D : Point, forall lAB lCD lAC lBD : Line,

all_distinct A B C D ->

Incid A lAB /\ Incid B lAB ->

Incid C lCD /\ Incid D lCD ->

Incid A lAC /\ Incid C lAC ->

Incid B lBD /\ Incid D lBD ->

(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->

exists J : Point, (Incid J lAC /\ Incid J lBD).

As finite space pg(3, 2) contains 15 points and 35 lines, case analysis leads to
154 × 354 = 75 969 140 625 cases to be dealt with. It is thus essential to limit
the size of proof tree by eliminating as many cases as soon as possible. The order
in which we perform inductions is no longer sufficient to maintain a tractable
proof.

3 An interactive representation of pg(3, 2) can be viewed on wolfram web site:
http://demonstrations.wolfram.com/15PointProjectiveSpace/.



12

Proof parts usually proved using Ltac sophisticated tactics without user in-
teraction need to be factorized into relevant lemmas and a careful decomposi-
tion into several intermediate lemmas is mandatory to complete the proof. In
the proof of Pasch’s property, we state the following intermediate lemma which
provides the actual line which carries two given (distinct) points T and Z. The
function l from points computes a line which goes throught the two points T
and Z (this line is unique when we have T 6= Z).

Here, the proofs-as-programs paradigm is fully exploited. Indeed, this func-
tion can be written as a simplified (non-dependent) version of the property
(A1P3) Line-existence which can be directly used as a program4. It allows us
to perform case analysis on lines without adding further cases (only one case is
correct at each step).

Similarly, a program which retrieves the points which belongs to a given line
l can easily be extracted from theorem (A4P3) Three-Points.

Lemma points_line : forall T Z : Point, forall x : Line,

Incid T x -> Incid Z x -> T<>Z -> x=(l_from_points(T,Z)).

In this way, we reduce the overall number of cases to check to 154 = 50625
cases, before performing the elimination of the existential hypothesis in Pasch’s
axiom: exists I :Point, (Incid I lAB /\ Incid I lCD).

So far we made proofs manageable by the system, but we still need to help
the user to write proofs. That is what we shall study in the next section.

4 Automating proofs of Desargues’s property

All the techniques presented above in order to prove that some small planes or
projective spaces are models of the projective incidence geometry can be reused
to carry out the proof of Desargues’ theorem in each of these models.

Lemma Desargues : forall O P Q R P’ Q’ R’ X Y Z X’ Y’ Z’

X’’ Y’’ Z’’ alpha beta gamma,

all_distinct O X Y Z X’ Y’ Z’ X’’ Y’’ Z’’ ->

rk(O,X,Y,Z)=2 -> rk(O,X’,Y’,Z’)=2 -> rk(O,X’’,Y’’,Z’’)=2 ->

rk(P,Q,gamma)=2 -> rk(P’,Q’,gamma)=2 -> rk(P,R,beta)=2 ->

rk(P’,R’,beta)=2 -> rk(Q,R,alpha)=2 -> rk(Q’,R’,alpha)=2 ->

rk(P,O,X,Y,Z)=2 -> rk(P’,O,X,Y,Z)=2 ->

rk(Q,O,X’,Y’,Z’)=2 -> rk(Q’,O,X’,Y’,Z’)=2 ->

rk(R,O,X’’,Y’’,Z’’)=2 -> rk(R’,O,X’’,Y’’,Z’’)=2 ->

rk(O,P,P’)=2 -> rk(O,Q,Q’)=2 -> rk(O,R,R’)=2 -> rk(O,P,Q)=3 ->

rk(O,P,R)=3 -> rk(O,Q,R)=3 -> rk(P,Q,R)=3 -> rk(P’,Q’,R’)=3 ->

( rk(P,P’)=2 \/ rk(Q,Q’)=2 \/ rk(R,R’)=2 ) ->

rk(alpha,beta,gamma)=2.

4 Fully-specified functions can be automatically defined using the proof search capa-
bilities of Coq.
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It is well-known that the projective planes pg(2, n) are Desarguesian. We
formaly prove these results in Coq for pg(2, 2) and pg(2, 3). As in the previous
proofs, using a naive approach leads to intractable proofs. The property of De-
sargues is expressed using 10 points. The last three ones can be automatically
calculated from the first seven ones. In pg(2, 3), induction on the first 7 points
yields several billion cases to be treated without pruning.

In this case, ranks provide a much more efficient approach to handle the
numerous configurations that we need to check. It is tractable if we prune the
proof tree as much as possible during inductions on the ten points of the property.
Automating this proof relies on some geometric aspects of Desargues’ property
and on the data structure of ranks.

4.1 Automation through geometry

First of all, we take advantage of some symmetries in Desargues’ property. In the
first place, we use the symmetry of the problem w.r.t. the center of perspective.
By fixing this center as one of the points of the model pg(2, x) and proving
that the permutation of the points in a finite model remains a finite model, it
is possible to prove that the property of Desargues holds whatever the center of
perspective selected. Intuitively, this symmetry allows us to avoid induction on
the perspector point.

The second symmetry that we use to decompose the problem follows from
the permutation of the concurrent lines at the center of perspective. Let A be
the perspector, it is possible to fix the straight lines containing A to form the two
triangles. Subsequently, we show that every permutation of these lines always
satisfies the property.

Finally, we take advantage of the conditions of non-degeneracy to quickly
eliminate the degenerate cases of Desargues’ theorem and thus limit the combi-
natorial explosion. For example, it is possible to consider a more general theorem
where the two triangles can share at most two points in common. This theorem
leads to a contradiction in the specification of the line αβγ (some lines are con-
fused). By restricting the theorem to the case where triangles can have only one
point in common, we eliminate approximately 33% of the goals at all levels of
the demonstration.

4.2 Automation thanks to proof engineering

Thanks to the rank structure, we can represent homogeneously all incidences of
our geometric context by dealing only with points. Intuitively this means that
we can avoid performing case analysis on lines without increasing the number
of cases on the points. For instance considering Desargues’ theorem, six case
analyses on lines can be removed. It becomes even more meaningful in the higher
dimensions when manipulating planes, etc.

In addition, when writing tactics with Ltac to perform simplifications (e.g.
rewriting, elimination of contradiction, attempt to solve), there is no need to con-
sider objects of several types or multiple predicates. We simply match the result
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returned by the function of rank, as all propositions are of the form rk(E) = n
where E is a set of points and n is a natural number representing intuitively the
dimension of the set.

Finally, it is better to avoid generic tactics such as auto, intuition or omega,
and to use specific lemmas which solve the goal instead. Proofs of statements of
the form rk(E) = n usually proceed by first proving separately that rk(E) ≤
n and rk(E) ≥ n, and then use omega to deduce the equality from the two
inequalities. Of course, if such a proof scheme is heavily used, running omega

becomes a bottleneck. We can instead write a simple lemma (∀n : nat, rk(E) ≤
n → rk(E) ≥ n → rk(E) = n) and apply it to conclude the proof. An single
application of apply is always significantly cheaper than calling omega. However,
the drawback is that we have a more specific proof, which may be less robust
to changes in the specification. Finding such bottlenecks can be easily achieved
using the Ltac profiler [18].

5 Conclusion

We verify that some finite planes (resp. spaces) are actually models of projective
plane (resp.space) geometry. We achieve that by using two distinct approaches, a
mathematics-oriented one and a computer-science-oriented one featuring ranks.
Overall it represents 5000 lines of specification and 2500 lines of proofs. All the
results are summarized in Tab. 3. For each formalization, it presents three key
figures: the number of lines of specification, the number of lines of proof as well
as the time required to compile it.

Formalization of Projective Geometry
using the synthetic description using ranks
spec. proof compile time spec. proof compile time

pg(2, 2) is a model 216 71 2s 127 42 16s

Desargues holds in pg(2, 2) 188 205 37s 297 162 26s

pg(2, 3) 149 46 7s 309 77 2055s

Desargues in pg(2, 3) 191 225 CE 2089 386 10700s

pg(2, 5) 74 28 90s CE

Desargues in pg(2, 5) CE CE

pg(3, 2) 267 67 4309s CE

Desargues in pg(3, 2) Overall proof in 3D thanks to [4, 12]

Tab. 3: Benchmarks for various proofs using Coq on an Intel(R) Core(TM) i5-4460
CPU @3.20GHz with 16G of memory. CE means Combinatorial Explosion.

This provides a good stress test for Coq. Indeed, it is a small theory, but
proving that the axioms hold requires performing huge proofs with numerous
cases. Our experiments shed light on some regression in the efficiency of Coq
to perform proofs and type-check them, starting from version 8.5. This issue is
currently being addressed by the coqdev team.
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The optimizations that we propose allow to go further in the order of mag-
nitude of the planes/spaces that we can handle. Eventually, an interesting goal
would be to tackle some of Hall’s planes which feature 91 points and 91 lines.

Currently, we are working on a more comprehensive benchmark featuring
more projective planes/spaces and using various provers using the TPTP frame-
work [17]. Using brute-force, only 3 provers find a proof of Desargues’ theorem
in a suitable time of 300 seconds for pg(2, 2) (iprover, Vampire [10] and Z3 [8]).
The Vampire SAT seems very promising with solutions 10 times faster. However,
provers do not provide a formal checkable proof.

The Coq development is available at https://github.com/ProjectiveGeometry/.
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