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Introduction This study proposes a new enriched finite element method (FEM) to handle high-
frequency vibrations of bars (traction-compression) and beams (bending) with varying cross-section.
Indeed, analytical solutions are available for a limited number of geometries, especially for Timoshenko
beams [2], and traditional h- and h-p-FEM may become costly at increasing frequencies as they require
a minimal resolution (number of elements per wavelength) to reach the convergence regime. Hereinafter,
the focus is on bars, but numerical illustrations will be provided for both bars and beams.

Problem and approximation space Consider a bar of length L made of an homogeneous mate-
rial, such that the wavespeed c is constant, and submitted to time-harmonic excitations with circular
frequency ω. In a non-dimensional setting, the amplitude u(x) of the longitudinal displacement then
obeys the wave equation (Au′)′ +Ak2u = f , where A(x) is the profile of the cross-section, k is the non-
dimensional counterpart of ω/c and f is the amplitude of time-harmonic distributed forces. Boundary
conditions, possibly including boundary excitations, complete the problem.
Let Ωh = {x0, . . . , xN} be a mesh of the domain [0, L]. Following the ideas of the partition of unity
method [1], we define the following enriched FE space:
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where the ϕ0
n are the traditional “hat” functions (the basis of the space of continuous and piecewise affine
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n} is the enrichment family associated with this element. Two of these families

are considered.

Global and local enrichments First, we use the family Ψk
n = {sin(kx), cos(kx)} for all elements, i.e.

the basis of solutions to the wave equation for constant profiles. We prove that using the corresponding
enriched space provides the same convergence order than using a fifth-order polynomial basis, and show
that static condensation is easily implemented thanks of the choice of “half-hat” functions as partition
of unity, resulting in a well-conditioned linear system. On numerical tests, we see that (i) the resolution
needed to reach convergence is much lower than for the polynomial basis, and (ii) the error decreases
with the frequency for a given resolution, making our proposal well adapted to high-frequency problems.
Finally, we consider the following element-dependent family:

Ψk,δ
n =

{
e−δnx sin(k̃nx), e−δnx cos(k̃nx)

}
, with δn = (A′/2A)(xn−1/2) and k̃n =

√
k2 − δ2

n,

which corresponds to the basis of solutions for exponential profiles Aδ(x) = e−2δnx, the value of δn being
determined using a Taylor expansion of the wave equation about the middle xn−1/2 of the n-th element.
This second family enable to keep all the properties described above, while reducing again the FEM error
by a factor up to 2 (depending on the profile A) compared to the first family.
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