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Abstract: In this paper, we consider the problem of modeling complex systems at several levels of abstraction. We design
SIMLAB, a multi-level model for multi-agent based simulation. Our approach is based on the coexistence of
different levels during simulation to enhance the model with complementary experts’ opinion. We present
how a same concept can be defined independently of its granularity using the notion of modeling axis. We
consider recursive agents with interactions and influences which captures the inter-level dynamics. We also
propose observations to detect and to reify macroscopic entities.

1 INTRODUCTION

The simulation of complex phenomena is based
on the use of models that allow experts to understand
systems and to anticipate changes. These models are
highly constrained by the modeler’s view of the sys-
tem and by the computational limits, in terms of mem-
ory or computation time required to run simulations.
However, we know that considering a complex sys-
tem as a whole to reproduce the immense diversity of
its behavior is unfeasible (Batty and Torrens, 2001).

This is the reason why simulations are based on
partial representations. Rather than considering the
whole picture, people use simplifications and aban-
don some aspects that they consider less relevant for
a given study. The role of experts in the modeling
process is then to make choices about what should be
considered in the model.

Multi-agent systems (MAS) provide a well-suited
paradigm for simulating such complex phenomena.
One of the main strength of multi-agent simulation
is that it uses distinct entities to represent every con-
cept that has been identified as important by the mod-
eler. Moreover, the behavior of every agent, i.e. ev-
ery significant entity to the modeler, can be recorded
and analyzed. As a consequence, and in contrast to
other approaches, the produced model does not take
the form of a “black box”: as Edmonds explains (Ed-
monds, 2001), MAS offer an ideal support to interact
with experts based on the agent’s behavior analysis.

Another advantage of multi-agent based simula-

tion is that it can use multi-level organisation. In-
deed, for a given complex system, expert knowledge
is available at different granularity levels, depending
on the domain, based on the idea that expert knowl-
edge is largely unusable if we just consider the mi-
croscopic level (Conte et al., 2001). For instance in
social science, studies go from psychology (individ-
uals) to sociology (groups) through ergonomics (ac-
tivity). In multi-level agent-based simulation, entities
that correspond to different abstractions’ level will be
represented by agents at different levels in the MAS
organization.

However, in most existing work, the analysis of
the emergent phenomena in multi-agent systems only
considers expert knowledge from one level at a time.
In this paper, we claim that some behaviors cannot be
understood without a multi-level context, i.e. a posi-
tioning in what forms the agent (entities at the lower
levels) and what constrains it (entities from upper lev-
els). Hence, our hypothesis is that representing and
co-simulating different levels in the same model may
produce agents with more complete behaviors.

The work presented here relies on two core ideas.
First, common characteristics of the same concept
shall be defined independently from its level of ab-
straction. Second, levels should coexist during the
simulation not as different visualizations of a single
phenomenon, but to connect different aspects, differ-
ent expert knowledge. As we explain in the section
2, most of the existing models were not designed to
co-simulate complementary points of view. They are



designed to perform abstractions or aggregations that
control the microscopic level. In section 3, we present
our multi-level model. Then, we illustrate in section
4 its properties with a simple example and in section
5 we discuss the perspectives of our works.

2 POSITIONING

Several frameworks and methodologies have been
developed for engineering multi-agent systems. For
instance, the MaSE (Wood and DeLoach, 2001)
methodology proposes an iterative progression to
build a multi-agent system. The methodology is di-
vided into six phases but none of them is the question
of choosing levels of abstraction, even less a possi-
ble coexistence of these levels. Yet we believe that it
should play a central role in the design process of sys-
tems. In Gaia (Zambonelli et al., 2001), AGRE (Fer-
ber et al., 2005) or INGENIAS (Pavón and Gómez-
Sanz, 2003), the use of organizations can be consid-
ered as an addition in the system of other levels of
abstraction. In these works, organizations are groups
of agents with tasks or/and goals in common. Agents
are then subordinated to organizations in which they
belong and this organization strongly relies on the
agents’ goals. In our work, we propose a multi-level
model for simulation with intentional agents without
explicit goals manipulation.

Multi-level models in the literature are often
domain-dependent. For instance the RIVAGE model
in (Servat et al., 1998) which consider water as a
multi-level set of agents for modeling flow, erosion
and infiltration on heterogeneous soils. Another ex-
ample : the model in (Tranouez, 2005) simulate liq-
uid flow where authors use vortex and macroscopic-
vortex models. These specific models cannot be
reused in a different context. But what is important
with these models is that they are not designed to
lower computational cost but to facilitate studies us-
ing several levels. This idea is at the heart of our work.
Actually, it is not one of our objectives in this current
paper to build a generic model.

In contrast, other works use multi-level modeling
to speed up simulations. For instance, the level-of-
detail approach used by (Navarro et al., 2011) to real-
ize large scale urban simulation. The system selects
by itself the level of representation for each agent al-
lowing a significant computational gain. In such sys-
tems, only one level is activated at the same time
and so several levels do not coexist. We notice the
same problem with the hierarchical multi-level model
SWARM (Minar et al., 1996) and the SimulBogota
model (Gil-Quijano et al., 2007) based on agent ag-

gregation. In these models, macroscopic entities take
the lead of microscopic ones which loose their auton-
omy. Here, even though macroscopic levels are ex-
plicitly represented, levels do not really coexist.

In (Nguyen et al., 2011), authors choose a multi-
modeling approach using heterogeneous models to
represent several levels. Agents are aggregated and
constitute path using equations of fluid flow to sim-
ulate evacuation in case of tsunami alert of the viet-
namese city Nha Trang. This approach is studied
in (Siebert et al., 2010) : the meta-model AA4MM
use artifact to couple models of several levels. In
these models, inter-level interactions allow coupling
between models with functions of information shar-
ing. Although multi-modeling enable to join existing
models from different domain, it can be presumably
more interesting to get domain experts together to ex-
change looks on a same model.

The interested reader can obtain additional refer-
ences in the literature review on multi-level agent-
based modeling by G. Morvan (Morvan, 2012).
Based on the literature, we identify two limits in the
existing models :

1. Levels do not really coexist during the simulation
with often controlled microscopic levels.

2. Interactions and perceptions between levels are
not clearly elucidated.

For that reason we propose in this article a multi-level
model for multi-agent simulations (SIMLAB stands
for SIMLAB Is Multi-Level Agent Based) in which
various level agents can coexist and their interactions
reflect the properties of common notions between en-
tities, as understood by the modeler.

3 THE SIMLAB MODEL

Our multi-level agent-based model is based on the
following fundamental concepts. First, some charac-
teristic elements of the modeled entities are shared by
agents from different levels. To this purpose, we in-
troduce the notion of modeling axis, which captures
the representation of transverse agents’ components.
Second, we propose to distinguish between agent in-
teractions (i.e. exchange of informations or requests
to the purpose of the system’s execution) and intra-
axis influence of properties, which captures the dy-
namics of these transverse components. Last, in order
to have a dynamic reorganization in the MAS, we pro-
pose to use observations that detect and reify macro
entities that make sense for the experts.

The following subsections present the general
agent model and these four components of our multi-



level MAS model.

3.1 Agent Model

All entities in the system are recursive agents (agents
composed of other agent with properties and inter-
actions transferred from one level to another). Let
Ω be the set of all agents. For each agent ω ∈ Ω,
we have Ωω

sup the set of direct super-agents of ω and
Ωω

sub the set of direct sub-agents. We denote @ the
non-transitive inter-level relation: ω1 @ ω2 means
that ω1 ∈ Ω

ω2
sub and ω2 ∈ Ω

ω1
sup. We assume that @

is acyclic, but no other restriction is specified in our
model. In particular, an agent can have several super-
agents.

Every agent ω ∈ Ω is characterized by: a set of
properties P (see 3.1.1), a set of actions A (see 3.1.2)
and interactions I (see 3.1.3), and a set of observa-
tions V (see 3.4).

3.1.1 Agent Properties

Agent properties are the variables that can be manipu-
lated by the agent. They capture the characteristic no-
tions of the modeled entity. A property can be atomic
(real, boolean, ...) or more complex (list, set, or even
another agent). We denote ω.p the property p of agent
ω. We denote P the set of all porperties and P (ω) the
set of properties of ω.

3.1.2 Agent Actions

Each agent has a set of internal actions to modify its
properties. To describe the effect of an action, we in-
troduce the operator “:=” to change state properties :
given a value ω.p := v means that v is allocated to the
property p of the agent ω. We denote A(ω) the set
of actions of ω. Each a ∈ A(ω) is a set of property
allocations. Moreover, we associate a precondition
Pre(a) (i.e. a function of P (ω) to B) to each action a
and, at every step of execution, an agent performs all
its actions whose preconditions are satisfied.

3.1.3 Interactions Between Agents

Our interaction mechanism is a simplified version of
the classical intentional communication model pro-
posed by FIPA (FIPA consortium, 2003).

Every agent ω ∈ Ω is associated with a set of re-
actions R (ω), i.e. actions that can only be triggered
by interactions. Like actions, reactions are a set of
properties allocations and are associated with a pre-
condition (Pre(r)).

Moreover, every agent ω has a set of inter-
actions I (ω), where each i ∈ I (ω) is a tuple

〈target,reactions〉 with target ∈ Ω the recipient and
reactions⊆ R (target) a set of reactions by the recip-
ient. As for reactions and internal actions, we asso-
ciate a precondition Pre(i) to each interaction.

At every step of execution, for all i such that Pre(i)
is satisfied, for all r ∈ reactions(i) such that Pre(r) is
satisfied, all the effects of r are performed by target.

Example Let n and h be two agents ∈ Ω corre-
sponding to an individual and a heater, h.temp∈ P (h)
the temperature property of h and increase ∈ I (n) the
possible interaction of n on h define as :

increase = 〈h,{h.temp := h.temp∗1.1}〉

If the individual performs the increase interaction
on the heater, it will increase the temperature by 10%.

3.1.4 (De)Activation of Agents

Each agent can be activated or de-activated during
the simulation, either for selecting a suitable simu-
lation’s level for a given study, or for reducing the
computation load. We note ω.active the property that
states whether an agent is active or not, and we have
two set of actions fon and fo f f which are triggered
when the agent activates (resp. de-activates). When
de-activated, an agent continues to influence its peer
properties but it will no longer interact with other
agents (this interaction task is moved to the responsi-
bility of its super-agents) or perform internal actions.

3.2 Modeling Axis

A modeling axis is intended to represent consistency
between super and sub-agents. It consists of a set
of entities that correspond to the same concept. In
other words, it regroups all the abstraction levels of
a same aspect of the phenomenon being studied. For
instance, individuals, families and social groups are
elements of the population axis.

In our model, we have the to following properties:
• agents in the same axis are connected with the re-

lation @,

• agents in the same axis share a set of common
properties.

Notation We denote χc ⊆Ω the modeling axis cor-
responding to concept c (e.g. χpopulation).

3.2.1 Agents Relation in an Axis

Every axis χc forms a connex subset of Ω for the rela-
tion @: all agents ωi ∈ χc are connected to the others
ω j ∈ χc via @.



We denote lvl(ω) the agent’s level in its axis,
with lvl(ω) = 0 for lower-level agents, and lvl(ω) =
maxm∈Ωω

sub
(lvl(m)) for higher-level agents. The mod-

eler can activate or de-activate agents of a given level,
for the purpose of its study or for performance issues.
χc(i)⊆ χc represents the set of all agents with lvl = i.

3.2.2 Shared Properties in an Axis

It is important that different modeling levels formed
by the relationship “@” mean something to the mod-
eler. Indeed, there is an infinite number of levels for a
same phenomenon, and they are not all relevant in the
context of a given study. What links these different
levels within a modeling axis, conceptually, is sharing
some properties. Consider the example of human ac-
tivity, it can be modeled as a sequence of tasks, or at a
higher level as a set of habits. With these two models
of the same phenomenon, there are common proper-
ties like conditions, preferential periods, frequency of
realization, etc.

Every axis χc is characterised by a subset of prop-
erties P χc ⊂ P such that:

∀ω ∈ χc,∀p ∈ P χc , p ∈ P (ω) (1)

We call P χc the set of shared properties of the axis χc.

3.3 Intra-Axis Influences

To describe inter-level relations in a modeling axis,
we introduce the notion of influence. It is intended
to represent how agent properties are influenced by
its super or sub-agents. In MAS, we find the no-
tion of influence in (Morvan et al., 2011) where the
influence is the “ desire” of an agent to modify its
environment. The semantic is different here, we are
closer to the definition of social influence and the in-
fluence of individuals on the group as it is found, for
example, in work on social computing (Wang et al.,
2007). Through this mechanism, agents of different
levels will be able to co-evolve during the simulation.

In the model, we define F as the set of influ-
ences. An influence f ∈ F is characterized by a tu-
ple 〈ωe,ωr,Psrc, p, in f l〉. It allows an agent ωe to in-
fluence the value of a property of one of its super or
sub-agents called ωr, based on some of its properties.
Psrc ⊆ P (ωe) is the set of properties of ωe used to
compute the influence on ωr, p ∈ P (ωr) the changed
property and in f l the influence function which change
the property. We denote f (Psrc) the value that ωr must
integrate in p (with the relation :=).

Example Let n be a sub-agent of f . They corre-
spond to an individual and its family. t ∈ [0,1] is an

individual’s property which represents its tendency to
increase the heater. prio ∈ {co,sp} describes if the
family gives priority to its comfort or its spending.
We define ∈ F the following influence:

〈 f ,n, prio, t,
{

t ∗0.5 prio = sp
t prio = co 〉

It means that the individual’s tendency to increase the
heater is halved when its family give priority to spend-
ing.

When an agent is de-activated, it continues to have
an influence, unlike the actions and interactions that
the agent can not achieve anymore. The idea is that
the agent’s behavior is always potentially influenced
by the presence in the system of its super and sub-
agents, regardless of their activation status.

Note that influences apply on properties, not agent
instances of properties. As a consequence, shared
properties have the same influences for all agents in
the axis.

Remark Considering the influences as a directed
graph with P the set of nodes (corresponding to the
set of properties, potentially involved in influences),
we must constrain the model to prevent the presence
of cycle. Let (p0, p1, ..., pn−1, pn) be a sequence of
nodes in which two consecutive nodes pi and pi+1 are
connected by an influence. The system must verify
the following acyclic property :

@(p0, p1, ..., pn−1, pn) | p0 = pn (2)

3.3.1 Influences Integration

Each agent property will be influenced by other prop-
erties in the same modeling axis. The agent is respon-
sible for aggregating all these influences to determine
the value of its property, using a σ combination func-
tion (which can be a sum, a product or any combina-
tion chosen by the modeler) :

ω.p := σ(E(p)) (3)

with E(p) representing the set of all influences.

3.3.2 Recursive Properties

The concept of influence allows us to define recursive
properties. A recursive property is a property that is
defined for all agents of an axis (n.b. recursive proper-
ties are also shared properties) and is influenced by all
the source property values in the lower-level agents.
The influence of a recursive property is always ori-
ented from the sub-agent to the super-agent.



The introduction of shared properties and recur-
sive properties in the model, with the influence’s
mechanism, allows the modeler to establish consis-
tency in behavior between different levels (e.g. es-
tablishing a link between the preferences of an in-
dividual and those of a group he belongs). On one
side the shared properties constitute the structural el-
ements of a modeling axis. On the other, the influence
and recursive properties link levels together and form
a common dynamic.

We denote P χc
rec ⊆ P χc the sub-set of recursive

properties of the χc axis. For each shared property
p between an agent a and its sub-agents Ωa

sub, there is
a corresponding influence. Formally :

∀p ∈ P χc
rec ∀i > 0 ∀a ∈ χc(i) ∀ωe ∈Ω

a
sub

〈ωe,a,Psrc, p, in f l〉 ∈ F (4)

3.3.3 Influence of a Recursive Property

Changing the value of a recursive property translates
into a recursive function whose computation is from
the agent to the sub-agents. Indeed, an agent ω ∈ Ω

recursively computes the influence f (see 3.3) for
each of its properties, such as :

f (ω) ={
ω.σ( f (sub1), ..., f (subn)) Ωω

sub 6= /0

0 Ωω

sub = /0
(5)

with subi ∈ Ωω

sub, σ the combination function and 0
the neutral element for the influenced property.

3.4 Self-Observation and
Transformations

We consider that to be effective, our approach to
multi-level modeling requires a dynamic structure.
Agents should be able to reorganize themselves in re-
sponse to the entrance or exit of agents, to allow dy-
namic formation of super-agents, or with an eye to
reify emergent phenomena. To this end, each agent
can be associated with one or more observations rep-
resented as a tuple 〈S ,M,φ, t〉 with S ⊆ Ω the mea-
sured agents. Each measurement is then compared
(using the following function : M : S→R) with an ac-
tivation threshold φ ∈ R to potentially trigger a trans-
formation t ∈ T (see 3.4.1).

3.4.1 Transformation of the System

A transformation modifies the organizational struc-
ture of the system. In the multi-level representation
domain, we find this type of operation with holonic
systems based on Koestler’s work (Koestler, 1967),

for instance the CRIO model in (Gaud, 2007). Let T
be the set of transformations. A transformation t ∈ T
is a couple 〈cond,∆i〉 with cond a condition on the
MAS structure for the completion of t and ∆i a set
of modifications on the organizational structure of the
system.

When an agent triggers a transformation, it is al-
ways directed to a single target agent. Transforma-
tions are defined independently of agents: for a given
transformation’s type, there is potentially |Ω|2 trans-
formations. Agents have five types of transforma-
tions:
(1) Create The target agent is added by to the set Ω.
(2) Join The target agent is added to the set of super-

agents of the triggering agent.
(3) Merge The triggering agent and the target agent

group together to form a new super-agent. This
transformation is composed of a create transfor-
mation following by two join.
Note that two agents cannot “merge” if they al-
ready have a common super-agent with the same
properties: common super-agents at a given level
must have different properties. However, two in-
dividuals could form both a family and a group.

(4) Leave The target agent is removed from the set of
super-agents of the triggering agent.

(5) Delete The target agent is removed from the set
of agents Ω.

3.4.2 Triggering a Transformation

When the measurement function M, applied to one of
the agents of S , exceeds the threshold φ, the observa-
tion triggers the associated transformation t ∈ T :

∃x ∈ 2S|M(x)≥ φ → t(x)

4 ILLUSTRATIVE EXAMPLE

To illustrate our proposal, let us provide a simple
example of multi-level modeling : we consider the
thermal comfort of individuals and groups. Individ-
uals in a room has a thermal comfort which will en-
courages them to adjust their heater according to the
group.

Applying the proposed model we introduce two
modeling axis : the population and the environment.
The population is composed of individuals that can
form groups and environment is limited to heater lo-
cated in rooms. As shown in figure 1, each individual
(which influence each other within the group) will in-
teract with the heater to adjust the thermostat accord-
ing to its thermal comfort. Then, the heater influences



Figure 1: Overview diagram

the room temperature. Finally the room interacts with
the individual to change the perceived temperature.

4.1 Population Axis

We denote χpop this modeling axis. It contains all
populations on several levels. We denote com f ∈
{−2,−1,0,1,2} the recursive property representing
the level of thermal comfort. As shown in 3.3.2, it
means that this property is influenced by all the source
property values in the lower-level population agents.

4.1.1 Individual

At the microscopic level we have the individuals.
An individual is characterized by ct ∈ {−1,0,1} a
cold-tolerance level, pt ∈ N the perceived tempera-
ture, tend ∈ [0,1] the tendency to adjust the heating,
ψ ∈ [0,1] a probability to change it and cr ∈ χenv the
current room. The cold-tolerance changes the level of
thermal comfort felt by individuals.

Action An individual i∈ χpop updates continuously
its thermal comfort following :

i.com f := i.pt− (21+ i.ct)

For this example, we simply consider 21◦C as the
ideal temperature. This is an obviously caricatural
description of thermal comfort mechanism but our ex-
ample is intended to illustrate the possibilities of our
model.

An individual modifies its tendency to adjust the
heating according to group’s thermal comfort.

Reaction An individual modifies its perceived tem-
perature accordingly to the room’s interaction (see
4.2.2).

Interactions An individual can act upon heater h
with the following interactions:

• inc = 〈h,{h.th := h.th+1}〉
• dec = 〈h,{h.th := h.th−1}〉

The heater will influence the room’s temperature
which, in turn, impacts the individual’s thermal com-
fort. A constant discomfort threshold is used as a pre-
condition to trigger these interactions from the indi-
viduals.

Influence Because thermal comfort is a recursive
property, individual i influences the thermal comfort
of the group g following :

〈i,g,{i.com f},g.com f , i.com f 〉

Obervation We consider a simple observation
which adds an individual i to a group when it enters
into a room : 〈Groups⊂ χpop,M,1, join〉 with

M : g ∈ Groups→
{

1 g.room = i.cr∧ i /∈Ω
g
sub

0 otherwise

4.1.2 Group

A group is an agent composed of several individuals
in the same room room.

Action A group g ∈ χpop updates continuously its
level of thermal comfort using the average function
on influences to its comfort property (see σ in 3.3).

Influence A group g influences the probability of its
members to adjust the heating following :

∀i ∈Ω
g
sub 〈g, i,{g.com f}, i.ψ, i.tend ∗ |g.com f |

2
〉

4.2 Environment Axis

Let χenv be the environment axis. It contains the
heaters and the rooms as seen as groups of heaters.
Rooms are defined in a static manner, they do not
evolve during the simulation.

4.2.1 Heater

A heater is characterized by a thermostat th ∈ [0,9].

Reaction A heater modifies its thermostat accord-
ingly to individuals’ interactions.

Influence A heater h influences the temperature of
the room r with :

〈h,r,h.th,r.t,r.t +(h.th∗α)〉
with α the heater’s efficiency.



4.2.2 Room

We define a room as a super-agent of heater. It is char-
acterized by a current temperature t.

Action A room r ∈ χenv updates continuously its
temperature using an average function as σ on all the
influences coming from heaters :

r.t = f (sub1), ..., f (subn) ∀subi ∈Ω
r
sub

We consider that rooms’ temperature is only de-
pendent on heaters’ thermostat.

Interaction A room r change the perceived temper-
ature by individuals :
updtT =

〈r,{∀i ∈Ω
group
sub | group.cr = r},{i.pt := r.t}〉

4.3 Discussion

This example shows how much the notion of model-
ing axis is implicitly present when we designing mod-
els. As it often happens with MABS, we have sev-
eral concepts in this example. First, individuals and
groups are entities which represent actors in the sys-
tem. Second, heaters and rooms that represent the en-
vironment with our model. It is very staightforward to
define the population and the environment axis corre-
sponding to these concepts. As a result, we tend to
obtain a multi-level representation which do not dis-
tort the modeled system. Moreover, shared properties
facilitate the modeling task by encouraging the reflec-
tion around what is common to all levels in a model-
ing axis. Once this work is completed, there is no
need to define these properties for each agent. Recur-
sive properties extend this simplification of modeling
to the dynamic’s design. This is illustrated in the ex-
ample : the thermal comfort is computed on the in-
dividual level and it is transmitted to the group. One
can see how practical it could be for complex system
modeling.

Interactions are at the heart of agent based model-
ing. However, it is not sufficient when entities of sev-
eral levels are introduced into the model. This is why
we introduce influences in addition to interactions. In
fact, the difference is purely conceptual : On the one
hand, interactions contribute to the system’s dynamics
(in this example, leading to a change of thermostat or
thermal comfort). On the other hand, influences con-
tribute to the coherence between levels. For instance,
the comfort level of the group is always connected to
the individuals’ comfort. In fact, it would be possible

to represent influences using interaction (e.g. an indi-
vidual interact with the group to change its comfort)
but the main idea here is to separate them in order to
simplify the modeling process. Thus, modeling strat-
egy can then be summarized in four steps :

1. What are the concepts involved to define the cor-
responding modeling axis and then define levels
for each of them ?

2. In which ways entities interact ?

3. How the behavior of agents influences their super-
agent, and vice versa ?

4. What organizational elements should be dynamic
and what could be the observations and the asso-
ciated transformations ?

The balance between influences (i.e. non-autonomous
variable modification) and interactions (i.e. au-
tonomous exchange of information) need to be fur-
ther studied, to decide how the system designer can
have agent that are aware of other levels and more or
less sensitive to influences. This is one of our current
research objectives.

The role of observations as part of the organiza-
tional process, was not fully illustrated in our exam-
ple. In order to better understand this feature, we
must consider a more complete and complex exam-
ple. Consider now that individuals can perform tasks
(i.e. elements of everyday life activity : sleeping, eat-
ing, watching TV, ...), modifying their current room
and their thermal comfort (some task such as clean-
ing leads to increasing the amount of body heat pro-
duction and therefore changes the perceived tempera-
ture). Hence, third concept is introduced in our model
leading to create a new modeling axis : the activity
axis. Such an axis allows us to represent human activ-
ity on several levels of abstraction (e.g. tasks, habits,
lifestyles, ...). With activities, we only need to provide
observations to individuals such that they automati-
cally form groups when they perform the same activ-
ity pattern. Groups can be interesting for the mod-
eler in many studies. For instance in a study on en-
ergy consumption, groups are highly relevant as they
can help domain experts to identify some typologies
of consumers and their related energetic behavior. It
must be emphasized that it is important that agents are
able to perceive themselves and modify their organi-
zations. Indeed, modeling is facilitated because some
levels can be created automatically. Moreover, an ex-
plicit representation of reified entities gives them vis-
ibility in addition to a real role in the simulation due
to possible influences.



5 CONCLUSION

In this paper we propose SIMLAB, a novel model
for multi-level agent based simulation. This model
has the particularity to explicitly define the notion of
modeling axis allowing representation on others as-
pects than only actors. In addition, influences are
designed to represent inter-level relationships and in-
fluences of recursive properties are spread from one
level to another. Moreover, observations make the
model capable of modifying the system’s organiza-
tion, as detecting and reifying macro-entities. As we
have explained, it would be interesting to represent
multi-level entities within a same model allowing ex-
perts of different domain to work together at the level
that suits them best.

In the SMACH platform (Amouroux et al., 2013),
we are currently working on the application of this
multi-level model to simulate human behavior. The
SMACH simulation platform is intended to study
household activities and their relation with electrical
consumption depending on specific pricing policies or
appliance use. We are extending the SMACH model
to study population, activity and environment at sev-
eral levels of representation. Our goal is to evaluate
possible incentives to diminish peak hours electric-
ity demand. We may be able to evaluate our model
in a three axis representation of human activity. For
instance, such model may well be able to reproduce
interesting social phenomena without having to sim-
ulate thousands of agents introducing explicit social
entities.
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Wang, F.-Y., Carley, K. M., Zeng, D., and Mao, W. (2007).
Social computing: From social informatics to social
intelligence. Intelligent Systems, IEEE, 22(2):79–83.

Wood, M. F. and DeLoach, S. A. (2001). An overview
of the multiagent systems engineering methodology.
In Agent-Oriented Software Engineering, pages 207–
221. Springer.

Zambonelli, F., Jennings, N. R., and Wooldridge, M.
(2001). Organisational abstractions for the analysis
and design of multi-agent systems. In Agent-Oriented
Software Engineering, pages 235–251. Springer.


