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FREQUENT UNIVERSALITY CRITERION AND DENSITIES

R. ERNST, A. MOUZE

ABSTRACT. We improve a recent result by giving the optimal conclusion possible both to
the frequent universality criterion and the frequent hypercyclicity criterion using the notion
of A-densities, where A refers to some weighted densities sharper than the natural lower
density. Moreover we construct an operator which is logarithmically-frequently hypercyclic
but not frequently hypercyclic.

1. INTRODUCTION AND NOTATIONS

We denote by N the set of positive integers. Let (ay) be a non-negative sequence with
> k>1 @k = +00. Let us consider the associated admissible matrix A = (ay, k) given by

_ ak/(Z?:1 aj) for 1 <k <n,
Gk = 0 otherwise.

We know that every regular summability matrix A, so any admissible matrix, gives a density
d 4 on subsets of N, called lower A-density [7].

Definition 1.1. For a regular matrix A = (a, ) with non-negative coefficients and a set
E C N, the lower A-density of E, denoted by d4(E), is defined as follows

+oo
dy(E) = liminf (Z an,k]lE(k)> ;

n
k=1

and the associated upper A-density, denoted by da(F), is given by the equality d4(E) =
1 —du(N\ E).

_ Moreover it is well-known [7] that the upper A-density of any set £ C N is given by
da(E) = limsup,, (3725 anxle(k)).

Let X,Y be Fréchet spaces. In the present paper, we are interested in the universality of
sequences of operators (T},), T, : X — Y, in the following sense: a sequence (T},) is said to
be universal if there exists z € X such that the set {T,, : n € N} is dense in Y. Such a
vector z is called an universal vector for (7},). When the sequence (T,) is given by the iterates
of a single operator 7', i.e. (7)) = (T") and Y = X, the notion of universality reduces to
the well-known one of hypercyclicity, which is a central notion in linear dynamics. Now the
following definition extends that of frequent universality and quantifies how often the orbit of
an universal vector visits every non-empty open set. For any x € X and any subset U C Y,

we set N(z,U) :={neN: T,z e U}.
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Definition 1.2. Let A = (ak / Z}l:l Oéj) be an admissible matrix. A sequence of operators

(T,), T, : X — Y, is called A-frequently universal if there exists x € X such that for any
non-empty open set U C X, the set N(x,U) has positive lower A-density.

Notice that if o, = 1, £k = 1,2, ..., the matrix A corresponds to the Cesaro matrix, the
lower A-density d, coincides with the natural lower density d and we recover the notion
of frequent universality (or frequent hypercyclicity in the case of sequences (7")). Bonilla
and Grosse-Erdmann have derived a sufficient condition for a sequence of operators to be
frequently universal [5]. Their criterion extends the frequent hypercyclicity criterion given by
Bayart and Grivaux [I].

Theorem 1.3. (Frequent Universality Criterion) Let X be a Fréchet space, Y a separable
Fréchet space and T,, : X — Y, n € N, continuous mappings. Suppose that there are a dense
subset Yy of Y and mappings S, : Yo — X, n € N, such that:
(1) ZZ:I T, Sk_ny converges unconditionally in'Y, uniformly in k € N, for all y € Yy;
(2) Z:{i’i Ty Sk1ny converges unconditionally in Y, uniformly in k € N, for all y € Yy;
(3) Z:ﬁ Sny converges unconditionally in X, for all y € Yy;
(4) TSny — y for ally € Yy,
Then the sequence (T),) is frequently universal.

It is well-known that there exist frequently universal sequences of operators which do not
satisfy this criterion [2]. A natural question arises: if the sequence (7},) fulfills the hypotheses
of the criterion, for which admissible matrices A can one conclude that (7;,) is A-frequently
universal? Before answering, let us introduce some useful notations. We denote by log(s) the
iterated logarithmic function logologo - - - o log where log appears s times. In the sequel, we
shall need the following admissible matrices:

1) A, = (F /3" el for 0 < r <1,
( j=1
(2) Dy = (ai/ >_j—1 o) given by the coefficients o, = ek/ (g (k) for f; large enough and

s> 2;
3 ES = (ag " ay) given by the coefficients oy, = ¥/ (log(k) 10g) (k) for k large enough
7j=1
and s > 2;
4) B, = (ag " ay) given by the coefficients oy, = €¥/1°8" (%) for k large enough and
7=1
r>1

(5) the matrix L = (k~1/ P j~1) associated to the logarithmic density djog-

Lemma 2.8 of [6] ensures that we have, for any 2 <s <, 1<t <, 0<r <7 <1 and for
all subset & C N,

da, (B) <dp (B) <dp (E) <dg, (E) <d (E) <dg (E)

di (E) <dp,(E) <dp,(E) <dy,(E) < dy, (E) <d(E) < d,,(E).
Recently the authors have showed that under the assumptions of the frequent universality
criterion a sequence (7),) is automatically Es—frequently universal for any positive integer
s> 1 [6]. Actually the statement is written in the context of Es—frequent hypercyclicity, but
it is easy to check that the proof works along the same lines in the case of Es—frequent uni-
versality. First we improve this result by showing that a sequence of operators which satisfies
the frequent universality criterion is necessarily Bj-frequently universal. Then a technical
modification of the proof allows us to show that such a sequence of operators is necessarily
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Es—frequently universal for any s € N. On the other hand, we establish that an operator
T : X — X cannot be A;-frequently hypercyclic. Notice that this result was already proved
whenever X was a Banach space [0, Proposition 3.7]. Based on these results, this article
determines determines exactly what quantifies the frequent universality criterion in terms of
weighted densities of the return sets. The proof of this result essentially uses combinatorial
arguments. Furthermore, in [6] the authors exhibited a frequently universal (hypercyclic)
operator which is not A,-frequently hypercyclic for any 0 < r < 1 (in particular it does
not satisfy the above criterion). In the opposite way, using similar ideas we build an op-
erator which is log-frequently hypercyclic (i.e. L-frequently hypercyclic) but not frequently
hypercyclic. Hence one can find hypercyclic operators whose orbit of some universal vectors
visits rather often, in the sense of suitable lower A-densities, every non-empty set but not
sufficiently to be frequently hypercyclic. As far as we know, it is the first example in this
direction using lower densities.

The paper is organized as follows: in Sections [2| and [3| we construct specific sequences
of integers which will allow us to establish that the frequent universality criterion gives a
stronger result. Then we will show that this new result is the best possible. Finally in Section
we exhibit an example, inspired by [4], of an operator which is L-frequently hypercyclic
but not frequently hypercyclic.

2. CONSTRUCTION OF A SPECIFIC SEQUENCE

A careful examination of the proofs of the frequent universality criterion shows that it
suffices to find a sequence (dy) of integers and (ny) an increasing sequence of integers such
that

|ng — ni| > 0 + 6, whenever k # [ and for any p > 1, d ({nk : o = p}) > 0.

We refer the reader to [3 Lemma 6.19 and Theorem 6.18] and [5]. An easy modifica-
tion of the proof of the criterion allows to obtain the A-frequent universality provided that
dy ({nk : 0k = p}) > 0 (see [6]). In the following we are going to build suitable sequences (dx)
and (ng).

First of all, let us recall the following useful lemma to estimate the lower A-density of a
given sequence (ny) [6, Lemma 2.7].

Lemma 2.1. Let (o) be a non-negative sequence such that ), oy = 400. Assume that
the sequence (an/ Y 7_) o) converges to zero as n tends to +oo. Let (ng) be an increasing
sequence of integers. Then, we have

k
7=1 anj

where d 4 is the A-density given by the admissible matriz A = (ax/ > o).

For every positive integer k, we define d; and Lg as follows: 0 =1 and Lg =1 — 1 where [
is the place of the first zero in the dyadic representation of k. For example consider k = 11,
ie. k=120412'40.2241.23, we have 0, = 3 and Lg = 2. Then we construct the following
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increasing sequence (ny) of positive integers by setting

k—1
(2.1) n1:2andnk:225¢+5k (k>2)
i=1

Lemma 2.2. With the above notations, we have for every m > 1,
ngm = 4.2™ — 3 and ngm_1 = 4.2™ —m — 5.

Proof. We have ny =no_ 1 =2=4.2—1—5and ny =5 =4.2 — 3. We set, for k > 2,

k
1)
np =36 = MOk
=1

2

Let us consider the sets Ag-m) ={1<k<2™—-1;0p, =j},form>1land j=1,...,m+ 1.
We get, for m > 2,

2m—1 m+1
M 1= > 0= jHAM
i=1 j=1

Thus it suffices to compute the cardinal of the sets A}m). For j = m + 1, there is only one
possibility to obtain &; = m + 1 given by [ = (1,...,1,0,...) with a number m of ones,
ie. | =2"™—1. For 2 < j < m, to obtain § = j, [ has necessarily the following dyadic

representation

(L, 1,...,1,0,%,%,...,%%,0,0,...).
—_———— —
length j—1 length m—j

Thus we have 2™~ possible choices. Finally to obtain & = 1, [ has necessarily the following
dyadic representation

(0, %, %, ..., *,%,0,0,...).
—_—
length m—1
and taking into account [ # 0, we have 2! — 1 possible choices. Therefore we get, for all
m > 2,
m .
om = (27" = 1)+ 52" 4 (m+ 1)
j=2
An easy calculation gives
Nhym 1 = 4.2"71 — 2 for m > 2.
Therefore we deduce, for all m > 1,
nom_1 = 4.2™ — 5 —m.
Finally we obtain, for every integer m > 2,
Ngm = Ngm_1 + 6gm_1 + 6gm = ngm_1 + (m + 1) + 1,

which leads to
ngm = 4.2™ — 3 for m > 1.
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Lemma 2.3. With the above notations, we have for every positive integer k which has the
following dyadic representation k := 2" + Y " L2t 2" < k< 27— 1) oy € {0,1},

k-1

Ng—on = 2 Z d; + Oy,
i=1+2n

Proof. It suffices to observe that every integer i with 1+ 2" <4 < k < 2"*! — 1 has a dyadic
representation as

(%y.00y%,1,0...)
length n
with at least a zero between the first and the n** position (since k # 2"+1 — 1). Therefore we
have §; = [ for some 1 <[ <n and
i—2"=(1,...,1,0, x,...,%,0,0...)
~—— ~——
length -1 length n—I

We deduce for 1 4+ 2" < i <k, §;_on = 0;. Therefore we get, for every positive integer k with
the dyadic representation k := 2" 4+ > """ aZQZ, M < k< ontl 1,
k—1-27 -
Mpgn =2 Y O+ 0k_om =2 Y 6+ 0.
i=1 i=142n
O

Lemma 2.4. With the above notations, we have, for every positive integer k which has the
following dyadic representation k := Y77 | ;204250 —1 withn > 1, a, = 1 and oy € {0, 1},
1=1+4+Lg,...,n,

Z?:l o Noi + Z?:l a; — 1, if Ly = 0.

Proof. e Case Ly = 0: we have k = 31! ;2" + 2", with a,, = 1 and o; € {0,1}. For
k=2" wehave a; =0,i=1,...,n—1 and we can write nk_n2n+z _,0;—1and
the announced result holds. Otherw1se we define the sequence 1 <1 <y < -+ <

Im <n—1,satisfying a;, =1, for j = 1,...,mand o; =0 for i ¢ {l1,...,l;,}. Taking
into account Lemma 2.3 we write

= (270" 60+ 0o ) + 6o + (2500000 8+ 81

= non+14+ng_on
= N9n + Qp + Ng_on.

We get & —2" = Zm 2% and a calculation similar to leads to
Nk = Non + Qp + Notm + Q,,, + N_on_olm = QpNan + Qg Moty + Qp + Q. + Ng_on_9lm -
By repeating the reasoning we obtain

m m
ng = g n2zj+n2n+ g alj+oan+n2zl.
° =
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Finally since we have ny = ny + a;, — 1, we can write
1 1

n n
ng = E Qingi + E a; — 1.
i=1 i=1

e Case 1 < Ly < n —1: first, if we have a; = 0, for i = 1+ Lg,...,n — 1, we get
k—2" = 2L —1 and ny, = ngn + oy, +nyL,; which had to be proved. Otherwise, we
set m = max(1+Lo < i < n—1;a; = 1). We have k—2" = 2"+ 3771 a;2142L0—]
and a calculation similar to (2.2)) leads to

NE = Non 4+ Nom + iy + Qyyy + Np_on_om = QpNon + ApyNom + Qp + Quy + Np_on_om.

By repeating the reasoning we obtain

n n
ng = g Q;Noi + E Q; + NoLg_q-

i=14+Lo i=1+1Lg
O
Lemma 2.5. With the above notations, for every positive integer k which has the following
dyadic representation k := Z?:HLO ;20 + 2Lo — 1 with n > L,a,=1,0<Lg<n-—1 and
a; € {0,1}, i =14 Lo, ...,n we have

n
ng=4k-2 Y a;—Lo— L
i=1+Lo
On the other hand, for every positive integer k with Ly = n + 1, we have ny = 4k — Ly — 1
again.

Proof. First we deal with the case Lo = n+ 1, i.e. kK = 2""! — 1. Lemma ensures that
Ngnt1_q = 4.2 —(n41)—5=4.(2""' —1) — (n+1) — 1 and we have the desired conclusion.
If Ly # n+ 1, we necessarily have 0 < Ly < n — 1. Let us consider the case Ly = 0 : we apply

Lemma 2.4 to write
n n
ng = Zamgi +Zai — 1.
i=1 i=1

Using Lemma [2.2] we deduce

ne = g on(420=3) + 30 0 — 1
= 42?:1 011'21 -2 Z:‘L:l oy — 1
= 4]{5—22?:10@—1:41{3—22?:1041'—.[/0—1.

Otherwise, we consider the case 1 < Lo < n — 1 and we apply Lemma [2.4] again to write

n n
ng = E Q;Noi + E o + NogLg_q-

i=1+Lo i=1+4Lo
We conclude by using Lemma [2.2
M= S, 042~ 3) + T g e 4200 — Lo~

=4 (Z?=1+Lo ;2 + 280 —1) =1 -2 2im1yr, % — Lo
= 4k — QZ?ZIJFLO Qy — L() — 1.
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Proposition 2.6. The sequence (ny) satisfies the following optimal estimate: for every inte-
ger k > 2,
4k — 2|logy (k)| — 1 < mny <4k —3
Proof. We begin with the case k = 2" — 1, n > 2. We have n, = 4.2" —n—5 =4k — 2 —
|logy (k)] > 4k —2[logy(k) | —1. Now let us consider k > 2, with k # 2" —11i.e. logy(k+1) ¢ N.
The integer k necessarily has the following representation k = 2"+ " | tLo ;2" +250 —1 with
n>1,and oy € {0,1},7=1+4Lg,...,n—1. Lemmagives ng =4k—23% 1" ;i —Lo—1.
Clearly we have nj < 4k — 3 and no» = 4.2" — 3 by Lemma On the other hand we have
ng > 4k —2(n — Lo) — Lo — 1 > 4k — 2n — 1 = 4k — 2|logy (k)| — 1.

Finally for k = 2™ — 2, we have k = 1", 2%, Ly = 0, |log,(2™! — 2)] = m and Lemma
2.2 gives ngm+1_g = 4(2™F1 —2) — 2m — 1 = 4(2™F — 2) — 2[log, (2™ — 2)] — 1 = 4k —
2|logy (k)] — 1. O

Proposition 2.7. The sequence (ny,) defined above satisfies dg, ((ny)r) > 0.
Proof. Using Lemma [2.1] the following equality holds

o Z?:z eni/ log(n;)
dp, ((ny)x) = lim inf ( S, i/ lel) |

—+00

By a classical calculation, we obtain 2?22 eI/19800) ~ log(ny)e™/1°8(%) as k — +oo. Moreover
according to Proposition there exists a constant C' > 0 such that, for N large enough
and k > N,

SOk ena/lostn) STk e(4i=Clog()/ log(4j~Clog())

log(nk)enk/log(nk) - 10g(4]{2)64k/ log(4k)
With a summation by parts, we get
k
Z e(47—Clog(j))/ log(4j—Clog(5)) ., log;I(k")6(4’€—C'log(/’f))/log(4/’€—Clog(k)) as k — +00.
j=N

Finally a simple computation leads to

log(k) o(4k—C'log(k))/ log(4k—C'log(k)) o—C
4 log (4k)e4k/ log(4k) — 1 as k — +oo.

This allows to conclude dp ((nx)r) > % > 0. O
Hence we deduce the following result, which improves [6, Theorem 4.12].

Proposition 2.8. Let X be a Fréchet space, Y a separable Fréchet space and T, : X — Y,
n € N, continuous mappings. If the sequence (T),) satisfies the frequent universality criterion,
then (T,,) is By-frequently universal.

3. FURTHER RESULTS

We are going to modify the sequence (ny) built in the preceding section to obtain a new
sequence with positive A-density for an admissible matrix A defining a sharper density than
the natural density and the Bj-density. This construction is inspired by Section 4 of [6]. Let
us consider an increasing sequence (a,,) of positive integers with a; = 1. Then we define the
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function f: N — N, by f(j) =m for all j € {am,...,ams+1 — 1}. We also define the sequence
(nk(f)) by induction as in (2.1f):

ni(f) =2 and ng(f) = ng—1(f) + f(0r—1) + f(0x) for k > 2.

Clearly we obtain the following equality, for all k > 2,

k—1

(3.1) ne(f) =2 F(6:) + f(0k):
i=1

Observe that, for all k£ # [,

(3.2) In(f) — ()l = f(or) + f(01).

In the previous section, the sequence (ny) satisfied |ny — ny| > 0 + &; in order to prove the
frequent universality criterion. In a previous work [0], we already proved that this condition
could be relaxed as in , provided that f increases and tends to infinity. Let us notice
that, if we set a,, = m for every m > 1, then the corresponding sequence (ng(f)) is the
sequence (ny) of Section 2 Throughout this section, we will omit the notation f in (ng(f))
for sake of readability. Thus our purpose is to compute an exact formula for the new sequence
(nk) to understand its asymptotic behavior and to obtain sharper estimates for the densities
given by the frequent universality criterion.

First of all, we are going to obtain an expression for ngam+¢, with 0 < ¢ < @m+1 — G-

Lemma 3.1. For every m € N and every 0 < q¢ < am+1 — am, we have

1
_1 *

m
Noam+es = —1 —2m 4+ 2f(1 4+ ap, + q) 4+ gam+a+l Z =

i=1

Proof. Let us define Agmﬂ) ={1 <1 <2wmmt0—1:¢ = j} for j > 1. It is clear that for
every 1 <[ < 2%m%4 — 2 the first zero in the dyadic decomposition of | appears in position
less than a,, + q i.e. §; < aym + q and dgam+e_1 = am + ¢ + 1. Thus, for every j > an, +q+ 1

we have #Agm’q) =0 and #Az(zTnﬁ)qul = 1. Let us now compute #Ag-m’q) for 1 <j<ay,-+aq.

First, let us observe that we have j = §; = 1 if and only if [ is even. From this, we deduce
that #A{™% = 9am+¢=1 _ 1 On the other hand, if 1 <1 < 2%n+7 — 2 is such that j = §, > 2
then its dyadic decomposition is given by a j7 — 1 ones followed by one zero and then we have
20m+4=J choices as shown in the figure below:

length a;m—+q
(1,1,...,1,0,%,%,...,%%0,0,...).
~—_—

length j
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Thus we obtain that for every 2 < j < a,, + ¢, #Agm’q) = 29m+4=J We use these facts to
compute Ngam+q, for g satisfying a,, < am + g < ame1-

20m+q_1

n20«m+q - 2 Z f + f 62“m+¢1>

am+q+1
=2 N FD#A™D 1 f(Sguma)
j=1
am+q )
=2 (2T 1) F) + D FG2 T+ F(L+ am +q) | + 1, using f(Spam+e) = f(1) =1
j=2
m—1a;41—1 . am+q '
=2 =14 > FO2TT 4 Y f6)2 T+ f(L+am +q) | + 1.
i=1 j=a; j=am
Setting wp, = Y iy Z;”*all ' F(j)20mta=i +Zam+qf( )20mT4=J we have
m—1 a;+1—1 . am+q .
Uy = Z,L'Qam-i'q Z 277 +m Z 2am+q—j
1=1 Jj=a; Jj=am
m—1 . .
P i 1 1 _ 1
= 2 (Z (2(1,-—1 2ai+11) +m <2am—1 2am+q
i=1

=1

i 2am+q S 1 m
- Z 9a;i—1  9am+q | -

Therefore we get

m
Noam+s = —1 —2m 4+ 2f(1 4+ am + q) + 9am+q+1 Z

2ai71 :

O
From this lemma we get the following result.
Lemma 3.2. For every m € N and every 0 < q¢ < am+1 — am, we have
m 1 y
Noam+q = —1+2% rat Zz l 2‘%71 Zfo < q < am+1 — Qm — 1

1 4 20m+1 Zi:l 2%_1 if ¢ = amy1 — am — 1
Proof. It suffices to apply Lemma taking into account that we have f(a,, + ¢+ 1) = m if
0<g<amt1—am—1land f(am +q+1)=m+1if ¢g=ams1 —an — 1. O

In the sequel, we will need to have an expression for the integers nyr_; for L > 1. This is
the goal of the following lemma.

Lemma 3.3. Let L > 2 witha; —1 < L < ajy1 — 1. Then we have

NoL_q = 26”22;12%171—1 for L=a;—1
2L—1 21+L22:1%%_([+2) for L >a; —1
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Proof. By definition the following equality holds

(33) NoL = NoL_1 + f((52L_1) + f(éQL) = NoL_1 + f(]. + L) +1

Ngaj—1 = 1424 Zi 1 5a;—1- Moreover, since we have f(1+ L) = f(a;) = [, then formula (3.3

First, let us consider the case L=a;—1=a;_-1+ (aj —aj—1 — 1). Lemma gives nor =
1.»

implies
-1

1
n2al—1_1 = ’I’l2al—1 - l —1= 2(11 Z 2(1,71 - l
i=1

On the other hand, if we have ¢ — 1 < L < aj47 — 1, Lemma yields: nor = —1 +
oL+l Zi‘:l 2%%1 Thus, formula 1) gives:

l

1
nor_q = 21 Z T (1+2).
i=1

0

Lemma 3.4. Let N = 2"+ 3 " ' ;20 with n > 1 and Yo ' ;20 # 0. Then the following
holds

NN _gn = 222 2n+1 f(8:) + f(0n) if N <2mtl —1
) 25 N0 F(0) +2f(On) = f(On—an)  if N =271 -1
Proof. We easily adapt the proof of Lemma [2.3] O

Using Lemma instead of Lemma we may also prove that Lemma remains valid
in this context. We shall use it in the sequel.

Definition 3.5. In what follows, we express every positive integer N in the following fashion,
taking into account the properties of the sequence (a;),

alg—aiy—1—1 In—lajyi—a;—1

aN
—9Lo _ alg—1+4q aj+q apn+4q
N =2 1+ E Oy 142071 + E E Qaj+42977 + E aazN+q2 N
q=q0 7=lo q=0

with a,—1 < 1+ Lo < ayy, aiy < qv + aiy < Giy+15 Qo+ agp—1 = 1+ Lo and ag, 4y = 1.
We also set wy = qn + agy, -

Lemma 3.6. For every positive integer N, we have, using the notations of Definition 3.5,

1+in ajg—1l—ajy—1 lo—1 1
NN = Norg_q + 2 Z g1 | + Z a 2114+l Z
9Lo_1 aj—1 ag—1+4 2a;—1
Jj=lo q=q0 i=1

—lajt1—a;—1

J qN In
S e (S ) S (551,

] lo q= 0 =1
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Proof. Using the notations of Definition m Lemma- 2.4] gives the following equality (with the
convention ng = —1) Since N = 7" | ) ;2" + (280 —1) =30 ) 2%,

ajg—1l—aj;—1 In—lajt1—a;—1
NN = NgLy_j + g O‘azo 1+qM 90lp—1+4 + g E Qaj+qTloaj+a
(3'4) =90 Jj=lo
+ E aazN +qMyary +a + E .
i=1+Lg

We begin by transforming the first sum above. We apply Lemma and we get

alo_l_alofl

E Qa1 +qMgarg—1+4a

a=qo
alo_z_alofl lo—1 lo—1 1
— _ ajy—1+q+1 aj
- Z Qg _q4q [ —1 4270 + Qa1 | 1+2% Z 9ai—1
9=q0 i=1 i=1
ajg—1—aj;—1 lo—1 1 aj,—2—ajy—1
— ajg—1+q+1 E _ E
- Z Oéalo—l"'_q2 ¢ 92a;—1 aulo—l"“] + aalo_l'
9=q0 i=1 9=q0
We proceed in the same way with the second sum of (3.4]) and we obtain
In—laj+1—a;—1
E E aaj+qn2aj+q
j=lo
In—laj+1— J 1 In—1 j 1
=) § aY —1 420t +> a 1420+ )
CLj+(] 2@1'—1 aj+1_1 20,1'—1
j=lo i=1 j=lo i=1
In—1 aj+1—<lj—1 J In—laj41—a;—2 In—1
_E: E: a-+q+1§: E: 2:
- aaj+‘12 ! 2a1—1 Qaj+q T E : Qaj1—1-
Jj=lo q=0 i=1 Jj=lb q=0 J=lo

Finally to study the third sum of (3.4), we consider two cases.

o Case wy < ajy41 — 1:

anN qN IN 1
_ _ ap,+q+1
D Oy talypy s = D Oa g | —1+ 20T T
q=0 q=0 i=1
qaN In
_ ap,+q+1 § :
= E aalN+q2 N § : 2afl Qay +q-
q=0 =1

o Case wy = ajy4+1 — 1t
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N
E aalN +qn2alN+q
q=0

AUy +1—2=ay In 1 In 1
— _ ap+g+1 ajn+1
o Z Qary+q 1420 Z 2a;—1 + Qayy 111 14 2%+ Z 9a;—1
q=0 =1 i=1
aly+1—1—agy In 1 Al +1—2—0ar
_ ap,+q+1 _
- Z Oé(’”zv'*'q2 N Z 2a;—1 Z Qary+q + Qayy1—1-
q=0 i=1 q=0

Now, we gather these results in the case where wy < ajy4+1 — 1 (the case wy = ajy 41 — 1
being similar). We get

alo_l_alofl IN—1aj+1— -1
nNy = nQL()—]_ + E aalO 1+qn alo_1+q + g E Oéaj+qn2a]-+q
q4=4q0 7=lo
+ E Qay  +qT alN+q+ E le%
i=14+Lg
ag—1l-aiy—1 lo—1 1
= E ajy—1+q+1
= MNgLy_q + aa10,1+q2 0 gai—1
q=q0 =1
In—lajt1—a;—1 J 1 qN In 1
a;j+q+1 ap+q+1
+ Z Qa;4+q2" > g1 | T > Oy g2 a1
j=lo i=1 q=0 i=1
al0727a10,1 In—1 aj+1—aj—2 In—1
- E : Qapy 49 — E E , Qg +q — E :aaz +q+aa10*1+ E :O‘CLJH*I_‘_ E : ;.
g9=90 Jj=lo q=0 Jj=lo i=1+Lg

Moreover, observe that, by definition, if wy < ajy+1 — 1,

ajg—l—ajy—1 Iy—1lajt1—a;—1

wN qN
E : Q; = E : Qay, 1+g T E : E : O‘aj+q+§ :O‘GZN-HI

i=1+Lg q=q0 i=lo q=0

ajg—2—ay,—1 INn—1 “j+1*“j*2 anN INn—1

4=q0 j=lo q=0 q=0 Jj=lo
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Let us observe also that if wy < a1 — 1, then we have Qap g —1 = 0. Thus, we derive
the announced result

ajg—l-ay,—1 lp—1 1
_ E aj,—1+tq+1 E
nN = nzLoil + a01071+q2 0 2ai_1

q=q0 =1

In—1aj+1—a;—1

Y 2aa+q+1<§:: _ )

J=lo q=0
qN In—1
E +q+1
+ aalN+q2alN q 20117 + 20[al 1+ 2 Z Ola]+171
q=0 J=lo

ajg—1—aj;—1

lo—1 1
_ aj,—1+tq+1

9= (10 =1

In—lajri—a;— J 1
] 1

J lo i=1

In 1 1+IN
+Zaalw+q2a”\’+q+l (Z 2a¢—1> +2 Z Qg —1-
q=0

i=1 j=lo

O

Lemma 3.7. Using the notations of Definition [3.5, we have, for every positive integer N,

0o 1 00 1+in [e%e) 1
— 1+L
ny = 2N (§ 2ai_1>+2<§ = >+2 > g | =2 Y
i=1 i=1 j=lo i=lo—To
a —(11071—1

o0

1 o
aj,—1+

1=lo q4=qo0
In—1 0o 1 aj+1—aj—1
=PI DL = I D DR
j=lo \i=j+1 q=0
0 1 qN
—2 Z W Z alN+q2alN+q - l(] - 1 + 27—07
i=Ilny+1 q=0

with 19 = 0 if Lo > aj,—1 — 1 and 1o = 1 if Lo = ajy,—1 — 1.

Proof. Let N = E?:LO‘i’l ;2" + (2L0 — 1) =>" ;2" with a;p—1 —1 < Ly < a;, — 1. Lemma

[3.6] gives:

1+iN aloflfalofl lo—1 1
_ ajy—1+tq+1 E
NN = Norg_1 + 2 g Qg ;—1 + § aa1071+q2 0 2a;—1
j=lo a=90 =1

In—1laj+1—a;—1

J an !
+ Z Z O‘aj-i-qQajJr(Hl (Z 2a1—1> + Zaaz +q 20N T+ <ZN: 2;—1) :

Jj=lo q=0 q=0 =1
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Let us now express every sum of the form Zrl 2a1_1 as y .o 2%_1

gives:

NN = MNgro_q +2 (Z]ligév aaj_1> +2 (Zz—l 2a1—1) (

=lo

alO*alo—1*1

ajy—1+
q=q0 Qa1 +q27107" q)

- i1—ai—1
12 (052 ) (0 S 427+ D0 g 127 H)

ag, —(llo—l—l
q9=q0

—NZuwid(

Moreover, Lemma, allows to express

aal071+q2a1071+Q)
In—1 00 1 aj+1—a;
—2 Ej:lo (Zi:j-{-l 2%‘*1) Zq:O

00 1 aN
-2 Zi:lN+1 2%-—1) (ZQZO aa1N+q

-1 ai+q
CYaj+q2 J
2azN+Q)

1
ZFK_H Fa T This

91+Lo yolo—2 st — (lo—1) if Lo =a;,-1 —1
n =
2Lo—1 91+Lo ZZO 1 2%171 —(lo+1) if Lo > ap—1—1
[P (S ) 2 (S ) () o= a1
pl+Lo (320 - 71) — 2lt+Lo (Y il 2(%1) —(lp+1) if Lo > ajy—1 — 1

From now on, we treat only the case when Lo = aj,—1 — 1, the other case being completely
similar. Let us replace in the first expression the value of nyr,_;, we obtain:

—lo + 1 —2*lo (Y

L (-
( ilév aaj_ )
(

— 1
nN = llo 12‘1*1)

>t o =) <2L0 + Zalgqoalo_l_l aazo—1+q2alo_1+q)
( a]+1*0«1*1 q, +q2a]+q + Zq 0 Qay +q2 zN+l1)
2 "0 4201

S (S tr) Tt a0y 0q20%7)

Zle-i-l 2a1—1) (ZZZO OzalN+q2alN+q>

zN 1
—ZO

i=1 24, *1 q 0

Remark now that

alo —alO,1—1

In—1lajt1—a;—1 qn
L _ .
2o+ Y Qagy 1442707 T+ g Ay g2+ Y gy 42T = N +1
4=qo0 7=lo

q=0
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and replace this in the preceding expression of ny to obtain:

00 1 00 1 1+in 00 1
— 1+L

i=1 i=1 i=lo i=lo—1
00 1 alO*alo—1*1
-2 Zﬁ Z Qlayy_y+q2710 71 H
i=lo 4=qo0
lel o0 1 aj+1—aj—l
a;+
(T[S 5) Y e
j=lo \i=j+1 q=0
00 1 qn
=2 D o | [ Do w2 —lo+1
i=ln+1 q=0
g
Now observe that we have the following estimates:
< 4 ayy—ajy—1—1 ajy—ai5—1—4o 4
ajy—1+49 —J aj
2 22(12'*1 Z aalo—1+q2 0 <4 2 + 2a10+1—12 °0<8,
i=lo 9=90 J=1
In=1 [ o0 1 aj+1—a;—1 In—1 aj+1—a;—1
IO SN o B el ] D SE Sl (D Sl
2(12'— J -
Jj=lo \t=j+1 =0 Jj=lo q=0
In—1 aj+1—a;—1
+16 [ S 2-(@reme) S
Jj=lo q=0
< S(ZN_ZO)+16a
and
S8 1 qN
2 X oai—1 D a2 | <4,
=
i=ln+1 q=0

The combination of these estimates with Lemma leads to the following statement.

Lemma 3.8. Using the notations of Definition[3.5], there exist positive real numbers Cy, Ca, Cs, Cy
such that we have, for every positive integer N,

e o0
1 1
2N (Z 2ai1> —Cily —Cy <ny <2N (Z 2%1) + Csln + Cy.
=1 i=1
.-2m
Thus assume that a,, = 2% , where 2 appears s — 1 times (s > 2). Then the associated

function f : N — N is given by f(j) = m, for j € {am,...,am+1 — 1}, and the following
estimate holds:

CN — C11og® (N) < ny < CN + Cylog®) (N)
with C,C1, Gy > 0. An easy adaptation of Lemma 4.10 of [6] gives d5 ((nx)) > 0 and we have
proved the following result.
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Theorem 3.9. Let X be a Fréchet space, Y a separable Fréchet space and T, : X — Y,
n € N, continuous mappings. If the sequence (T),) satisfies the frequent universality criterion,
then (T,,) is Ds-frequently universal for any s > 1.

Remark 3.10. (1) Let h be any real strictly increasing C'-function satisfying the follow-
ing conditions: h(x) — +o00, as x — +00, x — x/h(log(x)) (eventually) increases (to
infinity), h(z) = o(log(z)) and h'(z) = o(h(z)) as * — +oo. With a good choice of
the sequence (a,) (i.e. a, = h~'(n)) one can show that the conditions of the frequent
universality criterion automatically imply the Ap-frequent universality, where Ay, is
the admissible matrix given by the coefficients e¥/*(108(%)) Indeed, under the previous
assumptions, Lemma [3.8| ensures that there exist C, Cy,Cy > 0 such that

CN — C1h(log(N)) < ny < CN + Csh(log(N)).

Taking into account Lemmaand the estimate S_p_, e?/h1e(k) ~ p(log(n))en/ o))
as n — +oo, an adaptation of Lemma 4.10 of [6] gives d4, ((n)) > 0 and we have
proved the result.

(2) Sophie Grivaux showed that one can find a proof of Theorem (or Remark [3.10{(1))
in the particular case of hypercyclicity in an elegant way thanks to ergodic theory
arguments [8]. To do this, she combines Theorem 7 of [9] with Theorem 1 of [10].

We end this section by proving that an operator T': X — X, acting on a Fréchet space X,
cannot be Aj-frequently hypercyclic. In other words, from Remark ensures that we
have obtained the sharpest result in the context of hypercyclicity.

Proposition 3.11. Let X be a Fréchet space. Then, there is no Ai-frequently hypercyclic
operator on X.

Proof. Let T : X — X be a continuous operator. Assume that the topology on X is given
by an increasing sequence of semi-norms (p;). Let us consider J > 1, f € X with p;(f) > 1.
We set 0 < e < 1and By(f,e) :={z€ F:pj(z—f) <e}. Assume that T is A;-frequently
hypercyclic and let us consider x € X so that x is a A;-frequently hypercyclic vector for T
According to the proof of [6, Proposition 3.7] the set N(x, B;(f,¢)) has bounded gaps. Hence
we denote by M an upper bound for the length of these gaps. Let us define K¢y = J and
no = 1 —e > 0. The continuity of the operator T ensures that there exists a sequence of
natural numbers (K;)i1<i<p and a sequence of positive numbers (7;)1<i<ar such that:

(1) for0<i< M, K; > J,

(2) for0<i< M, n <1-—g¢,

(3) for 1 <i < M and for any z € X,

K, (2) < i = pr, (T(2)) < ni-1.

Now we use the Ai-frequent hypercyclicity of x to find a natural number n such that
Py, (T () < nu-
It follows from that for every 0 < i < M,
iy (T () < mar—s-
Therefore, by and , we get, for every 0 <1 < M,
pr, (T (2)) <1 —e.
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Thus, for every 0 < i < M,
ps(T" () = f) 2 Ips(f) —ps(T" (@) 21— (1 —¢) =e.
We have proved that [n;n+M]NN(z, B;(f,€)) = ) which contradicts the definition of M. [

4. A LOG-FREQUENTLY HYPERCYCLIC OPERATOR WHICH IS NOT FREQUENTLY
HYPERCYCLIC

In their very nice paper, Bayart and Ruzsa [4] gave a characterization of frequently hy-
percyclic weighted shifts on the sequence spaces ¢ and cg. In particular, a straightforward
modification of the proof of [4, Theorem 13] gives an analogous result with respect to the
so-called logarithmic density.

Theorem 4.1. Let w = (wp)nen be a bounded sequence of positive integers. Then By, is
log-frequently hypercyclic on co(N) if and only if there exist a sequence (M (p)) of positive real
numbers tending to +00 and a sequence (E,) of subsets of N such that:

(a) For any p > 1, dipy (Ey) > 0;

(b) For any p,q 21, p # q, (Ep +[0,p]) N (Ey +[0,4]) = 0;

(C) hmn%oo, nEE,+[0,p) W1 " Wn = +00;

(d) For any p,q > 1, for any n € E, and any m € E; with m > n, for any t € {0,...,q},

W1 Win—ntt > M(p)M(q).

In the same paper, the authors also provide examples of a U-frequently hypercyclic weighted
shift which is not frequently hypercyclic and of a frequently hypercyclic weighted shift which
is not distributionally chaotic. In what follows, we modify these constructions as well as
those made in [6] to construct a log-frequently hypercyclic operator which is not frequently
hypercyclic. We begin by the following lemma.

Lemma 4.2. There exist a > 1 and € > 0 such that for any integer u > v > 1, if we let
T3¢ = [200=2)a®" 2(+e)a™ ) ypen the following properties hold:

(1) I NIy’ =9

(2) 13,25 _13,25 C 13,45

(3) a* 175 > 1

Proof. A simple calculation shows that for any u > v > 1 then I3 N I9% = () if and only if

a? G;j;) > 1. Similarly, we have

I — 13° € Ig% if and only if 207" V(