
HAL Id: hal-01835315
https://hal.science/hal-01835315v1

Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal semantics of the MULTI-ML language
Victor Allombert, Frédéric Gava, Julien Tesson

To cite this version:
Victor Allombert, Frédéric Gava, Julien Tesson. A formal semantics of the MULTI-ML language.
International Symposium on Parallel and Distributed Computing (ISPDC 2018), Jun 2018, Genève,
Switzerland. �hal-01835315�

https://hal.science/hal-01835315v1
https://hal.archives-ouvertes.fr


A formal semantics of the MULTI-ML language
Victor Allombert

Université d’Orléans, LIFO
Orléans, France

victor.allombert@univ-orleans.fr

Frédéric Gava
Université Paris-Est Créteil, LACL

Créteil, France
gava@u-pec.fr

Julien Tesson
Université Paris-Est Créteil, LACL

Créteil, France
julien.tesson@lacl.fr

Abstract—In the context of high performance computing, it
is important to avoid indeterminism and dead-locks. MULTI-
ML is a functional parallel programming language “à la ML”,
designed to program hierarchical architectures in a structured
way. It is based of the MULTI-BSP bridging model. To ensure
that a program “cannot go wrong”, we first need to define how
a program “goes”. To do so, we propose a formal operational
semantics of the MULTI-ML language to ensure the properties
of the MULTI-BSP model. We first describe a core-language and
then introduce the big step’s semantics evaluation rules. Then,
we propose a set of evaluation rules that describe the behaviour
of the MULTI-ML language. The memory model is also precisely
defined, as the MULTI-BSP model deals with multiple level of
nested memories.
Keywords : Semantics, MULTI-BSP, ML

I. INTRODUCTION

A. Context

Our previous work aimed at designing a parallel functional
language based on the Bulk Synchronous Parallelism (BSP)
bridging model called BSML [1]. BSP is a model of parallelism
which offers a high level of abstraction and takes into account
real communications and synchronisation costs [2]. BSP has
been used successfully for a broad variety of applications.
To be compliant to a bridging model eases the way of
writing codes that ensures efficiency and portability from one
architecture to another. Thanks to a cost model it is also
possible to reason on the algorithmic costs.

As modern HPC (High Performance Computing) architec-
tures are hierarchical and have multiple layers of parallelism,
communication between distant nodes cannot be as fast as
among the cores of a given processor. As BSP was designed for
flat architectures, we now consider the MULTI-BSP model [3],
an extension of BSP which is dedicated to hierarchical ar-
chitectures. MULTI-ML [4] is an extension of OCAML for
programming MULTI-BSP algorithms. MULTI-ML uses a small
set of primitives similarly to BSML for BSP algorithms.

To ensure that a language is properly implemented, it is
important to provide a semantics that describes precisely the
behaviour and the memory model of a language. Natural
semantics (also called big-step semantics) aims to describe,
in a formal way, how the overall result of the evaluation
of an expression is obtained. In the context of MULTI-ML
programming, it is thus possible to describe precisely the
evaluations steps leading to a valid evaluation of a hierarchical
computation. Using a set of inductive and co-inductive rules,
we define both terminating and diverging terms evaluation.

Thus, we are able to express formally how a MULTI-ML
program “goes”.

B. Outlines
In this article we introduce the formal (operational) seman-

tics of the MULTI-ML language. First, we introduce MULTI-ML,
the MULTI-BSP model and the previous models and languages,
in section II. In (section III) we propose a core language
that describes the syntax of the language, and the MULTI-ML
execution model. Then, in section IV, we give and describe
the terminating rules of the MULTI-ML semantics; followed be
the diverging one. The formal properties of the semantics are
discussed in section V. After the description of related works
(in section VI) we conclude in section VII.

II. PREVIOUS WORK

A. The BSP bridging model
In the BSP model [5], a computer is a set of p uniform

pairs of processor-memory with a communication network. A
BSP program is executed as a sequence of super-steps (Fig. 1),
each one divided into three successive disjointed phases: (1)
each processor only uses its local data to perform sequential
computations and to request data transfers to other nodes; (2)
the network delivers the requested data; (3) a global synchro-
nisation barrier occurs, making the transferred data available
for the next super-step. Thanks to this structured execution
scheme, deadlocks are avoided and determinism is preserved.

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

...
...

...

Fig. 1. A BSP super-step

As BSP architecture can be easily mapped on any general
purpose parallel architecture, it is possible to accurately esti-
mate the execution time of a BSP program with the BSP param-
eters (not detail in this article). The execution time (cost) of a
super-step is the sum of the maximal of the local processing
time, the data delivery and the global synchronisation times.
The total cost of a BSP program is thus the sum of its super-
steps’s costs.



B. The BSML language.

BSML [1] is a functional parallel programming language
designed to program BSP algorithms. It uses a small set of
primitives and is currently implemented as a library for the
ML (Meta Language) programming language OCAML.

A BSML program is built as a ML one but using a specific
data structure called parallel vector. Its generic ML type is
α par. A vector expresses that each of the p processors
embeds a value of any type α. Informally, they work as
follows: Let� e � be the vector holding e everywhere (on
each processor), the � � indicates that we enter into the
scope of a vector. The informal semantics of this construction
is 〈e, . . . , e〉, assuming that 〈...〉 denotes a parallel vector.

Within a vector, the syntax $x$ can be used to read the
vector x and get the local value it contains. Informally, we
have vi on processor i, assuming that v ≡ 〈v0, . . . , vp−1〉.
The ids can be accessed with the predefined vector pid.

The proj primitive is the only way to extract local values
from a vector. Given a vector, it returns a function such
that applied to the pid of a processor, returns the value of
the vector at this processor. The proj primitive is typed
α par→(int→α). proj performs communication to make
local results available globally and ends the current super-step.
Informally, we have proj 〈x0, . . . , xp−1〉 7→ (fun i→ xi).

The put primitive is another communication primitive. It
allows any local value to be transferred to any other processor.
It is also synchronous, and ends the current super-step. put
is typed (int→α)par→(int→α)par. The parameter of
put is a vector that, at each processor, holds a function
returning the data to be sent to processor j when applied
to j. The result of put is another vector of functions: at a
processor j the function, when applied to i, yields the value
received from processor i by processor j. Informally, we have
put 〈f0, . . . , fp−1〉 7→〈fun i→fi 0, . . . , fun i→fi (p−1)〉.

C. The Multi-BSP bridging model.

MULTI-BSP is a bridging model [3] which is adapted to
hierarchical architectures, mainly clusters of multi-cores. It is
an extension of the BSP bridging model. The structure and
abstraction brought by MULTI-BSP allows to have portable pro-
grams with scalable performance predictions, without dealing
with low-level details of the architectures. This model brings
a tree-based view of nested components (sub-machines) of
hierarchical architectures where the lowest stages (leaves) are
processors and every other stage (nodes) contains memory.

Every component can execute code but they have to syn-
chronise in favour of data exchange. Thus, MULTI-BSP does
not allow subgroup synchronisation of any group of proces-
sors: at a stage i there is only a synchronisation of the sub-
components, a synchronisation of each of the computational
units that manage the stage i−1. So, a node executes some
code on its nested components (aka “children”), then waits
for results, does the communication and synchronises the sub-
machine. A MULTI-BSP algorithm is thus composed by several
super-steps, each step is synchronised for each sub-machine.

Stage i

Stage i− 1

n

n.1 . . . . . . n.pi

gi+1

gi

mi

Li

Fig. 2. The Multi-BSP parameters

Mainly, an instance of MULTI-BSP is defined by d, the
fixed depth of the (balanced and homogeneous) tree archi-
tecture, and by 4 parameters for each stage i of the tree :
(pi,gi,Li,mi); described in Fig 2: pi is the number of sub-
components inside the i−1 stage; gi is the bandwidth between
stages i and i−1: the ratio of the number of operations to the
number of words that can be transmitted in a second; Li is the
synchronisation cost of all sub-components of a component of
i− 1 stage; mi is the amount of memory available at stage i
for each component of this stage. Thanks to those parameters,
the cost of a MULTI-BSP algorithm can be computed as the
sum of the costs of the super-steps of the root node, where the
cost of each of these super-steps is the maximal cost of the
super-steps of the sub-components (plus communication and
synchronisation); And so on.

D. The Multi-ML language.

MULTI-ML [6], [4] (https://git.lacl.fr/vallombert/Multi-ML)
is based on the idea of executing BSML-like codes on every
stage of a MULTI-BSP architecture. This approach facilitates
incremental development from BSML codes to MULTI-ML
ones. MULTI-ML follows the MULTI-BSP approach where the
hierarchical architecture is composed by nodes and leaves. On
nodes, it is possible to build parallel vectors, as in BSML. This
parallel data structure aims to manage values that are stored
on the sub-nodes: at stage i, the code let v=� e �
evaluates the expression e on each i−1 stages. Inside a parallel
vector, we note #x# to copy the value x stored at stage i to
the memory i− 1.

MULTI-ML also introduce the concept of multi-function to
recursively go through a MULTI-BSP architecture. A multi-
function is a particular recursive function, defined by the
keyword let multi, which is composed by two codes: the
node and the leaf codes. The recursion is initiated by calling
the multi-function (recursively) inside the scope of a parallel
vector, that is to say, on the sub-nodes. The evaluation of a
multi-function starts (and ends) on the root node. The Fig. 3
shows how a multi-function is defined.

After the definition of the multi-function mf on line 1 where
[args] symbolises a set of arguments, we define the node
code (from line 2 to 6). The recursive call of the multi-function
is done on line 5, within the scope of a parallel vector. The
node code ends with a value v, which is available as a result
of the recursive call from the upper node. The leaf code, from
lines 7 to 9 consists of sequential computations.

https://git.lacl.fr/vallombert/Multi-ML


let multi mf [args]=
| where node =
| | (* BSML code*)
| | ...
| | � mf [args] �
| | ... in v
| where leaf =
| | (* OCaml code *)
| | ... in v

Fig. 3. A Multi-ML code.

e ::=
x Variable

| op Operator
| cst Constant
| let x = e in e Let binding
| fun x→ e Function
| rec f x→ e Recursive function
| multi f x→ e † e Multi-function
| (e e) Application
| if e then e else e Conditional
| (e, e) Pairing
| mkpar e Parallel primitives
| proj e | put e Synchro. parallel primitives
| replicate (fun _→ e ) Core parallel primitives
| down x | apply e e Core parallel primitives

v ::= Values
| op Operator
| cst Constant
| (fun x→ e )[E] Closure
| (rec f x→ e )[E] Recursive closure
| (multi f x→ e † e)[E] Multi-function closure
| (v, v) Pair
| < v, . . . , v > Parallel vector

op ::= Operators
| +,−, ∗, /,fst,snd, . . . Basic operators

cst ::= 1, 2, ..., true, false, (), ... Constants
E ::= {x1 7→ v1, . . . xn 7→ xn} Environment

Fig. 4. The µMULTI-ML grammar.

As expected, the synchronous communication primitives of
BSML are also available to communicate values from/to par-
allel vectors. We also propose another parallel data structure
called tree. A tree is a distributed structure where a value is
stored in every nodes and leaves memories. A tree can be built
using a multi-tree-function, with the let multi tree key-
word and can be handled by several primitives of the language.

III. A CORE LANGUAGE

To ease the understanding and avoid to be overwhelmed
by the details of a complete language, we choose to select a
subset of MULTI-ML to form a core-language called µMULTI-
ML. It relies on a minimal set of ML constructions and a set
MULTI-ML primitives. This set is sufficient enough to express
all the parallel behaviour that are used in MULTI-ML. Thus,
features such as records, modules, pattern matching, sum types
are excluded from µMULTI-ML. The grammar of the µMULTI-
ML is defined in Figure 4.

In this grammar, x and f range over an infinite set of iden-
tifiers. We also find the typical ML-like language constructors
such as let for bindings and also fun and rec for, respectively,

function and recursive functions. As expected, the application
is denoted (e e). For the sake of readability, we take the
liberty to use the familiar infix notation for binary and ternary
operators, as well as the usual precedence and associativity
rules. When the context is clear, we can avoid the usage of
parentheses. The multi-function definition is written with the
keyword multi. It takes one arguments and two expressions
separated by the † symbol; the first one is used to control
the parallelism on the node and the second is for leaf code.
Then, we have the parallel primitive mkpar which aims to
build parallel vectors; followed by the synchronous parallel
primitives used for communications: proj and put.

The distinction made between the syntactic sugar (the
� � , # and $ notations), used when programming MULTI-
ML algorithms, and the core parallel primitives (replicate,
down and apply), available in the semantics only, simplifies
the semantics. Indeed, the syntactic sugar eases the way of
programming but it is not suitable for the semantics as it
introduces implicit assumptions. Thus, we must transform and
abstract the syntactic sugar using the core parallel primi-
tives. The transformation applied to switch from the syntactic
sugar to the core parallel primitives is straightforward and
produce and equivalent expression. The parallel vector scope,
denoted << e >>, is transformed using the replicate
core primitive. Thus, << e >> is simply transformed into
replicate (fun _ → e ). The $ syntax is transformed
using the apply primitive. Like in BSML, the transformation
is simple and does not require a complicated expression
analysis. To do so, we build a vector of functions that takes,
as argument, the dollar’s annotated value. Using the apply
primitive, we can apply this vector of functions on the vector
of values. For example, the expression << e $x$ >> is
transformed into apply (replicate (fun _ x→ e x )) x.
The # syntax stands for a communication of a value to the
sub-nodes. The primitive down is used to perform such a
transfer. As the down primitive aims to distribute a value
to all the sub-nodes, the transformation is obvious. For ex-
ample, the expression << e #x# >> is transformed into
apply (replicate (fun _ x → e x ))(down x). As
the sharp annotated value is given as argument of the vector
of functions, there are no redundant copies. The expression
<< #x#+#x# >> is transformed into a code that copy x
to the sub-nodes, only once.

Then, the evaluation of an expression leads to a value v.
Variables stands for the standard operators, such as common
computations on integers or the fst and snd projections,
and also constants (which might refer to integer values,
booleans, characters, strings, etc.), functional, recursive and
multi-function closures (that is to say a value which stores both
a function and its environment), pairs and also parallel vectors.

An environment E is interpreted as a partial mapping
(informally called “finite mapping”) with finite domain from
identifiers to values. The extension of E by v in x, written
E ⊕ {x 7→ v}.



« »

m

b

s

c

`

Fig. 5. The Multi-ML localities

A. The multi-level execution model

As MULTI-ML deals with MULTI-BSP architectures, we can
distinguish several levels of execution. An expression is thus
evaluated at a specific stage of the MULTI-BSP architecture,
depending on the level of parallelism expressed. Those levels
are useful to identify where the computations take place, but
also where a data is stored. Furthermore, the notion of locality
is embedded in the MULTI-ML type system to guarantee safe
communications through the MULTI-BSP levels (the MULTI-
ML type system is not discussed in this article). The memory
localities (see Fig. 5) of MULTI-ML are the following:
- m: The multi, or global, memory of the multi-level architec-

ture. At this level, all the nodes and leaves of the MULTI-BSP
architecture are concerned by any execution. A value defined
at level m is accessible “anywhere” on the machine.

- b: The BSP memory of a node. At this level, a BSML code
can be executed in order to manage communications and
parallel computations. It is possible to point toward the
underlying memory via the parallel vectors. A value defined
at level b is only accessible in the concerned node and can
be communicated with the respect of certain limitations.

- l: The local memory of a sub-node (inside a parallel vector).
This is the underlying memory that can be managed inside
a parallel vector from the upper node . This memory can
contain pointers to the upper memory via the # syntax. Ex-
pressions of this level cannot be communicated because they
are specific to a node and may have no sense anywhere else.

- c: Like l, this memory is managed inside vectors but it is
free of references to the upper level. It is possible to transfer
such communicable values through the MULTI-BSP levels.

- s: The sequential memory of a leaf. It can contain specific
values such as non-deterministic expressions. At this level,
there is only sequential (ML) code and the execution takes
place in the lower level of the memory. A value defined at
level s can be communicated under certain constraints.

IV. BIG-STEP SEMANTICS

In this section we give the big-step semantics (also called
natural semantics) to describe the evaluation of an expression
to its final value using inductive rules. Here, we consider
both a terminating semantics for terms where rules leads
to a finite derivation tree; and diverging rules (leading to

infinite evaluation). In the context of ML programming, we
only consider an eager (or call-by-value) evaluation strategy.

We choose to describe a subset of the MULTI-ML semantics
rules for conciseness reasons; all the rules can be found in [6].

A. Syntax definition

We denote the inference rules as following:

P
M ` e ⇓Lp v

and
P

M ` e ⇓Lp ∞

On the left-hand side, we have the inductive inference rule
(leading to a finite derivation tree). It can be read: under the
premises (or antecedents) P , the inference rule concludes that,
on the component p of locality L, within a multi-environment
M, the expression e is evaluated into a value v. On the right-
hand side, the co-inductive inference rule is written similarly,
but using a double-bar. It stands for a case where e diverges:
∞. Otherwise, it is an error: no applicable rules are defined.

The environment of evaluation is denoted by M and is
called a multi-environment. It is composed by two elements:
(1) a MULTI-BSP environment and (2) a tree of environments.
The first element represents the MULTI-BSP global memory.
This memory contains values that are accessible by any
processes. Thus every execution taking place outside the scope
of a multi-function is global; otherwise, it is executed on nodes
or leaves. Depending on the implementation and the architec-
ture, it can be simulated by a virtual unified memory (each
processor have a local copy) or by a physical global memory,
for example, when simulating an execution in the toplevel.
In practice, the memory is replicated on each component of
the MULTI-BSP architecture. But for the semantics, we choose
to create a single environment that is used during MULTI-
BSP evaluations. An evaluation taking place at the MULTI-
BSP level, denoted by multi, is then evaluated within the
environment ||M||@multi. The notation ||M|| denotes the
extraction of an environment from the memory M and the
@ refers to the targeted memory. As expected, every unit of
the architecture can access this MULTI-BSP environment. It is
possible to lookup in it at any time, from any level p, that
is to say, from each component of the MULTI-BSP architec-
ture. Nevertheless, the modifications of this environment are
possible at the MULTI-BSP level only.

The second element represents all the environments of the
architecture. It takes the shape of a tree which maps all the
environments of the different levels of the architecture, that is
to say all the nodes and leaves. To refer to the environment
of a particular component p of this tree is denoted ||M||@p.
The components are identified using a regular tree numbering
where 0 stands for the root node, and 0.0 to 0.n identify
its n sub-components. Thus, it contains its own environment
only, deprived of the MULTI-BSP memory. As the MULTI-BSP
memory is always available, the notation ||M||p stands for the
environment composed by ||M||@multi∪||M||@p, where the
subscript p stands for the targeted memory.



Comm((fun x→ e )[E]) = Comm_exprE(e)
Comm((rec f x→ e )[E]) = Comm_exprE(e)

Comm_exprE(x) = >, if x /∈ E
Comm(v), if {x 7→ v} ∈ E

Fig. 6. The communication predicates.

Now, we introduce the symbol of rule evaluation. The piece
of notation ⇓Lp denotes an evaluation taking place at a specific
level L, also parametrised by the position p. The evaluation
level L can take the values m, b, l or s, to specify on which
level the evaluation must occur. m is used when evaluation
level is MULTI-BSP; b when it a BSP evaluation; l when the
evaluation takes place within the scope of a parallel vector;
and s for sequential evaluations.

In the semantics, we do not make any distinctions between
l and c. It is not useful, as we propose a predicate to check
if a value is communicable: Comm(v) (in Fig. 6), for rules
performing communications. By abuse of the notation, this
predicate is > if the value v is communicable, ⊥ otherwise.

When communicating closures, we check if the expression e
contained in the closure is communicable within the enclosed
environment. To do so, we use the Comm_expr predicate
which is pretty straightforward: given an environment E , on
mkpar, proj, put, apply, down, replicate and
multi-functions it is ⊥; otherwise it calls, recursively, the
predicate on sub-expression.

The subtlety of this notation comes with the communica-
bility of x. We assume that, if x /∈ E , then the value x is
communicable. Indeed, if x does not belong to E , it means
that x is a free variable which comes from the application
of a closure, as the environment used for a closure is ε,
which is the environment of the closed term. Thus, during
the evaluation of an application (e1 e2), we assume that x is
communicable in e1 as its communicability will be checked
with e2. As expected, the communication of cst and op is >
and on multi-function closures it is ⊥.

The position p stands for the identifier of the component
where an evaluation takes place. We use the notation p.i to
refer to the ith sub-unit of a component that is accessible
through a parallel vector. The identifier alias root stands for
the root node and, as explained previously, multi is used when
the whole architecture is concerned by an evaluation.

B. Terminating evaluation rules

As the MULTI-ML language proposes different levels asso-
ciated with different behaviours, we propose several rules that
are either generic or specific to m, b, l.

1) Generic rules: The generic rules that can be evaluated
regardless to the evaluation level can be found in Fig. 7.

The VALUES and OP_EVAL rules a straightforward.
The VAR rule introduces the predicate lookup(x,M, p,L)

(defined in Fig. 8). As the VAR rule gives the value
corresponding to a binding, we must lookup for it in a
particular way. The value x must be seek, first, in ||M||@p,
which is the memory of the evaluation at level p. Then,

VALUES
M ` cst ⇓Lp cst

VAR
{x 7→ v} ∈ lookup(x,M, p,L)

M ` x ⇓Lp v

CLS

E = select(M,F(fun x→ v ), p,L)
v ≡ (fun x→ e )[E]

M ` fun x→ e ⇓Lp v

APP

M ` e1 ⇓Lp (fun x→ e )[E] M ` e2 ⇓Lp v

M⊕p E ⊕p {x 7→ v} ` e ⇓Lp v′

M ` (e1 e2) ⇓Lp v′

LET_IN

M ` e1 ⇓Lp v1
M⊕p {x 7→ v1} ` e2 ⇓Lp v2

M ` let x = e1 in e2 ⇓Lp v2

Fig. 7. Generic evaluation rules.

lookup(x,M, p,L) =
if {x 7→ v} ∈ ||M||@p then v Value at p
if {x 7→ v} ∈ ||M||@multi then
if L ≡ l then ⊥ Out of reach
else v Value at multi

else ⊥ Unbound value

Fig. 8. The lookup predicate.

if the value is not found there, we must look for it in the
MULTI-BSP environment: ||M||multi. If the value is not found
anyway, the identifier is unbound in the current expression,
which is an impossible (or ⊥) evaluation (“unbound value”).
As expected, if the evaluation takes place at the MULTI-BSP
level (multi), the variable x is only searched for in the
environment ||M||multi. Furthermore, we add the locality of
the evaluation as an input of the lookup predicate to ensure
that the values defined in the m memory will not be accessed
within the scope of a parallel vector (of locality l).

The CLS (or CLOSURE) rule is used to enclose all the
needed variables that are available inM. To do so, we use the
predicate select(M,V, p,L) (Fig. 9) to select all the variables
of the set of variables V from the multi-environment M. As
the predicate uses lookup, we must provide the current level
p and its locality L. The set of variables V is determined
using F(e), which stands for the set of free variables of the
expression. The set of free variables F(e) is defined as usual,
and available in Fig. 10.

The APP rule is used to evaluate functional constructions
on values. The rule introduces the notation ⊕p, which is a

select(M,V, p,L) =
let E ′ = ∅
∀α ∈ V, lookup(α,M, p,L)⊕ E ′
where V ≡ α0, . . . , αn

return E ′

Fig. 9. The select predicate.



F(e) ::=
F(op) = ∅
F(cst) = ∅
F(x) = x

F(fun x→ e ) = F(e)\{x}
F(rec f x→ e ) = F(e)\{x}

F(multi f x→ e1 † e2) = F(e1) ∪ F(e2)\{x}
F(let x = e1 in e2) = F(e1) ∪ F(e2)\{x}

F(e1 e2) = F(e1) ∪ F(e2)
F((e1, e2)) = F(e1) ∪ F(e2)

Fig. 10. The free variable predicate.

REPLICATE

∀i ∈ p M⊕pi {f 7→ (fun _→ e [ ])} ` f () ⇓lpi vi
Comm((fun _→ e [ ]))

M ` replicate (fun _→ e ) ⇓bp< v0, . . . , vn >

DOWN

M ` x ⇓bp v
Comm(v)

M ` down x ⇓bp< v >

MKPAR

M ` e ⇓bp (e′)[E ′]
∀i ∈ p M⊕p E ′ ` e′ i ⇓bp vi
Comm(vi)

M ` mkpar e ⇓bp< v0, . . . , vn >

APPLY

M ` e1 ⇓bp< (ei)[Ei] > M ` e2 ⇓bp< v0, . . . , vn >

∀i ∈ p M⊕p.i {fi 7→ (ei)[Ei], xi 7→ vi} ` fi xi ⇓lp.i v′i
M ` apply e1 e2 ⇓bp< v′0, . . . , v

′
n >

PROJ

M ` e ⇓bp< v0, . . . , vn >

∀i ∈ p M⊕p.i {f 7→ (e′)[E ′]} ` f i ⇓bp.i vi
Comm(vi)

M ` proj e ⇓bp (e′)[E ′]

PUT

M ` e ⇓bp< (e0)[E0], . . . , (en)[En] >
∀i, j ∈ p
M⊕p.i {fi 7→ (ei)[Ei]} ` fi j ⇓lp.i vij
M⊕p.j {f ′j 7→ (e′j)[E ′j ]} ` f

′
j i ⇓lp.j vij

M ` put e ⇓bp< (e′0)[E ′0], . . . , (e′n)[E ′n] > f

Fig. 11. BSP evaluation rules.

concatenation operator allowing to enrich the environment of
p with bindings. Here, we add the closure environment E and
the binding {x 7→ v} to ||M||p to the environment of p.

The LET_IN rule is necessary to bind values within a
context. The rule is straightforward as it only adds {x 7→ v1}
to the environment of p.

2) BSP rules: In Fig.11 we describe the BSP rules that can
be executed at level b (that is to say on nodes).

The REPLICATE rule is used to create parallel vectors. This
primitive is introduced by the code transformation and is not
available in the syntax of the MULTI-ML language. The REPLI-
CATE primitive requires, syntactically, a function definition as
an argument. This function takes any argument, denoted with
_ (similarly to the OCAML syntax), which is unbound in the
enclosed term. Such function definition allows to delay the
evaluation of the expression e when REPLICATE is evaluated.

As the expression e is generated (by the transformation from
syntactic sugar to core primitives), there are no free variables
in e. Indeed, a variable appears within the scope of a parallel
vector, it was necessarily annotated by # or $, and thus
bound by the apply primitive. Otherwise, the expression is ill-
formed. This is necessary for the MULTI-ML runtime system.
The notation ∀i ∈ p allows to reference the i sub-components
of the current node p, from 0 to n. Thus, the closure is added
to the environment of each leaf of the current node, identified
by pi, if the term is communicable. Then, the function is
evaluated on the unit value (), on each sub-components. As
the evaluation takes place within the scope of a parallel vector,
its evaluation locality is l. The resulting value is, as expected,
a parallel vector which contains the results of the evaluation
of e on each sub-component.

The DOWN rule is used to distribute data to the sub-nodes.
From a variable x, it builds a parallel vector containing the
corresponding value v, if v is communicable. The distributed
values are identical on the sub-nodes, thus the resulting parallel
vector is < v >.

MKPAR also aims to build a parallel vector. Nevertheless,
the evaluation of the ith elements of the resulting vector takes
place at level p, sequentially. This evaluation is done within a
single environment that is common to every evaluation. Thus,
one evaluation could impact the environment of another one
with a code using side effects, even if there is no way of doing
any side effects in the current semantics. It is important to note
that the big-step semantics does not allow to describe precisely
the evaluation order of the i evaluations. We arbitrarily choose
to do it in accordance to the ascending order: from 0 to n.
Thus, the expression e′ is applied on i, which corresponds to
the processor identifier (pid) of the ist component. It is impor-
tant to check that every value vi is communicable. Indeed, we
need to communicate the values v0, .., vn to the sub-nodes of
the level p and we must check the validity of such a transfer.

As expected, the APPLY rule applies a parallel vector of
functions (ei) on a parallel vector of data (vi) and returns
a parallel vector of values. Here, we compute, in parallel,
the evaluations of fi vi within the environment of each
sub-component i.

The PROJ rule must be applied on a parallel vector available
at the current level p. The resulting value is a closure which
contains the content of the given vector. As expected, the
values are accessible via their original identifiers. It is also nec-
essary to check whether or not the values of the given vector
are communicable in order to build a communicable closure.

The PUT rule works as expected. It takes a parallel
vector of communication functions, referenced as fi within
environment pi. Then, the received values are accessible via
f ′j . Here, both i and j stand for the sub-components of the
current node p. They are denoted as distinct variables to show
the all-to-all exchange.

3) Local rules: Rules that can be executed within the scope
of a parallel vector (of locality l) can be found in Fig. 13.

The MULTI_NODE and MULTI_LEAF rules are relative to
the recursive multi-function calls, which corresponds to the



MULTI_NODE

isNode(p)

M ` e1 ⇓lp (multi f x→ e′1 † e′2)[M′]
M ` e2 ⇓lp v
M′ ⊕p {x 7→ v}⊕p

{f 7→ (multi f x→ e′1 † e′2)[M′]} ` e′1 ⇓bp v′

M ` (e1 e2) ⇓lp v′

MULTI_LEAF

isLeaf(p)

M ` e1 ⇓lp (multi f x→ e′1 † e′2)[M′]
M ` e2 ⇓lp v
M′ ⊕p {x 7→ v} ` e′2 ⇓sp v′

M ` (e1 e2) ⇓lp v′

Fig. 12. Local evaluation rules.

MULTI_DEF

M′ = select(||M||multi,F(multi f x→ e1 † e2))
v ≡ (multi f x→ e1 † e2)[M′]

M ` (multi f x→ e1 † e2) ⇓mmulti v

MULTI_CALL

M ` e1 ⇓mmulti (multi f x→ e′1 † e′2)[M′]
M ` e2 ⇓mmulti v
M⊕root {x 7→ v}⊕root

{f 7→ (multi f x→ e′1 † e′2)[M′]} ` e′1 ⇓broot v′
Comm(v′)

M ` (e1 e2) ⇓mmulti v
′

Fig. 13. MULTI-BSP evaluation rules.

application of multi-function function on a value within the
scope of a parallel vector. MULTI_NODE and MULTI_LEAF are
applied regarding to the type of the current component. The
operators isNode(p) and isLeaf(p) are used to make such
a distinction. Informally speaking, isNode(p) is impossible
(returns ⊥) if p has no sub-components. On the contrary,
isLeaf(p) is impossible (⊥) if p has sub-components. Con-
cerning the MULTI_NODE rule, the environment of evaluation
of e′1 (standing for the node code) is enriched by the argument
given to the multi-function and the closure of the multi-
function. Indeed, the sub-node must be able to recall the multi-
function. We can observe that, after enriching the environment,
the evaluation of e′1 goes from l to b (from a vector to a
(sub-)node). This locality change is due to the fact that, when
a recursive call of a multi-function (done within the scope of
a parallel vector) is evaluated, we must initiate the recursion
on the sub-nodes: which corresponds to evaluate e′1 at level
b. A level change occurs during the evaluation of this rules.
On the contrary, the MULTI_LEAF rule is not concerned by
this environment enrichment because of its status of leaf. A
similar change of level can be observed in the MULTI_LEAF
rule, when we go from l to s (from a vector to a (sub-)leaf).

4) Multi-BSP rules: Finally, the rule used to call a multi-
function is defined in Fig. 13.

The MULTI_DEF rule aims to create the closure of a
multi-function and make it available in the MULTI-BSP
environment. To do so, we simply call the predicates
select(||M||multi,F(multi f x→ e1 † e2)) in order to built
the environment M′ from the MULTI-BSP environment and
the free variables of the multi-function itself.

The MULTI_CALL rule is used to initiate the multi-function

MKPAR-E
M ` e ⇓bp ∞

M ` mkpar e ⇓bp ∞

MKPAR-V

M ` e ⇓bp (e′)[E′]
∃i ∈ p M⊕p E′ ` e′ i ⇓bp ∞

M ` mkpar e ⇓bp ∞

Fig. 14. mkpar coinductive evaluation rule.

evaluation. As expected, the multi-function evaluation starts
on the root node, with an environment enriched by the given
argument and the multi-function closure. Thus, the evaluation
of e′1, corresponding to the node code, is evaluated at level b,
on the root node. As the resulting value of the evaluation of
the multi-function is going to be transferred to the MULTI-BSP
level, we also need to check if v′ is communicable. Indeed, the
final value must be available in the ||Mmulti|| environment.
To do so, in case of a distributed MULTI-BSP memory, we
must broadcast v′ from the root node to all the components
of the MULTI-BSP architecture. Thus, we must check that v′

is communicable.

C. Diverging evaluation rules

Using the co-inductive approach described in [7], we
propose a set of rules which describe the diverging rules. The
diverging rules are pretty straightforward as they describe the
fact that each evaluation of an expression of a rule can lead to
infinite evaluation. For conciseness reasons, we only describe
(in Fig.14) the mkpar rule (all the diverging rules can be
found in [6]). The MKPAR-E rules describes the divergence
of the evaluation of e; whereas MKPAR-V describes the
divergence of e′, which is the expression enclosed in the
closure given by the evaluation of e. In both cases, the
evaluation of the whole rule diverges.

V. SEMANTICS PROPERTIES

In this section, we give the properties of the semantics rules.
We prove that the evaluation of an expression following the
proposed rules is deterministic. The lemmas 1 and 2 ensure
that, if a value v is obtained from the execution of e and
then, the evaluation is deterministic. The lemma 3 ensures
that an evaluation produces a value or diverges (evaluation and
divergence exclusivity), that is to say, and evaluation “does not
go wrong”.

Lemma 1 (Evaluation is deterministic). Let e be a program,
letM be an environment, L an evaluation locality, p a position
and v1 and v2 be values. If M ` e ⇓Lp v1 and M ` e ⇓Lp v2
then v1 = v2.

Proof. See [6]

Lemma 2 (Evaluation or not). Let e be a MULTI-ML ex-
pression, M be an evaluation environment, L an evaluation
locality and p a position. Then:
• It is impossible to obtain a value v such thatM ` e ⇓Lp v
• or there exists a value v such that M ` e ⇓Lp v



Proof. (Using classical logic). The excluded middle holds
over M ` e ⇓Lp v.

Lemma 3 (Evaluation does not go wrong). Let e be a MULTI-
ML program, let M be an environment, L an evaluation
locality, p a position and v a value. If M ` e ⇓Lp v and
M ` e ⇓Lp ∞ then there is a contradiction.

Proof. See [6]

Note that those lemmas does not prove that any program
can be evaluated. For example, the program 0 0 (zero applied
on zero) goes wrong since, for any environment E and value
v, neither E ` (0 0) ⇓ v nor E ` (0 0) ⇓∞ holds. To do that,
we must provide a typing system which allow to identify such
programs.

VI. RELATED WORK

A. Hierarchical programming and Multi-BSP libraries

There are many papers about the gains of mixing shared
and distributed memories —e.g. MPI and OPEN-MP [8]. As
intended, the programmer must manage the distribution of
the data for these two different models. For example, the
work of [9] in which a BSP extension of C++ runs the
same code on both a cluster and on multi-cores. But it is
the responsibility of the programmer to avoid harmful nested
parallelism. This is thus not a dedicated language working for
hierarchical architectures. We can also highlight the work of
NESTSTEP [10] which is a C/JAVA library for BSP computing,
which authorises nested computations in case of a cluster of
multi-cores — but without any safety.

B. Distributed functional languages.

Except in [11], there is a lack of comparisons between paral-
lel functional languages. It is difficult to compare them since
many parameters have to be taken into account: efficiency,
scalability, expressiveness, etc. A data-parallel extension of
HASKELL called NEPAL has been done in [12], an abstract
machine is responsible for the distribution of the data over
the available processors. MULTIMLTON [13] is a multi-core
aware runtime for standard ML, which is an extension of the
MLTON compiler. It manages composable and asynchronous
events using, in particular, safe-futures. A description of other
bridging models for hierarchical architectures and other par-
allel languages can be found in [6].

Currently, we are not aware of any safe and efficient func-
tional parallel language dedicated to hierarchical architectures.

VII. CONCLUSION

In this paper we have presented the formal semantics
of the MULTI-ML language, a parallel functional language
dedicated to hierarchical architectures, relying of the MULTI-
BSP bridging model. The semantics describes the behaviour of
the MULTI-ML language regarding the multiple level of execu-
tion of hierarchical architectures. Furthermore, we propose a
memory model that ensures consistency with respect to the
MULTI-BSP programming model. Using both a terminating

semantics leading to a finite derivation tree and a diverging
semantics leading to infinite evaluations, we have described
how a MULTI-ML expression “goes”. Moreover, in accordance
to the presented lemmas, we ensure that the evaluation of a
valid MULTI-ML expression “does not go wrong”.

REFERENCES

[1] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski, “Bulk synchronous
parallel ML with exceptions,” Future Generation Computer Systems,
vol. 26, no. 3, pp. 486–490, Mar. 2010.

[2] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl, “Questions and
Answers about BSP,” Scientific Programming, vol. 6, no. 3, pp. 249–
274, 1997.

[3] L. G. Valiant, “A Bridging Model for Multi-core Computing,” J. Comput.
Syst. Sci., vol. 77, no. 1, pp. 154–166, Jan. 2011.

[4] V. Allombert, F. Gava, and J. Tesson, “Multi-ML: Programming Multi-
BSP Algorithms in ML,” International Journal of Parallel Programming,
p. 20, 2016. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01160164

[5] L. G. Valiant, “A Bridging Model for Parallel Computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[6] V. Allombert, “Functional Abstraction for Programming Multi-Level
Architectures: Formalisation and Implementation,” Ph.D. dissertation,
Université Paris Est, Créteil, France, Jul. 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01693568

[7] X. Leroy and H. Grall, “Coinductive big-step operational semantics,”
Information and Computation, vol. 207, no. 2, pp. 284–304, Feb. 2009.

[8] F. Cappello and D. Etiemble, “MPI Versus MPI+OpenMP on
IBM SP for the NAS Benchmarks,” in Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, ser. SC ’00. Washington,
DC, USA: IEEE Computer Society, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=370049.370071

[9] K. Hamidouche, J. Falcou, and D. Etiemble, “A Framework for an
Automatic Hybrid MPI+OpenMP Code Generation,” in Proceedings of
the 19th High Performance Computing Symposia. San Diego, CA,
USA: Society for Computer Simulation International, 2011, pp. 48–55.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2048577.2048584

[10] C. W. Kessler, “NestStep: Nested Parallelism and Virtual Shared Mem-
ory for the BSP Model,” The Journal of Supercomputing, vol. 17, no. 3,
pp. 245–262, Nov. 2000.

[11] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik,
R. Loogen, G. J. Michaelson, R. Peña, S. Priebe, Á. J. Rebón, and P. W.
Trinder, “Comparing Parallel Functional Languages: Programming and
Performance,” Higher Order Symbolic Computing, vol. 16, no. 3, pp.
203–251, Sep. 2003.

[12] M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel,
“Nepal - Nested Data Parallelism in Haskell,” in Proceedings of
the 7th International Euro-Par Conference Manchester on Parallel
Processing. London, UK, UK: Springer-Verlag, 2001, pp. 524–534.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646666.699740

[13] K. C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan, “MultiMLton:
A multicore-aware runtime for standard ML,” Journal of Functional
Programming, vol. 24, no. 06, pp. 613–674, 2014. [Online]. Available:
http://journals.cambridge.org/article_S0956796814000161

https://hal.archives-ouvertes.fr/hal-01160164
https://hal.archives-ouvertes.fr/hal-01160164
https://tel.archives-ouvertes.fr/tel-01693568
http://dl.acm.org/citation.cfm?id=370049.370071
http://dl.acm.org/citation.cfm?id=2048577.2048584
http://dl.acm.org/citation.cfm?id=646666.699740
http://journals.cambridge.org/article_S0956796814000161

	Introduction
	Context
	Outlines

	Previous work
	The BSP bridging model
	The BSML language.
	The Multi-BSP bridging model.
	The Multi-ML language.

	A core language
	The multi-level execution model

	Big-step semantics
	Syntax definition
	Terminating evaluation rules
	Generic rules
	BSP rules
	Local rules
	Multi-BSP rules

	Diverging evaluation rules

	Semantics properties
	Related Work
	Hierarchical programming and Multi-BSP libraries
	Distributed functional languages.

	Conclusion
	References

