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Abstract11

We examine some combinatorial properties of parallel cut elimination in multiplicative linear12

logic (MLL) proof nets. We show that, provided we impose some constraint on switching paths,13

we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant14

net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into15

another sum of nets, while keeping coefficients finite. We moreover show that our constraints are16

stable under reduction.17

Our approach is motivated by the quantitative semantics of linear logic: many models have18

been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear19

logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut20

elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential21

nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut22

elimination is essentially multiplicative. We moreover show that the set of differential nets that23

occur in the Taylor expansion of an MELL net automatically satisfy our constraints.24

In the present work, we stick to the unit-free and weakening-free fragment of linear logic, which25

is rich enough to showcase our techniques, while allowing for a very simple kind of constraint: a26

bound on the number of cuts that are crossed by any switching path.27
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1 Introduction33

1.1 Context: quantitative semantics and Taylor expansion34

Linear logic takes its roots in the denotational semantics of λ-calculus: it is often presented,35

by Girard himself [15], as the result of a careful investigation of the model of coherence36

spaces. Since its early days, linear logic has thus generated a rich ecosystem of denotational37

models, among which we distinguish the family of quantitative semantics. Indeed, the first38

ideas behind linear logic were exposed even before coherence spaces, in the model of normal39

functors [16], in which Girard proposed to consider analyticity, instead of mere continuity, as40
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the key property of the interpretation of λ-terms: in this setting, terms denote power series,41

representing analytic maps between modules.42

This quantitative interpretation reflects precise operational properties of programs: the43

degree of a monomial in a power series is closely related to the number of times a function44

uses its argument. Following this framework, various models were considered — among which45

we shall include the multiset relational model as a degenerate, boolean-valued instance. These46

models allowed to represent and characterize quantitative properties such as the execution47

time [5], including best and worst case analysis for non-deterministic programs [18], or the48

probability of reaching a value [2]. It is notable that this whole approach gained momentum49

in the early 2000’s, after the introduction by Ehrhard of models [7, 8] in which the notion50

of analytic maps interpreting λ-terms took its usual sense, while Girard’s original model51

involved set-valued formal power series. Indeed, the keystone in the success of this line52

of work is an analogue of the Taylor expansion formula, that can be established both for53

λ-terms and for linear logic proofs.54

Mimicking this denotational structure, Ehrhard and Regnier introduced the differential55

λ-calculus [12] and differential linear logic [13], which allow to formulate a syntactic version56

of Taylor expansion: to a λ-term (resp. to a linear logic proof), we associate an infinite linear57

combination of approximants [14, 11]. In particular, the dynamics (i.e. β-reduction or cut58

elimination) of those systems is dictated by the identities of quantitative semantics. In turn,59

Taylor expansion has become a useful device to design and study new models of linear logic,60

in which morphisms admit a matrix representation: the Taylor expansion formula allows to61

describe the interpretation of promotion — the operation by which a linear resource becomes62

freely duplicable — in an explicit, systematic manner. It is in fact possible to show that any63

model of differential linear logic without promotion gives rise to a model of full linear logic64

in this way [4]: in some sense, one can simulate cut elimination through Taylor expansion.65

1.2 Motivation: reduction in Taylor expansion66

There is a difficulty, however: Taylor expansion generates infinite sums and, a priori, there67

is no guarantee that the coefficients in these sums will remain finite under reduction. In68

previous works [4, 18], it was thus required for coefficients to be taken in a complete semiring:69

all sums should converge. In order to illustrate this requirement, let us first consider the70

case of λ-calculus.71

The linear fragment of differential λ-calculus, called resource λ-calculus, is the target72

of the syntactical Taylor expansion of λ-terms. In this calculus, the application of a73

term to another is replaced with a multilinear variant: 〈s〉[t1, . . . , tn] denotes the n-linear74

symmetric application of resource term s to the multiset of resource terms [t1, . . . , tn].75

Then, if x1, . . . , xk denote the occurrences of x in s, the redex 〈λx.s〉[t1, . . . , tn] reduces76

to the sum
∑
f :{1,...,k}∼→{1,...,n} s[tf(1)/x1, . . . , tf(k)/xk]: here f ranges over all bijections77

{1, . . . , k} ∼→ {1, . . . , n} so this sum is zero if n 6= k. As sums are generated by reduction,78

it should be noted that all the syntactic constructs are linear, both in the sense that they79

commute to sums, and in the sense that, in the elimination of a redex, no subterm is copied80

nor erased. The key case of Taylor expansion is that of application:81

T (MN) =
∑
n∈N

1
n! 〈T (M)〉T (N)n (1)82

where T (N)n is the multiset made of n copies of T (N) — by n-linearity, T (N)n is itself an83

infinite linear combination of multisets of resource terms appearing in T (N). Admitting that84
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Figure 1 Taylor expansion of a promotion box (thick wires denote an arbitrary number of wires)
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Figure 2 Example of a family of nets, all reducing to a single net

〈M〉[N1, . . . , Nn] represents the n-th derivative of M , computed at 0, and n-linearly applied85

to N1, . . . , Nn, one immediately recognizes the usual Taylor expansion formula.86

From (1), it is immediately clear that, to simulate one reduction step occurring in N , it87

is necessary to reduce in parallel in an unbounded number of subterms of each component of88

the expansion. Unrestricted parallel reduction, however, is ill defined in this setting. Consider89

the sum
∑
n∈N〈λxx〉[· · · 〈λxx〉[y] · · ·] where each summand consists of n successive linear90

applications of the identity to the variable y: then by simultaneous reduction of all redexes91

in each component, each summand yields y, so the result should be
∑
n∈N y which is not92

defined unless the semiring of coefficients is complete in some sense.93

Those considerations apply to linear logic as well as to λ-calculus. We will use proof nets94

[15] as the syntax for proofs of multiplicative exponential linear logic (MELL). The target of95

Taylor expansion is then in promotion-free differential nets [13], which we call resource nets96

in the following, by analogy with resource λ-calculus: these form the multilinear fragment of97

differential linear logic.98

In linear logic, Taylor expansion consists in replacing duplicable subnets, embodied by99

promotion boxes, with explicit copies, as in Fig. 1: if we take n copies of the box, the100

main port of the box is replaced with an n-ary ! link, while the ? links at the border of101

the box collect all copies of the corresponding auxiliary ports. Again, to follow a single102

cut elimination step in P , it is necessary to reduce an arbitrary number of copies. And103

unrestricted parallel cut elimination in an infinite sum of resource nets is broken, as one can104

easily construct an infinite family of nets, all reducing to the same resource net p in a single105

step of parallel cut elimination: see Fig. 2.106

1.3 Our approach: taming the combinatorial explosion of antireduction107

The problem of convergence of series of linear approximants under reduction was first tackled108

by Ehrhard and Regnier, for the normalization of Taylor expansion of ordinary λ-terms [14].109

Their argument relies on a uniformity property, specific to the pure λ-calculus: the support110

of the Taylor expansion of a λ-term forms a clique in some fixed coherence space of resource111

terms. This method cannot be adapted to proof nets: there is no coherence relation on112

differential nets such that all supports of Taylor expansions are cliques [22, section V.4.1].113

An alternative method to ensure convergence without any uniformity hypothesis was first114

developed by Ehrhard for typed terms in a λ-calculus extended with linear combinations115

of terms [9]: there, the presence of sums also forbade the existence of a suitable coherence116

CSL 2018
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relation. This method can be generalized to strongly normalizable [20], or even weakly117

normalizable [23] terms. One striking feature of this approach is that it concentrates on118

the support (i.e. the set of terms having non-zero coefficients) of the Taylor expansion. In119

each case, one shows that, given a normal resource term t and a λ-term M , there are finitely120

many terms s, such that:121

the coefficient of s in T (M) is non zero; and122

the coefficient of t in the normal form of s is non zero.123

This allows to normalize the Taylor expansion: simply normalize in each component, then124

compute the sum, which is component-wise finite.125

The second author then remarked that the same could be done for β-reduction [23], even126

without any uniformity, typing or normalizability requirement. Indeed, writing s ⇒ t if s127

and t are resource terms such that t appears in the support of a parallel reduct of s, the size128

of s is bounded by a function of the size of t and the height of s. So, given that if s appears129

in T (M) then its height is bounded by that of M , it follows that, for a fixed resource term t130

there are finitely many terms s in the support of T (M) such that s⇒ t: in short, parallel131

reduction is always well-defined on the Taylor expansion of a λ-term.132

Our purpose in the present paper is to develop a similar technique for MELL proof nets:133

we show that one can bound the size of a resource net p by a function of the size of any of its134

parallel reducts, and of an additional quantity on p, yet to be defined. The main challenge is135

indeed to circumvent the lack of inductive structure in proof nets: in such a graphical syntax,136

there is no structural notion of height.137

We claim that a side condition on switching paths, i.e. paths in the sense of Danos–138

Regnier’s correctness criterion [3], is an appropriate replacement. Backing this claim, there139

are first some intuitions:140

the culprits for the unbounded loss of size in reduction are the chains of consecutive cuts,141

as in Fig. 2;142

we want the validity of our side condition to be stable under reduction so, rather than143

chains of cuts, we should consider cuts in switching paths;144

indeed, if p reduces to q via cut elimination, then the switching paths of q are somehow145

related with those of p;146

and the switching paths of a resource net in T (P ) are somehow related with those of P .147

In the following, we establish this claim up to some technical restrictions, which will allow us148

to simplify the exposition:149

we use generalized n-ary exponential links rather than separate (co)dereliction and150

(co)contraction, as this allows to reduce the dynamics of resource nets to that of multi-151

plicative linear logic (MLL) proof nets;1152

we limit our study to a strict fragment of linear logic, i.e. we do not consider multiplicative153

units, nor the 0-ary exponential links — weakening and coweakening — as dealing with154

them would require us to introduce much more machinery.155

1.4 Outline156

In Section 2, we first introduce proof nets formally, in the term-based syntax of Ehrhard [10].157

We define the parallel cut elimination relation ⇒ in this setting, that we decompose into158

multiplicative reduction ⇒m and axiom-cut reduction ⇒ax. We also present the notion of159

1 In other words, we adhere to a version of linear logic proof nets and resource nets which is sometimes
called nouvelle syntaxe, although it dates back to Regnier’s PhD thesis [21]. See also the discussion in
our conclusion (Section 6).
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switching path for this syntax, and introduce the quantity that will be our main object of160

study in the following: the maximum number cc(p) of cuts that are crossed by any switching161

path in the net p. Let us mention that typing plays absolutely no role in our approach, so162

we do not even consider formulas of linear logic: we will rely only on the acyclicity of nets.163

Section 3 is dedicated to the proof that we can bound cc(q) by a function of cc(p),164

whenever p ⇒ q: the main case is the multiplicative reduction, as this may create new165

switching paths in q that we must relate with those in p. In this task, we concentrate on the166

notion of slipknot: a pair of residuals of a cut of p occurring in a path of q. Slipknots are167

essential in understanding how switching paths are structured after cut elimination.168

We show in Section 4 that, if p⇒ q then the size of p is bounded by a function of cc(p)169

and the size of q. Although, as explained in our introduction, this result is motivated by the170

study of quantitative semantics, it is essentially a theorem about MLL.171

We establish the applicability of our approach to the Taylor expansion of MELL proof172

nets in Section 5: we show that if p is a resource net of T (P ), then the length of switching173

paths in p is bounded by a function of the size of P — hence so is cc(p).174

Finally, we discuss further work in the concluding Section 6.175

2 Definitions176

We provide here the minimal definitions necessary for us to work with MLL proof nets. We177

use a term-based syntax, following Ehrhard [10].178

As stated before, let us stress the fact that the choice of MLL is not decisive for the179

development of Sections 2 to 4. The reader can check that we rely on two ingredients only:180

the definition of switching paths;181

the fact that multiplicative reduction amounts to plug bijectively the premises of a ⊗182

link with those of ` link.183

The results of those sections are thus directly applicable to resource nets, thanks to our184

choice of generalized exponential links: this will be done in Section 6.185

2.1 Structures186

Our nets are finite families of trees and cuts; trees are inductively defined as MLL connectives187

connecting trees, where the leaves are elements of a countable set of variables V . The duality188

of two conclusions of an axiom is given by an involution x 7→ x over this set.189

Formally, the set T of raw trees (denoted by s, t, etc.) is generated as follows:190

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn)191

where x ranges over a fixed countable set of variables V , endowed with a fixpoint-free192

involution x 7→ x.193

We also define the subtrees of a given tree t, written T(t), in the natural way : if t ∈ V ,194

then T(t) = {t}. If t = α(t1, . . . , tn), then T(t) = {t} ∪
⋃
i∈{1,...,n}T(ti), for α ∈ {⊗,`}. In195

particular, we write V(t) for T(t)∩ V . A tree is a raw tree t such that if α(t1, . . . , tn) ∈ T(t)196

(with α = ⊗ or `), then the sets V(ti) for 1 ≤ i ≤ n are pairwise disjoint: in other words,197

each variable x occurs at most once in t. A tree t is strict if {⊗(),`()} ∩T(t) = ∅.198

From now on, we will consider strict trees only, i.e. we rule out the multiplicative units.199

This restriction will play a crucial rôle in expressing and establishing the bounds of Sections 3200

CSL 2018
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and 4. It is possible to generalize our results in presence of units: we postpone the discussion201

on this subject to Section 6.2202

A cut is an unordered pair c = 〈t|s〉 of trees such that V(t) ∩V(s) = ∅, and then we set203

T(c) = T(t) ∪T(s). A reducible cut is a cut 〈t|s〉 such that t is a variable and t 6∈ V(s), or204

such that we can write t = ⊗(t1, . . . , tn) and s = `(s1, . . . , sn), or vice versa. Note that, in205

the absence of typing, we do not require all cuts to be reducible, as this would not be stable206

under cut elimination.207

Given a set A, we denote by −→a any finite family of elements of A. In general, we208

abusively identify −→a with any enumeration (a1, . . . , an) ∈ An of its elements, and write209

−→a ,
−→
b for the union of disjoint families −→a and

−→
b . If −→γ is a family of trees or cuts, we write210

V(−→γ ) =
⋃
γ∈−→γ V(γ) and T(−→γ ) =

⋃
γ∈−→γ T(γ). An MLL proof net is a pair p = (−→c ;−→t )211

of a finite family −→c of cuts and a finite family −→t of trees, such that for all cuts or trees212

γ, γ′ ∈ −→c ,−→t , V(γ) ∩V(γ′) = ∅, and such that for any x ∈ V(p) = V(−→c ) ∪V(−→t ), we have213

x ∈ V(p) too. We then write C(p) = −→c .214

2.2 Cut elimination215

The substitution γ[t/x] of a tree t for a variable x in a tree (or cut, or net) γ is defined in216

the usual way. By the definition of trees, we notice that this substitution is essentially linear,217

since each variable x appears at most once in a tree.218

There are two basic cut elimination steps, one for each kind of reducible cut:219

the elimination of a connective cut yields a family of cuts: we write 〈⊗(t1, . . . , tn)| `220

(s1, . . . , sn)〉 →m (〈ti|si〉)i∈{1,...,n} that we extend to nets by setting (c,−→c ;−→t ) →m221

(−→c ′,−→c ;−→t ) whenever c→m
−→c ′;222

the elimination of an axiom cut generates a substitution: we write (〈x|t〉,−→c ;−→t ) →ax223

(−→c ;−→t )[t/x] whenever x 6∈ V(t).224

We are in fact interested in the simultaneous elimination of any number of reducible cuts,225

that we describe as follows: we write p⇒ p′ if p = (〈x1|t1〉, . . . , 〈xn|tn〉, c1, . . . , ck,−→c ;−→t ) and226

p′ = (−→c ′1, . . . ,−→c ′k,
−→c ;−→t )[t1/x1] · · · [tn/xn], with ci →m

−→c ′i for 1 ≤ i ≤ k, and xi 6∈ V(tj)227

for 1 ≤ i ≤ j ≤ n. We moreover write p⇒m p′ (resp. p⇒ax p) in case n = 0 (resp. k = 0).228

It is a simple exercise to check that if p⇒ p′ then there exists q such that p⇒m q ⇒ax p
′:229

the converse does not hold, though, as the elimination of connective cuts may generate new230

axiom cuts.231

2.3 Paths232

In order to control the effect of parallel reduction on the size of proof nets, we rely on a side233

condition involving the number of cuts crossed by switching paths, i.e. paths in the sense of234

Danos–Regnier’s correctness criterion [3].235

In our setting, a switching of a net p is a partial map I : T(p)→ T(p) such that, for each236

t = `(t1, . . . tn) ∈ T(p), I(t) ∈ {t1, . . . , tn}. Given a net p and a switching I of p, we define237

adjacency relations between the elements of T(p), written ∼t,s for t, s ∈ T(p) and ∼c for238

c ∈ C(p), as the least symmetric relations such that:239

2 An additional consequence is the fact that, given a (strict) tree t, any other tree u occurs at most
once as a subtree of t: e.g., in `2(t1, t2), V(t1) and V(t2) are both non empty and disjoint, so that
t1 6= t2. In other words, we can identify T(t) with the positions of subtrees in t, that play the rôle of
vertices when considering t as a graphical structure. This will allow us to keep notations concise in our
treatment of paths. This trick is of course inessential for our results.
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for any x ∈ V(p), x ∼x,x x;240

for any t = ⊗(t1, . . . , tn) ∈ T(p), t ∼t,ti ti for each i ∈ {1, . . . , n};241

for any t = `(t1, . . . , tn) ∈ T(p), t ∼t,I(t) I(t);242

for any c = 〈t|s〉 ∈ C(p), t ∼c s.243

Whenever necessary, we may write, e.g., ∼pt,s or ∼
p,I
t,s for ∼t,s to make the underlying net and244

switching explicit. Let l and m ∈ (T(p)×T(p)) ∪C(p) be two adjacency labels: we write245

l ≡ m if l = m or m = (x, x) and l = (x, x) for some x ∈ V .246

Given a switching I in p, an I-path is a sequence of trees t0, . . . , tn of T(p) such that there247

exists a sequence of pairwise 6≡ labels l1, . . . , ln with, for each i ∈ {1, . . . , n}, ti−1 ∼p,Ili ti.3248

For instance, if p = (;⊗(x, y),`(y, x)) and I(`(y, x)) = x, then the chain of adjacencies249

`(x, y) ∼`(x,y),x x ∼x,x x ∼⊗(x,y),x ⊗(x, y) ∼⊗(x,y),y y ∼y,y y defines an I-path in p, which250

can be depicted as the dashed line in the following graphical representation of p:251

⊗ `
ax axx x y

|

y

.252

We call path in p any I-path for I a switching of p, and we write P(p) for the set of253

all paths in p. We write t  s or t  p s whenever there exists a path from t to s in p.254

Given χ = t0, . . . , tn ∈ P(p), we call subpaths of χ the subsequences of χ: a subpath is255

either the empty sequence ε or a path of p. We moreover write χ for the reverse path:256

χ = tn, . . . , t0 ∈ P(p). We say a net p is acyclic if for all χ ∈ P(p) and t ∈ T(p), t occurs at257

most once in χ: in other words, there is no cycle t, χ, t. From now on, we consider acyclic258

nets only: it is well known that if p is acyclic and p⇒ q then q is acyclic too.259

If c = 〈t|s〉 ∈ C(p), we may write χ1, c, χ2 for either χ1, s, t, χ2 or χ1, t, s, χ2: by acyclicity,260

this notation is unambiguous, unless χ1 = χ2 = ε.261

For all χ ∈ P(p), we write ccp(χ), or simply cc(χ), for the number of cuts crossed262

by χ: ccp(χ) = #{〈t|s〉 ∈ C(p) | t ∈ χ} (recall that cuts are unordered). Observe that,263

by acyclicity, a path χ crosses each cut c = 〈t|s〉 at most once: either χ = χ1, c, χ2, or264

χ = χ1, t, χ2, or χ = χ1, s, χ2, with neither t nor s occurring in χ1, χ2. Finally, we write265

cc(p) = max{cc(χ) | χ ∈ P(p)}: in the following, we show that the maximal number of cuts266

crossed by any switching path is a good parameter to limit the decrease in size induced by267

parallel reduction.268

3 Variations of cc(p) under reduction269

Here we establish that the possible increase of cc(p) under reduction is bounded. It should be270

clear that if p⇒ax q then cc(q) ≤ cc(p): intuitively, the only effect of ⇒ax is to straighten271

some paths, thus decreasing the number of crossed cuts. In the case of connective cuts272

however, cuts are duplicated and new paths are created.273

Consider for instance a net r, as in Fig. 3, obtained from three nets p1, p2 and q, by274

forming the cut 〈⊗(t1, t2)|`(s1, s2)〉 where t1 ∈ T(p1), t2 ∈ T(p2) and s1, s2 ∈ T(q). Observe275

that, in the reduct r′ obtained by forming two cuts 〈t1|s1〉 and 〈t2|s2〉, we may very well276

form a path that travels from p1 to q then p2; while in p, this is forbidden by any switching277

3 In standard terminology of graph theory, an I-path in p is a trail in the unoriented graph with vertices
in T(p) and edges given by the sum of adjacency relations defined by I (identifying ∼x,x with ∼x,x).
The only purpose of our choice of labels for adjacency relations and the definition of ≡ is indeed to
capture this notion of path in the unoriented graph of subtrees induced by a switching in a net.
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p1 p2

⊗

q

`
|

cut

p1 p2

cut
cut

q

Figure 3 A cut, the resulting slipknot, and examples of paths before and after reduction

of `(s1, s2). For instance, if we consider I(`(s1, s2)) = s1, we may only form a path between278

p1 and p2 through ⊗(t1, t2), or a path between q and one of the pi’s, through s1 and the cut.279

In the remainder of this section, we fix a reduction step p⇒m q, and we show that the280

previous example describes a general mechanism: if a new path is created in this step p⇒m q,281

it must involve a path ξ between two premises of a ` involved in a cut c of p, unfolded into282

a path between the residuals of this cut. We call such an intermediate path ξ a slipknot.283

3.1 Residual cuts and slipknots284

Notice that T(q) ⊆ T(p). Observe that, given a switching J of q, it is always possible to285

extend J into a switching I of p, so that, for all t, s ∈ T(q):286

if t ∼q,Jt,s s then t ∼p,It,s s, and287

if c ∈ C(p) and t ∼q,Jc s then t ∼p,Ic s.288

To determine I uniquely, is remains only to select a premise for each ` involved in an289

eliminated cut. Consider c = 〈⊗(t1, . . . , tn)|`(s1, . . . , sn)〉 ∈ C(p) and assume c is eliminated290

in the reduction p⇒m q. Then the residuals of c in q are the cuts 〈ti|si〉 ∈ C(q) for 1 ≤ i ≤ n.291

If ξ ∈ P(q), a slipknot of ξ is any pair (d, d′) of (necessarily distinct) residuals in q of a cut292

in p, such that we can write ξ = χ1, d, χ2, d
′, χ3. We now show that a path in q is necessarily293

obtained by alternating paths in p and paths between slipknots, that recursively consist294

of such alternations. This will allow us to bound cc(q) depending on cc(p), by reasoning295

inductively on these paths. The main tool is the following lemma:296

I Lemma 1. If ξ ∈ P(q) then there exists a path ξ− ∈ P(p) with the same endpoints as ξ.297

Proof. Assuming ξ is a J-path of q, we construct an I-path ξ− in p with the same endpoints298

as ξ for an extension I of J as above. The definition is by induction on the number of299

residuals occurring as subpaths of ξ. In the process, we must ensure that the constraints300

we impose on I in each induction step can be satisfied globally: the trick is that we fix the301

value of I(`(−→s )) only in case exactly one residual of the cut involving `(−→s ) occurs in ξ.302

First consider the case of ξ = χ1, d, χ2, d
′, χ3, for a slipknot (d, d′), where d and d′ are303

residuals of c ∈ C(p). We can assume, w.l.o.g, that: (i) no other residual of c occurs in χ1,304

nor in χ3; (ii) no residual of a cut c′ 6= c occurs in both χ1 and χ3. By the definition of305

residuals, we can write c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p), d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t306

and s, s′ ∈ −→s . It is then sufficient to prove that ξ = χ1, t, s, χ2, s
′, t′, χ3, in which case we can307

set ξ− = χ−1 , t,⊗(−→t ), t′, χ−3 , where χ
−
1 and χ−3 are obtained from the induction hypothesis308

(or by setting ε− = ε for empty subpaths): by condition (ii), the constraints we impose on I309

by forming χ−1 and χ−3 are independent.310

Let us rule out the other three orderings of d and d′: (a) ξ = χ1, s, t, χ2, t
′, s′, χ3, (b)311

ξ = χ1, s, t, χ2, s
′, t′, χ3 or (c) ξ = χ1, t, s, χ2, t

′, s′, χ3. First observe that χ2 is not empty.312
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Indeed, if t ∼ql t′ (or t ∼
q
l s
′, or s ∼ql t′) then: l cannot be a cut of q because 〈t|s〉 and313

〈t′|s′〉 ∈ C(q); l cannot be of the form (α(t1, · · · , tn), tn) because the trees t, t′, s, s′ are314

pairwise disjoint; so l must be an axiom and we obtain a cycle in q.315

Let u and v be the endpoints of χ2, and consider χ−2 ∈ P(p) with the same endpoints,316

obtained by induction hypothesis. Necessarily, we have t ∼q,Jl u in cases (a) and (b), s ∼q,Jl u317

in case (c), t′ ∼q,Jm v in cases (a) and (c), and s′ ∼q,Jm v in case (b), where l 6≡ m, and nor l nor318

m is a cut: it follows that the same adjacencies hold in p for any extension I of J . Observe319

that ⊗(−→t ) 6∈ χ−2 : otherwise, we would obtain a path t p ⊗(−→t ) (or ⊗(−→t ) p t
′) that we320

could extend into a cycle. Then in case (a), we obtain a cycle in p directly: t, χ−2 , t′,⊗(−→t ), t.321

In cases (b) and (c), we deduce that `(−→s ) 6∈ χ−2 , and we obtain a cycle, e.g. in case (b):322

t, χ−2 , s
′,`(−→s ),⊗(−→t ), t′, for any I such that I(`(−→s )) = s′.323

We can now assume that each cut of p has at most one residual occurring as a subpath of324

ξ. If no residual occurs in ξ, then we can set ξ− = ξ. Now fix c = 〈⊗(−→t )|` (−→s )〉 ∈ C(p) and325

assume, w.l.o.g (otherwise, consider ξ), that ξ = χ1, t, s, χ2 with t ∈ −→t and s ∈ −→s . Then we326

set I(`(−→s )) = s and ξ− = χ−1 , t, c, s, χ
−
2 ∈ P(p): this is the only case in which we impose a327

value for I to construct ξ−, so this choice, and the choices we make to form χ−1 and χ−2 are328

all independent. J329

I Lemma 2. If ξ ∈ P(q) and c = 〈⊗(−→t )| ` (−→s )〉 ∈ C(p), then at most two residuals of330

c occur as subpaths of ξ, and then we can write ξ = χ1, t, s, χ2, s
′, t′, χ3 with t, t′ ∈ −→t and331

s, s′ ∈ −→s .332

Proof. Assume ξ = χ1, d, χ2, d
′, χ3 and d = 〈t|s〉 and d′ = 〈t′|s′〉 with t, t′ ∈ −→t and s, s′ ∈ −→s .333

Using Lemma 1, we establish that ξ = χ1, t, s, χ2, s
′, t′, χ3: we can exclude the other cases334

exactly as in the proof of Lemma 1. Then, as soon as three residuals of c occur in ξ, a335

contradiction follows. J336

I Lemma 3. Slipknots are well-bracketed in the following sense: there is no path ξ =337

d1, χ1, d2, χ2, d
′
1, χ3, d

′
2 ∈ P(q) such that both (d1, d

′
1) and (d2, d

′
2) are slipknots.338

Proof. Assume c1 = 〈⊗(−→t 1)|`(−→s 1)〉, c2 = 〈⊗(−→t 2)|`(−→s 2)〉, and, for 1 ≤ i ≤ 2, di = (ti, si)339

and d′i = (t′i, s′i), with ti, t′i ∈
−→
t i and si, s′i ∈

−→s i. By the previous lemma, we must have340

ξ = t1, s1, χ1, t2, s2, χ2, s
′
1, t
′
1, χ3, s

′
2, t
′
2. Observe that nor χ−1 nor χ−3 can cross c1 or c2:341

otherwise, we obtain a cycle in p. Then s1, χ
−
1 , t2, c1, s

′
2, χ
−
3 , t
′
1, c2, s1 is a cycle in p. J342

I Corollary 4. Any path of q is of the form ζ1, c1, χ1, c
′
1, ζ2, . . . ζn, cn, χn, c

′
n, ζn+1 where each343

subpath ζi is without slipknot, and each (ci, c′i) is a slipknot.344

The previous result describes precisely how paths in q are related with those in p: it will345

be crucial in the following.346

3.2 Bounding the growth of cc347

Now we show that we can bound cc(q) depending only on cc(p). For each ξ ∈ P(q), we348

define the width wp(ξ) (or just w(ξ)): wp(ξ) = max{ccp(χ−)|χ subpath of ξ}. We have:349

I Lemma 5. For any path ζ ∈ P(q), ccp(ζ−) ≤ wp(ζ) ≤ cc(p) and wp(ζ) ≤ ccq(ζ). If350

moreover ζ has no slipknot, then wp(ζ) = ccq(ζ) = ccp(ζ−).351

Defining ϕ : N→ N by ϕ(0) = 0 and ϕ(n+ 1) = 2(n+ 1) + (n+ 1)(ϕ(n)), we obtain:352

I Lemma 6. If ξ ∈ P(q) then cc(ξ) ≤ ϕ(wp(ξ)).353
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Proof. The proof is by induction on w(ξ). If w(ξ) = 0, then we can easily check that cc(ξ) = 0.354

Otherwise assume w(ξ) = n+ 1. Then we set ξ = ζ1, c1, χ1, c
′
1, ζ2, . . . ζk, ck, χk, c

′
n, ζk+1 as in355

Corollary 4.356

First observe that for all i ∈ {1, . . . , k}, w(χi) ≤ w(ξ) − 1. Indeed, ci, χi is a subpath357

of ξ and w(ci, χi) = w(χi) + 1 by the definition of width. So, by induction hypothesis,358

cc(χi) ≤ ϕ(n). We also have that
∑k+1
i=1 cc(ζi) ≤ w(ξ)− k. Observe indeed that cc(ξ−) =359 ∑k+1

i=1 cc(ζi) + k, because of Lemma 5 applied to ζi, and because of the construction of ξ−360

that contracts the slipknots ci, χi, c′i; also recall that cc(ξ−) ≤ w(ξ).361

We obtain:362

cc(ξ) =
∑

1≤i≤k
cc(χi) +

∑
1≤j≤k+1

cc(ζj) + 2k ≤ kϕ(n) + w(ξ)− k + 2k363

and, since k ≤ cc(ξ−) ≤ w(ξ) = n+1, we obtain cc(ξ) ≤ (n+1)ϕ(n)+2(n+1) = ϕ(n+1). J364

Using Lemma 5 again, we obtain:365

I Corollary 7. Let p⇒m q. Then, cc(q) ≤ ϕ(cc(p)).366

I Remark. It is in fact possible to show that cc(q) ≤ 2n!cc(p), which is a better bound and367

closer to the graphical intuition, but the proof is much longer, and we are only interested in368

the existence of a bound.369

4 Bounding the size of antireducts370

For any tree, cut or net γ, we define the size of γ as #γ = card(T(γ)): graphically, #p is371

nothing but the number of wires in p. In this section, we show that the loss of size during372

parallel reduction is directly controlled by cc(p) and #q: more precisely, we show that the373

ratio #p
#q is bounded by a function of cc(p).374

First observe that the elimination of multiplicative cuts cannot decrease the size by more375

than a half:376

I Lemma 8. If p⇒m q then #p ≤ 2#q.377

Proof. It is sufficient to observe that if c→m
−→c then #c = 2 + #−→c ≤ 2#−→c .4 J378

4.1 Elimination of axiom cuts379

Observe that:380

if x ∈ V(γ) then #γ[t/x] = #γ + #t− 1;381

if x 6∈ V(γ) then #γ[t/x] = #γ.382

It follows that, in the elimination of a single axiom cut p→ax q, we have #p = #q + 1. But383

we cannot reproduce the proof of Lemma 8 for ⇒ax: as stated in our introduction, chains of384

axiom cuts reducing into a single wire are the source of the collapse of size. We can bound385

the length of those chains by cc(p), however, and this allows us to bound the loss of size386

during reduction.387

I Lemma 9. If p⇒ax q then #p ≤ (2cc(p) + 1)#q.388

4 This is due to the fact that all the trees are strict, so −→c is not empty and #−→c ≥ 1. Without the
strictness condition, we would have to deal with annihilating reductions 〈⊗()|` ()〉 →m ε: this will be
discussed in the conclusion.
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Proof. Assume p = (〈x1|t1〉, . . . , 〈xn|tn〉,−→c ;−→s ) and q = (−→c ;−→s )[t1/x1] · · · [tn/xn] with xi 6∈389

V(tj) for 1 ≤ i ≤ j ≤ n. In case cc(p) = 0, we have n = 0 and p = q so the result is390

obvious. We thus assume cc(p) > 0: to establish the result in this case, we make the chains391

of eliminated axiom cuts explicit.392

Due to the condition on free variables, there exists a (necessarily unique) permutation of393

〈x1|t1〉, . . . , 〈xn|tn〉 yielding a family of the form −→c 1, . . . ,
−→c k such that:394

for 1 ≤ i ≤ k, we can write −→c i = 〈xi0|xi1〉, . . . , 〈xini−1|xini
〉, 〈xini

|ti〉;395

each −→c i is maximal with this shape, i.e. xi0 6∈ {x1, . . . , xn, t1, . . . , tn} and, in case ti is a396

variable, ti 6∈ {x1, . . . , xn, t1, . . . , tn};397

if i < j, then the cut 〈xini
|ti〉 occurs before 〈xjnj

|tj〉 in 〈x1|t1〉, . . . , 〈xn|tn〉.398

It follows that if xi0 ∈ V(tj) then j < i, and then q = (−→c ;−→s )[t1/x1
0] · · · [tk/xk0 ], by applying399

the same permutation to the substitutions as we did to cuts: we can do so because, by a400

standard argument, if x 6= y, x 6∈ V(u) and y 6∈ V(u) then γ[u/x][v/y] = γ[v/y][u/x].401

For 1 ≤ i ≤ k, since −→c i is a chain of ni + 1 cuts, it follows that ni ≤ cc(p) − 1. So402

#p = #−→c + #−→s +
∑k
i=1(#ti + 2ni + 1) ≤ #−→c + #−→s +

∑k
i=1 #ti + k(2cc(p)− 1). Moreover403

#q = #−→c + #−→s +
∑k
i=1 #ti − k. It follows that #p ≤ #q + 2kcc(p) and, to conclude, it404

will be sufficient to prove that #q ≥ k.405

For 1 ≤ i ≤ k, let Ai = {j > i | xj0 ∈ V(ti)}, and then let A0 = {i | xi0 ∈ V(−→c ,−→s )}. It fol-406

lows from the construction that {A0, . . . , Ak−1} is a partition (possibly including empty sets)407

of {1, . . . , k}. By construction, #ti > card(Ai). Now consider qi = (−→c ;−→s )[t1/x1
0] · · · [ti/xi0]408

for 0 ≤ i ≤ k so that q = qk. For 1 ≤ i ≤ k, we obtain #qi = #qi−1 + #ti − 1 ≥409

#qi−1 + card(Ai). Also observe that #q0 = #(−→c ;−→s ) ≥ card(Ai). We can then conclude:410

#q = #qk ≥
∑k
i=0 card(Ai) = k. J411

4.2 General case412

Recall that any parallel cut elimination step p⇒ q can be decomposed into a multiplicative-413

then-axiom pair of reductions: p⇒m q′ ⇒ax q. This allows us to bound the loss of size in414

the reduction p⇒ q, using the previous results:415

I Theorem 10. If p⇒ q then #p ≤ 4(ϕ(cc(p)) + 1)#q.416

Proof. Consider first q′ such that p⇒m q′ and q′ ⇒ax q. By Lemma 8, #p ≤ 2#q′. Lemma417

9 states that #q′ ≤ (2cc(q′) + 1)#q. Finally, Corollary 7, entails that cc(q′) ≤ ϕ(cc(p)), and418

we can conclude: #p ≤ 2(ϕ(cc(p) + 1)#q) ≤ 4(ϕ(cc(p)) + 1)#q. J419

I Corollary 11. If q is an MLL net and n ∈ N, then {p | p⇒ q and cc(p) ≤ n} is finite.420

To be precise, due to our term syntax, the previous corollary holds only up to renaming421

variables in axioms: we keep this precision implicit in the following.422

It follows that, given an infinite linear combination of
∑
i∈I ai.pi, such that {cc(pi) | i ∈ I}423

is finite, we can always consider an arbitrary family of reductions pi ⇒ qi for i ∈ I and form424

the sum
∑
i∈I ai.qi: this is always well defined.425

5 Taylor expansion426

We now show how the previous results apply to Taylor expansion. For that purpose, we must427

extend our syntax to MELL proof nets. Our presentation departs from Ehrhard’s [11] in our428

treatment of promotion boxes: instead of introducing boxes as tree constructors labelled by429

nets, with auxiliary ports as inputs, we consider box ports as 0-ary trees, that are related430
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with each other in a box context, associating each box with its contents. This is in accordance431

with the usual presentation of promotion as a black box, and has two motivations:432

In Ehrhard’s syntax, the promotion is not a net but an open tree, for which the trees433

associated with auxiliary ports must be mentioned explicitly: this would complicate the434

expression of Taylor expansion.435

The nouvelle syntaxe imposes constraints on auxiliary ports, that are easier to express436

when these ports are directly represented in the syntax.437

Then we show that if p is a resource net in the support of the Taylor expansion of an MELL438

proof net P , then cc(p) (and in fact the length of any path in p) is bounded by a function of439

P .440

Observe that we need only consider the support of Taylor expansion, so we do not441

formalize the expansion of MELL nets into infinite linear combinations of resource nets:442

rather, we introduce T (P ) as a set of approximants. Also, as we limit our study to strict443

nets, we will restrict T (P ) to those approximants that take at least one copy of each box of444

P : this is enough to cover the case of weakening-free MELL.445

5.1 MELL nets446

In addition to the set of variables, we fix a denumerable set A of box ports: we assume given447

an enumeration A = {abi | i, b ∈ N}. We call principal ports the ports ab0 and auxiliary ports448

the other ports. In the so-called nouvelle syntaxe of MELL, contractions and derelictions are449

merged together in a generalized contraction cell, and auxiliary ports must be premises of450

such generalized contractions.451

We introduce the corresponding term syntax, as follows. Raw pre-trees (S◦, T ◦, etc.)452

and raw trees (S, T , etc.) are defined by mutual induction as follows:453

T ::= x | ab0 | ⊗(T1, . . . , Tn) | `(T1, . . . , Tn) | ?(T ◦1 , . . . , T ◦n) and T ◦ ::= T | abi+1454

requiring that each ⊗, ` and ? is of arity at least 1. We write V(S) (resp. B(S)) for the set455

of variables (resp. of principal and auxiliary ports) occurring in S. A tree (resp. a pre-tree)456

is a raw tree (resp. raw pre-tree) in which each variable and port occurs at most once. A cut457

is an unordered pair of trees C = 〈T |S〉 with disjoints sets of variables and ports.458

We now define box contexts and pre-nets by mutual induction as follows. A box context459

Θ is the data of a finite set BΘ ⊂ N, and, for each b ∈ BΘ, a closed pre-net Θ(b), of the form460

(Θb;
−→
C b;Tb,

−→
S ◦b). Then we write −→S ◦b = S◦b,1, . . . , S

◦
b,nb

. A pre-net is a triple P ◦ = (Θ;−→C ;−→S ◦)461

where Θ is a box context, each variable and port occurs at most once in −→C ,−→S ◦, and moreover,462

if abi ∈ B(−→C ;−→S ◦) then b ∈ BΘ and i ≤ nb. A closed pre-net is a pre-net P ◦ = (Θ;−→C ;−→S ◦)463

such that x occurs iff x occurs, and moreover, if b ∈ BΘ then each abi with 0 ≤ i ≤ nb occurs.464

Then a net is a closed pre-net of the form P = (Θ;−→C ;−→S ).465

We write T(γ) for the set of sub-pre-trees of a pre-tree, or cut, or pre-net γ: the definition466

extends that for subtrees in MLL nets, moreover setting T(a) = {a} for any a ∈ A (so we467

do not look into the content of boxes). As for MLL, we set #γ = card(T(γ)). We write468

depth(P ◦) for the maximum level of nesting of boxes in P ◦, i.e. the inductive depth in the469

previous definition. Also, the size of MELL pre-nets includes that of their boxes: we set470

size(P ◦) = #P ◦ +
∑
b∈BΘ

size(Θ(b)).471

We extend the switching functions of MLL to ? links: for each T = ?(T1, . . . , Tn),472

I(T ) ∈ {T1, . . . , Tn}, which induces a new adjacency relation T ∼T,I(T ) I(T ). We also473

consider adjacency relations ∼b for b ∈ BΘ, setting abi ∼b abj whenever 0 ≤ i < j ≤ nb: w.r.t.474

paths, a box be behaves like an (nb + 1)-ary axiom link and the contents is not considered.475
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We write P(P ◦) for the set of paths in P ◦. We say a pre-net P ◦ is acyclic if there is no cycle476

in P(P ◦) and, inductively, each Θ(b) is acyclic. From now on, we consider acyclic pre-nets477

only.478

5.2 Resource nets and Taylor expansion479

The Taylor expansion of a net P will be a set of resource nets: these are the same as the480

multiplicative nets introduced before, except we have two new connectives ! and ?. Raw trees481

are given as follows:482

t ::= x | ⊗(t1, . . . , tn) | `(t1, . . . , tn) | !(t1, . . . , tn) | ?(t1, . . . , tn).483

Again, we will consider strict trees only: each ⊗, `, ! and ? is of arity at least 1. In resource484

nets, we extend switchings to ? links as in MELL nets, and for each t = ?(t1, . . . , tn), we set485

t ∼t,I(t) I(t). Moreover, for each t = !(t1, . . . , tn), we set t ∼t,ti ti for 1 ≤ i ≤ n.486

We are now ready to introduce the expansion of MELL nets. During the construction, we487

need to track the conclusions of copies of boxes, in order to collect copies of auxiliary ports488

in the external ? links: this is the rôle of the intermediate notion of pre-Taylor expansion.489

I Definition 12. Taylor expansion is defined by induction on depth as follows. Given a490

closed pre-net P ◦ = (Θ;−→C ;−→S ◦), a pre-Taylor expansion of P ◦ is any pair (p, f) of a resource491

net p = (−→c ;−→t ), together with a function f : −→t → −→S ◦ such that f−1(T ) is a singleton492

whenever T ∈ −→S ◦ is a tree, obtained as follows:493

for each b ∈ BΘ, fix a number kb > 0 of copies;494

for 1 ≤ j ≤ kb, fix a pre-Taylor expansion (pbj , f bj ) of Θ(b), and write pbj = (−→c bj ; tbj ,
−→s bj) so495

that f bj (tbj) = Tb;496

up to renaming the variables of the pbj ’s, ensure that the sets V(pbj) are pairwise disjoint,497

and also disjoint from V(−→C ) ∪V(−→S ◦);498

(−→c ;−→t ) is obtained from (−→C ;−→S ◦) by replacing each ab0 with !(tb1, . . . , tbkb
) and each abi+1499

with an enumeration of
⋃kb

j=1(f bj )−1(S◦b,i+1) — thus increasing the arity of the ?-connective500

having abi+1 as a premise, or increasing the number of trees in −→t if abi+1 ∈
−→
S ◦ — and501

then concatenating −→c bj for b ∈ BΘ and 1 ≤ j ≤ kb;502

for t ∈ −→t , set f(t) = abi+1 if f bj (t) = S◦b,i+1 for some j, otherwise let f(t) be the only503

pre-tree of −→S ◦ such that t is obtained from f(t) by the previous substitution.504

The Taylor expansion5 of a net P is then T (P ) = {p | (p, f) is a pre-Taylor expansion of P}.505

5.3 Paths in Taylor expansion506

In the following, we fix a pre-Taylor expansion (p, f) of P ◦ = (Θ;−→C ;−→S ◦), and we describe507

the structure of paths in p. Observe that if t ∈ T(p) then:508

either t is at top level, i.e. t is obtained from some T ∈ T(P ◦) \ A by substituting box509

ports with trees from resource nets, and then we say t is outer and write t∗ = T ;510

or t is in a copy of a box, i.e. t ∈ T(pbj) for some b ∈ BΘ and 1 ≤ j ≤ kb, and then we511

say t is inner and write β(t) = b and ι(t) = (b, j);512

5 More extensive presentations of Taylor expansion of MELL nets exist in the literature, in various styles
[19, 17, 6]. Our only purpose here is to introduce sufficient notations to present our analysis of the
length of paths in T (P ) by a function of the size of P .
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or t is a cocontraction, i.e t = !(tb1, . . . , tbkb
) for some b ∈ BΘ, and then we write β(t) = b513

and t = !b.514

We moreover distinguish the boundaries, i.e. the cocontractions of p, together with all the515

elements of the families −→s bj of Definition 12: we write b!bc = ab0 and bsc = f(s) if s ∈ −→s bj .516

We say a subpath ξ = t1, . . . , tn of χ ∈ P(p) is an inner subpath (resp. an outer subpath)517

if each ti is inner (resp. outer), and ξ is a box subpath if each ti is inner or a cocontraction.518

I Lemma 13. If ξ = t0, . . . , tn is an inner path of p then ι(ti) = ι(tj) for all i and j. We519

then write β(ξ) = b and ι(ξ) = (b, j).520

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u). J521

I Lemma 14. If ξ is a box path of p then ξ is an inner path or there is b ∈ BΘ such that522

ξ = χ1, !b, χ2 with χ1 and χ2 inner subpaths. In the latter case: if χ1 6= ε then β(χ1) = b; if523

χ2 6= ε then β(χ2) = b; and ι(χ1) 6= ι(χ2) in case both subpaths are non empty.524

Proof. If t ∼ s and t and s are both inner then ι(t) = ι(u); if t ∼ !b and t is inner then525

β(t) = b; and no other adjacency relation can hold between the elements of a box path. J526

I Lemma 15. If ξ = t0, . . . , tn is outer then ξ∗ = t∗0, . . . , t
∗
n ∈ P(P ◦).527

Proof. If t and s are outer, then t ∼p,Il s iff t∗ ∼P
◦,I∗

l∗ s∗, where I∗ is obtained by restricting528

I to outer trees and then composing with −∗. Moreover, −∗ is injective. J529

I Lemma 16. Assume ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each530

ξi is outer. Then we can write χi = ui, χ
′
i, vi where ui and vi are boundaries. Moreover,531

β(χi) 6= β(χj) when i 6= j, and we obtain ξ∗ = ξ∗0 , bu1c, bv1c, ξ∗1 , . . . , bunc, bvnc, ξ∗n ∈ P(P ◦).532

Proof. The proof is by induction on n. If n = 0, i.e. ξ is outer, then we conclude by the533

previous lemma. We can thus assume n > 0.534

The endpoints of χi are boundaries, because χi is a box path and the endpoints of ξi−1535

and ξi are outer. Since each boundary is adjacent to at most one outer tree, of which it is an536

immediate subtree or against which it is cut, χi is not reduced to a single boundary. For537

1 ≤ i ≤ n, write χi = (ui, χ′i, vi).538

Write bi = β(χi). Observe that, up to −∗, the only new adjacency relations in ξ∗ are the539

buic ∼bi
bvic for 1 ≤ i ≤ n. Hence, to conclude that ξ∗ is indeed a path, it will be sufficient540

to prove that bi 6= bj when i 6= j. If i < j then, by applying the induction hypothesis, we541

obtain ζ = ξ∗i , . . . , buj−1c, bvj−1c, ξ∗j−1 ∈ P(P ◦). Then, if we had bi = bj , we would obtain a542

cycle bvic, ζ, bujc, bvic in P ◦, which is a contradiction. J543

From Lemma 16, we can derive that p is acyclic as soon as P ◦ is. Indeed, if ξ is a cycle544

in p:545

either there is a tree at top level in ξ and we can apply Lemma 16 to obtain a cycle in P ◦;546

or ξ is an inner path, and we proceed inductively in Θ(β(ξ)).547

Our final result is a quantitative version of this corollary: not only there is no cycle in548

p but the length of paths in p is bounded by a function of P ◦. If ξ = t1, . . . , tn, we write549

|ξ| = n for the length of ξ.550

I Theorem 17. If p ∈ T (P ◦) and ξ ∈ P(p) then |ξ| ≤ 2depth(P◦)size(P ◦).551
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Proof. Write ξ = ξ0, χ1, ξ1, . . . , χn, ξn ∈ P(p) where each χi is a box path and each ξi is an552

outer path.553

Write bi = β(χi). By Lemma 14, χi is either an inner path or of the form ζi, !bi , ζ
′
i with554

ζi and ζ ′i inner subpaths in bi. By induction hypothesis applied to those inner subpaths, we555

obtain |χi| ≤ 1 + 2× 2depth(Θ(bi))size(Θ(bi)).556

Let ξ∗ be as in Lemma 16: we have |ξ∗| = 2n +
∑n
i=0|ξ∗i | ≤ #(P ◦). It follows that557 ∑n

i=0|ξi| ≤ #(P ◦)− 2n.558

We obtain: |ξ| =
∑n
i=0|ξi|+

∑n
i=1|χi| ≤ #(P ◦)−2n+

∑n
i=1(1+2depth(Θ(bi)+1)size(Θ(bi)))559

hence |ξ| ≤ #(P ◦) +
∑n
i=1 2depth(Θ(bi)+1)size(Θ(bi)) and, since depth(Θ(bi)) < depth(P ◦),560

|ξ| ≤ 2depth(P◦)(#(P ◦)+
∑n
i=1 size(Θ(bi))

)
. We conclude recalling that size(P ◦) = #(P ◦)+561 ∑

b∈BΘ
size(Θ(b)). J562

In particular, we obtain cc(p) ≤ 2depth(P◦)size(P ◦).563

5.4 Cut elimination in Taylor expansion564

In resource nets, the elimination of the cut 〈?(t1, . . . , tn)|!(s1, . . . , sm)〉 yields the finite sum565 ∑
σ:{1,...,n}∼→{1,...,m}〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉. It turns out that the results of Sections 3 and 4566

apply directly to resource nets: setting 〈?(t1, . . . , tn)|!(s1, . . . , sn)〉 → 〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉567

for each permutation σ, we obtain an instance of multiplicative reduction, as the order of568

premises is irrelevant from a combinatorial point of view — this is all the more obvious569

because no typing constraint was involved in our argument. In other words, Corollary 11570

also applies to the parallel reduction of resource nets. With Theorem 17, we obtain:571

I Corollary 18. If q is a resource net and P is an MELL net, {p ∈ T (P ); p⇒ q} is finite.572

6 Conclusion573

Recall that our original motivation was the definition of a reduction relation on infinite linear574

combinations of resource nets, simulating cut elimination in MELL through Taylor expansion.575

We claim that a suitable notion is as follows:576

I Definition 19. Write
∑
i∈I aipi ⇒

∑
i∈I aiqi as soon as:577

for each i ∈ I, the resource net pi reduces to qi (which may be a finite sum);578

for any resource net q, there are finitely many i ∈ I such that q is a summand of qi.579

In particular, if
∑
i∈I aipi is a Taylor expansion, then Theorem 18 ensures that the second580

condition of the definition of ⇒ is automatically valid. The details of the simulation in a581

quantitative setting remain to be worked out, but the main stumbling block is now over: the582

necessary equations on coefficients are well established, as they have been extensively studied583

in the various denotational models; it only remained to be able to form the associated sums584

directly in the syntax.585

Let us mention that another important incentive to publish our results is the normalization-586

by-evaluation programme that we develop with Guerrieri, Pellissier and Tortora de Falco587

[1] — which is limited to strict nets for independent reasons. Indeed, if P is cut-free, the588

elements of the semantics of P are in one-to-one correspondence with T (P ). Then, given589

a sequence P1, . . . , Pn of MELL nets such that Pi reduces to Pi+1 by cut elimination and590

Pn is normal, from pn ∈ T (Pn) we can construct a sequence p1, . . . , pn−1 of resource nets,591

such that each pi ∈ T (Pi) and pi ⇒ pi+1. Then our results ensure that #p1 is bounded by a592

function of n, size(P1) and #pn, which is a crucial step of our construction.593
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We finish the paper by reviewing the restrictions that we imposed on our framework.594

Strictness is not an essential condition for the main results to hold. It is possible to deal with595

units and weakenings (0-ary `, ⊗ and ? nodes), and then with complete Taylor expansion,596

including 0-ary developments of boxes (generating weakenings and coweakenings). In this597

case, we need to introduce additional structure — jumps from weakenings, that can be part598

of switching paths — and some other constraint — a bound on the number of weakenings599

that can jump to a given tree. The proof is naturally longer, and the bounds much greater,600

but the finiteness property still holds. We leave a formal treatment of this extension for601

further work.602

The other notable constraint is the use of the nouvelle syntaxe, with generalized expo-603

nential links. It is also possible to deal with a standard representation, including separate604

derelictions and coderelictions, with a finer grained cut elimination procedure. This introduces605

additional complexity in the formalism but, by contrast with lifting the strictness condition,606

it essentially requires no new concept or technique: the difficulty in parallel reduction is to607

control the chains of cuts to be simultaneously eliminated, and decomposing cut elimination608

into finer reduction steps can only decrease the length of such chains.609
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