H Ye

L Lacassagne

D Etiemble

L Cabaret

J Falcou

A Romero

O Florent

IMPACT OF HIGH LEVEL TRANSFORMS ON HIGH LEVEL SYNTHESIS FOR MOTION DETECTION ALGORITHM

Keywords: High Level Synthesis, High Level Transforms, algorithm transforms, software optimizations, softcore, FPGA, ASIC, power consumption, energy optimization, motion detection

High Level Synthesis for System on Chip is a challenging way to cut off development time, while assuming a good level of performance. But the HLS tools are limited by the abstraction level of the description to perform some high level transforms. This paper evaluates the impact of such high level transforms for ASICs and softcores on FPGA. On the representative example of motion detection, we show that we have a speedup of ×1.5 for a softcore on FPGA and ×2.5 for an ASIC while the energy is divided by a factor ×2.90 for the ASIC.

INTRODUCTION

High Level Synthesis (HLS) for Systems on Chip is a challenging way to cut off development time while assuming a good level of performance. The latest version of HLS tools integrates software optimizations that are coming from the optimizing compiler area [START_REF] Allen | Optimizing compilers for modern architectures: a dependence-based approach[END_REF] like loop-unrolling, software pipelining and using the polyhedral model to improve loop scheduling.To further improve current performance, tools should integrate the semantic of an application domain [START_REF] Beux | A high level synthesis flow using model driven engineering[END_REF] and the related algorithm transforms [START_REF] Pueschel | Spiral: Code generation for dsp transforms[END_REF].

This paper evaluates the impact of such algorithm transforms or high level transforms (HLT) for ASIC and softcore on FPGA. More and more commercial or academic HLS tools are available [START_REF]Wikipedia[END_REF] like LegUp [START_REF] Canis | Legup: high-level synthesis for fpga-based processor/accelerator systems[END_REF] or Gaut [START_REF] Gal | High-level synthesis assisted rapid prototyping for digital signal processing[END_REF]. We have chosen Catapult-C as it is the tool used by ST Microelectronics for its synthesis farm. The Sigma-Delta algorithm (Σ∆) has been selected as it was specially designed for embedded systems and it is one of the best mono-modal algorithms [START_REF] Lacassagne | Motion detection: fast and robust algorithms for embedded systems[END_REF] for motion detection. A comparison of other methods can be found in [START_REF] Piccardi | Background subtraction techniques: a review[END_REF]. It has been ported on GPP, parallel artificial retina [START_REF] Lacassagne | High performance motion detection: Some trends toward new embedded architectures for vision systems[END_REF], embedded ARM processor [START_REF] Toral | Improved sigma ? delta background estimation for vehicle detection[END_REF] and FPGA [START_REF] Abutaleb | Fpga-based object extraction based on multimodal sigma-delta background estimation[END_REF]. So it assets as a reference algorithm for robust motion detection with low complexity. The impact of HLT has been evaluated on a softcore with instruction customization and on an ASIC with ST 65-nm CMOS technology. To improve efficiency, HLT are combined on each target with software optimizations.

MOTION DETECTION ALGORITHM

Sigma-Delta algorithm

The basic principle of the Σ∆ algorithm is to estimate the parameters of the background using Σ∆ modulation. Considering a time-varying signal f t (continuous or discrete), we estimate a discrete signal d t by quantizing the time indexes {t i } i∈N , and then performing at every time index i the following update formulas:

If d ti-1 < f ti then d ti = d ti-1 -ε else d ti = d ti-1 + ε where ε is the discretization step (least significant bit) of d t .

In Σ∆ background subtraction, the input signal is the value of every pixel over time I t , from which we compute the first Σ∆ background estimator M t . Then the values of the absolute differences |M t -I t | are used to compute the second Σ∆ background estimator V t , which is a parameter of dispersion.

Algorithm 1: Σ∆ algorithm foreach pixel x do [step #1: Mt estimation] 1 if Mt-1(x) < It(x) then Mt(x) ← Mt-1(x) + 1 2 if Mt-1(x) > It(x) then Mt(x) ← Mt-1(x) -1 3 otherwise Mt(x) ← Mt-1(x)
7 if Vt-1(x) < N × Ot(x) then Vt(x) ← Vt-1(x) + 1 8 if Vt-1(x) > N × Ot(x) then Vt(x) ← Vt-1(x) -1 9 otherwise Vt(x) ← Vt-1(x) 10 foreach pixel x do [step #4: Êt estimation] 11 if Ot(x) < Vt(x) then Êt(x) ← 0 else Êt(x) ← 1 12
In the basic version (Algo. 1), the Σ∆ background M t and Σ∆ variance V t are updated every frame, according to the comparison with the current image I t and the current absolute difference O t respectively. N is an amplification factor for V t , allowing to compute the motion label Êt by simply comparing O t and V t (typical values of N are between 1 and 4).

As shown in [START_REF] Lacassagne | Motion detection: fast and robust algorithms for embedded systems[END_REF], one can improve the robustness of the algorithm while keeping the complexity low with a two level processing algorithm combined with a conditional update and a Zipfian law for the update frequency. But the major improvement is done by a morphological post-processing. Figure 2 focuses on the impact of a 3 × 3 morphological opening. The next step to improve the segmentation robustness is to include a colorimetric model [START_REF] Gouiffes | A photometric model for specular highlights and lighting changes. application to feature points tracking[END_REF] to have a better segmentation between the objects and their projected shadow (around the man's feet in the figure).

Morphological post-processing

The 3 × 3 opening is the combination of a 3 × 3 erosion with a 3 × 3 dilation. As these two operators have the same complexity and the same mathematical property (idempotence), we focus on the implementation of only one operator. Let us define ⊕ the operator min used for the erosion and max for the dilation. Note that for binary images, these operators are respectively replaced by the Boolean operators AN D and OR (our case here).

Algorithm 2: 1-pass implementation of the 3 × 3 morphological filter with the 2D-filter corresponding to equation [START_REF] Allen | Optimizing compilers for modern architectures: a dependence-based approach[END_REF], with explicit use of registers (Reg version)

Input: image X of size (n + 2) × (n + 2) Output: image Y of size n × n for i = 1 to n -1 do 1 for j = 1 to n -1 do 2 a0 ← X(i -1, j -1), b0 ← X(i -1, j), c0 ← 3 X(i -1, j + 1) a1 ← X(i, j -1), b1 ← X(i, j), c1 ← X(i, j + 1) 4 a2 ← X(i + 1, j -1), b2 ← X(i + 1, j), c2 ← 5 X(i + 1, j + 1) r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c2 6 Y (i, j) ← r 7
The classical problem of the borders processing is addressed by the use of Iliffe arrays [START_REF] Iliffe | The use of the genie system in numerical calculation[END_REF] based on offset addressing that allows the programmer to allocate images with negative indexes like[0 -r : (n -1) + r] × [0 -r : (n -1) + r], with r the radius of the kernel: for a k × k kernel, k = 2r + 1.

HIGH LEVEL TRANSFORMS AND SOFTWARE OPTIMIZATIONS FOR SOFTCORE AND ASIC

Optimizations can be classified according to three categories:

-High Level Transforms, -Software optimizations, usually done by a compiler, but that can also be applied manually, -Hardware and architectural optimizations. HLT are algorithmic transforms based on optimizations belonging to an application domain -like image and signal processing -and are related to operator properties to reduce the algorithm complexity. Examples of such transforms are filter separation and factorization. In the next section, we will focus on the separation and reduction of morphological operators.

The usual software optimizations are loop unrolling, and more generally loop transforms, register rotation, register scalarization and software pipelining. Depending on the architecture, these optimizations will have an important or a small impact on performance.

Finally, the architectural optimizations depend on the architecture -here the RISC model. They take into account the architectures properties to improve the execution of the algorithm. That is to improve the pipeline efficiency (by increasing the amount of independent computation and reducing the pipeline stalls) and to improve cache performance (by reducing cache misses but more globally memory accesses: the cache cannot miss a memory access that does not exist!).

Another improvement is to use SIMD instructions [START_REF] Diefendorff | Altivec extension to powerpc accelerates media processing[END_REF] for a software programmable processor, or to generate a SIMD accelerator for a softcore processor, as it is known to be very efficient for low level image processing (with regular computations) [START_REF] Lacassagne | High performance motion detection: Some trends toward new embedded architectures for vision systems[END_REF].

Concerning customization (modifying an architecture), there are three levels of customization: 1) instruction customization, 2) function customization and 3) full-custom ASIC. Customizing instructions consists in designing instructions that are missing in the current processor instruction set. Softcore processors offer the opportunity to add useful and efficient instructions for an application domain, while keeping the processor complexity low. Two commonly missing instructions for general purpose processors are min and max that avoid using conditional branches and consequently branch mispredictions.

Instruction customization is user-friendly. For the C compiler, a new instruction designed with VHDL or Verilog is declared with a pragma like #define MIN(a,b) builtin custom inii(0,a,b) for NIOS II. So it is directly recognized by the compiler as an existing instruction or a reserved keyword of the language.

From an electronic point of view, the piece of custom logic is interfaced with the input and output busses of the ALU: data read from the register bank are rerouted to the custom logic and once the computation is done (in one or more cycles) the result is available at the ALU output (Fig. 1). In this paper, the SOPC Builder from Altera has been used.

If instruction customization can be considered as fine granularity, function customization corresponds to an intermediate granularity. It consists in creating an external hardware accelerator. The accelerator is connected to the processor through a set of dedicated ports or busses, the data are sent into specialized registers (or FIFO) and the accelerator is activated through an interrupt. Depending on the architecture, the result is sent back to the processor or written into memory. A more general view of function customization is to consider the generated hardware like any external hardware that could read/write data from/to the memory with a DMA or a dedicated bus.

The advantage of such a customization is that the computation is combinatory and no longer controlled by the processor clock: if there are many small operations to perform like additions (in opposition to a multiplication) or binary operations, more than one operation can be achieved during one cycle. In some cases, considering a low frequency processor, and then low frequency synthesis, many computations can be done in one cycle. The main drawback of such customization is the communication delay from and to the processor: the communication duration should be smaller than the time saved by the hardware computation compared to the software computation. As the computation load for one loop iteration is low (for both Σ∆ and morphological operators), hardware accelerators could not be efficient here and will not be used and detailed in this paper. The most advanced level of customization is the full custom design than can be achieved with HLS tools for Electronic System Level (ESL) methodology. Catapult-C from Calypto Design Systems has been used for the full-custom approach. The typical way of using such a tool is to provide a C or C++ source code and to set the clock frequency to be used. If almost all parameters are automatically explored by the tool, at least one parameter can be set by the user: the initiation interval (ii). That is the latency, in cycles, between the start of two iterations of a loop. Let us consider the following computation t = a + b + c + d with classic 2-input adders and assume that the duration of one addition is one cycle. This example comes from HLS Blue Book [START_REF]High-Level Synthesis -Blue Book[END_REF].

In the first case, one wants one output written every 3 cycles (Fig. 3, top with ii=3). In that case there is no overlap of any operation and only one adder is required. With a constraint of one output every 2 cycles (Fig. 3, middle with ii=2) two adders are required as there are two additions on cycle 3: the first one computes t 3 = t 2 + d from the first lane, and the second to compute t 1 = a + b from the second lane. With a hard constraint of one output every cycle (Fig. 3, bottom with ii=1) three adders are required on cycle 3: the first one computes t 3 = t 2 + d, the second one computes t 2 = t 1 + c and the third one computes t 1 = a + b.

Note that is the electronic instance of software pipelining, the most important optimization for VLIW processors. Depending on ii and the algorithm structure, one can have a direct impact on the size and the performance of the circuit: with smaller ii, the circuit is faster and bigger; with larger ii, the circuit is slower and smaller.

For processors (softcore and hardcore), the main problem is the memory bandwidth, as many algorithms (and the considered algorithms belong to that class) are memory bounded. So the first target is to reduce the amount of memory accesses. Then the second target is to reduce the amount of computations and the amount of hazards (comparisons that can stall the pipeline).

In the next section we first present high level transforms, then software and architectural optimizations.

High Level Transforms

As Σ∆ is a very simple pixel-to-pixel algorithm, there is no HLT to apply. So we focus on the morphological operators.

The classical software optimization is Loop-Unrolling but it suffers from one drawback: the code size increases by the order of unrolling. So we prefer the Register-Rotation combined with scalarisation (to put temporary results into registers). In algorithm 3, the pixel of the left and central column are loaded into registers before the loop (lines 4-6). After the computation registers are rotated (lines [START_REF] Diefendorff | Altivec extension to powerpc accelerates media processing[END_REF][START_REF]High-Level Synthesis -Blue Book[END_REF][START_REF] Saidani | Algorithmic skeletons within an embedded domain specific language for the cell processor[END_REF]. Compared to the initial algorithm with 9 LOADs, there are only 3 LOADs in that version. The arithmetic complexity remains the same: 8 operations (named OP in the following). Register-Rotation leads to two versions: Rot 1 (Algo. 3) in 1 pass, Rot 2 (Algo. 4) in two passes.

Taking into account the idempotent property of the morphological operators, the 2D structuring element SE 3×3 can be replaced by two 1D elements (Eq. 1). This algorithmic transformation called Rot 2 (Algo. 4) reduces the complexity (4 OP instead of 8 previously) but increases the number of Algorithm 3: 1-pass implementation of the 3 × 3 morphological filter with Register Rotation, Rot 1 version

Input: image X of size n × n Output: image Y of size n × n for i = 1 to n -1 do 1 [preload the first two columns of each line] 2 j ← 1 3 a0 ← X(i -1, j -1), b0 ← X(i -1, j) 4 a1 ← X(i, j -1), b1 ← X(i, j) 5 a2 ← X(i + 1, j -1), b2 ← X(i + 1, j) 6 for j = 1 to n -1 step 3 do 7 c0 ← X(i -1, j + 1) 8 c1 ← X(i, j + 1) 9 c2 ← X(i + 1, j + 1) 10 r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c2 11 Y (i, j) ← r 12 a0 ← b0, b0 ← c0 [RR of the first line] 13 a1 ← b1, b1 ← c1 [RR of the second line] 14 a2 ← b2, b2 ← c2 [RR of the third line] 15
LOADs to 6. The main problem is that such an algorithm requires two passes on the image and then, if the image is too large to entirely fit in the cache, it generates cache misses. So Rot 1 version will be prefered to Rot 2 .

SE3×3 = 2 4 1 1 1 1 1 1 1 1 1 3 5 = 2 4 1 1 1 3 5 * ˆ1 1 1 ˜(1)
Algorithm 4: 2-pass implementation of the 3 × 3 binomial filter with two 1-D filters of equation 1, Rot 2 version

Input: image X of size n × n Output: image Y of size n × n for i = 1 to n -1 do 1 for j = 1 to n -1 step 3 do 2 x0 ← X(i -1, j), x1 ← X(i, j), x2 ← X(i + 1, j) 3 r ← x0 ⊕ x1 ⊕ x2 4 Y (i, j) ← r 5 for i = 1 to n -1 do 6 for j = 1 to n -1 step 3 do 7 a ← X(i, j -1), b ← X(i, j), c ← X(i, j + 1) 8 r ← a ⊕ b ⊕ c 9 Y (i, j) ← r 10
By introducing another optimization, we can both factorize the computations and reduce the number of memory accesses. The two passes of the 1D-filter on the image can be combined within a single pass. First, the result of the first 1D-filter is stored in a register. This transformation is called a reduction. In our case, it is a column-wise reduction: instead of memorizing 6 pixels (Algo. 3, lines 4-6), we compute the reduced value by column (Algo. 5, lines 5 & 6). Then the second operator is directly applied to the reduced values (Algo. 5, line 12). In that version there are only 3 LOADs and 4 OPs. All the complexity figures are summarized in table 1 where MV stands for a move (to copy one register to another one) and AI represents the arithmetic intensity (ratio between arithmetic operators and memory accesses).

Algorithm 5: 1-pass implementation of the two seperated 1D operators with reduction, Red version In that section we present two optimizations answering two questions. The first one addresses C code refactoring for Catapult-C: how to write efficient C code ? The second one addresses softcores: what can be done to reduce the execution time when faced to many if-then-else tests ?

Input: image X of size n × n Output: image Y of size n × n for i = 1 to n -1 do 1 a0 ← X(i -1, j -1), b0 ← X(i -1, j) 2 a1 ← X(i, j -1), b1 ← X(i, j) 3 a2 ← X(i + 1, j -1), b2 ← X(i + 1, j) 4 ra ← a0 ⊕ a1 ⊕ a2 [reduction of the first column] 5 r b ← b0 ⊕ b1 ⊕ b2 [reduction of the second column] 6 for j = 1 to n -1 do 7 c0 ← X(i -1, j + 1) 8 c1 ← X(i, j + 1) 9 c2 ← X(i + 1, j + 1) 10 rc ← c0 ⊕ c1 ⊕ c2 [reduction of the third column] 11 r ← ra ⊕ r b ⊕ rc [applying the horizontal operator] 12 Y (i, j + 0) ← r 13 ra ← r b [
Algorithm 6: Basic double if-then-else if r < x then r ← r + 1 1 if r > x then r ← r -1 2
Let us focus on the double if-then-else of algorithm 1, lines 2 & 3 (and also lines 8 & 9). As there are 3 cases (incre-mentation, decrementation, nothing), it requires two Boolean tests (Algo. 6). What is usually done to save a comparison (in 50 % of the cases) is to do a nested if-then-else (Algo. 7). but the drawback of such optimization is the serialization of the tests.

Algorithm 7: Nested double if-then-else if r < x then 1 r ← r + 1 2 else 3 if r > x then 4 r ← r -1 5
Another way to reformulate the double if-then-else, is to separate the comparisons from the computations. In algorithm 8, the comparisons (that can be nested) only set the value of δ that is added at the end.

Algorithm 8: Double if-then-else with δ δ ← 0 1 if r < x then δ ← +1 2 if r > x then δ ← -1 3 r ← r + δ 4
The final reformulation (Algo. 9) is more an hack than a software optimization, as it directly mixes arithmetic addition with comparisons. It relies on the fact that the result of a comparison is 0x0 or 0xFFFFFFFF whether the result is false or true and that 0xFFFFFFFF is also equal in 2-complement arithmetic to -1. In that case the expression r ← r + 1 becomes r ← r -(-1) and finally r ← r -lt (line 3). The case is similar for the other comparison.

The complexity of these 4 versions is summarized in the table 2 where CMP stands for a comparison (< or >) and ADD for an addition or a subtraction. As the comparison is done with a subtraction, the total column is the sum of CMP and ADD, while the last column is the number of conditional branches associated to the if-then-else. As we assume that each comparison is completely random they are unpredictable even with a branch predictor:the number of mispredictions is proportional to the number of branches. As we can see, only the hack version has no conditional branches. The hack version has the largest complexity: four ADDs. Its main advantage is that there is no more if-then-else, so we can avoid pipeline stalls associated to branch mispredictions. The benchmark section will present the impact of such a style of coding for Catapult-C. Considering softcores, we evaluate the impact of instruction customization (Fig. 1) for the NIOS II. We create two new instructions: r=lt inc(r,x) and r=gt dec(r,x) that replace the two considered if-then-else tests. One can perform the increment or the decrement in only one instruction r=inc dec(r,x) as the VHDL synthesis implements the two comparisons in parallel.

Algorithm 9: Hacked if-then-else with 2-complement lt ← (r < x) 1 gt ← (r > x) 2 r ← r -lt 3 r ← r

Architectural optimizations

Finally one can perform yet another software optimization on the softcore. As the cache of the processor is directmapped, miss conflicts are higher than with set-associative caches. Reducing the number of memory accesses reduce the number of instructions and may reduce the number of miss conflicts.

The basic solution is to replace four consecutive 8-bit LOADs by one 32-bit LOAD. That corresponds to a loop unroll of 4. Once a 32-bit data is loaded, it is unpacked (with classical shifts and masks instructions) into four 8-bit data that are processed by the previous algorithm. Then the four results are packed into a 32-bit data and stored by into memory. For a softcore processor 32-bit specialized instructions can be designed to perform Sub-Word Parallelism (SWP). As Σ∆ operator is pixel-wise, such a design is straightforward. For the morphological operator SWP are unnecessary as 32bit OR and AND exist (the gray-level version will required four 8-bit MAX and MIN) but new instructions that merge two 32-bit registers should be designed (see [START_REF] Lacassagne | High performance motion detection: Some trends toward new embedded architectures for vision systems[END_REF] for vec left and vec right macros to extract unaligned vectors).

BENCHMARKS: RESULTS AND ANALYSIS

Softcore processors

For softcore, an Altera board with a NIOS II onto a Stra-tix2 (EP2S60F672C5ES) was used. . The clock frequency is 50 MHz. The 32-KB data cache is direct-mapped with 32-B lines. To avoid the possibility of systematic eviction when two different arrays are mapped into the same cache lines, padding was used. For softcores, four configurations were benchmarked (Tab. 3 & 4):

-8-bit × SW: basic 8-bit code, without accelerator -8-bit × HW: basic 8-bit code, with 8-bit hardware accelerator -32-bit × SW: 32-bit SWP code, without accelerator (8bit computations with software pack and unpack operations) -32-bit × HW: 32-bit SWP code, with SWP hardware accelerator (32-bit computations done in hardware)

The metrics used are the average number of cycles per pixel (cpp) and energy per pixel.

Concerning Σ∆ we can observe that 32-bit memory accesses are efficient only when coupled with instruction customization. The reason is the cost to perform pack/unpack steps is very high: 3 SHIFTs and 3 ANDs per unpack and 3 SHIFTs and 3 ORs per pack. That is a total of 18 SHIFTs and 18 Boolean instructions! When custom instructions are used, there is no more such steps and the 32-bit version is fast. With 8-bit custom instructions, there is no more pipeline stall due to if-then-else. That provides a speedup of ×1.23 versus the software version. For the 32-bit version, compared to 8-bit version, custom instructions provide a super-linear speedup of ×7.35 that comes from an efficient usage of both the pipeline and the cache. Combined together the total speedup is ×9.06. Table 3. cpp of Σ∆ algorithm on softcore NIOS II processor Concerning the morphological operators (Tab. 4), we can make the same observation about 32-bit accesses: they are efficient if and only if there is no extra instructions like pack/unpack steps to process data. Regarding instruction customization, there is no gain in 8-bit versions, and the gain of 32-bit versions is not pertinent. The reason is that instructions (software or hardware) are scheduled by clock, so only one instruction can be executed per cycle, and that such instruction must enforce a 2-operands-only form: there is no way to perform two Boolean operations inside one instruction. So Boolean instructions (AND or OR) go at the same speed, by software or by hardware. If we now focus on HLT, we can see that these optimizations are always efficient whatever the other optimizations/transformations: the gain is approximatively ×1.5 for all versions (we do not consider the 32-bit software version for the previously explained reasons). Combined together we reach a speedup of ×7.85 for 32-bit custom instructions with HLT on NIOS II compared to 8-bit software version without HLT.

While the hardware cost of the NIOS processor is 1,703 LUTs, 1,354 registers, 332-Kb block memory bits and 82 4Kb RAM blocks, the cost of the custom instructions is only 453 LUTs for both the 8-bit and 32-bit versions, which is a quite small overhead. For the full-custom approach, the ST 65 nm library with a dual-port memory was used with Catapult-C. The evaluation of the power consumption and the area was done with Synopsys Design Compiler without activating the capabilities of Catapult-C to reduce the total power consumption generating local/global clock gating glue as we assume that the ASIC is always running. Concerning ASIC, the cpp is quite equal to the initiation interval. It is in fact a bit smaller because of the setup time t su : we have t exe = ii/F -t su and cpp = t exe × F/n < ii.

Table 5 presents the results in term of energy/pixel for refactoring the if-then-else tests of Σ∆. For the four versions, the best performance is always reached for ii=1, and the average gain of the delta version (close to the hack) is ×1.14. If this configuration is compared to the basic configuration that leads to the smallest area, the average gain in energy is higher than ×4: we cannot independently optimize for energy or for size. For the morphological operator, HLT have a major impact on the efficiency. Let us call "best" and "smallest" the configurations associated to the best energy consumption, and the smallest area (Tab. 6 & 7). Let us also call ii = 0 the combinatory version. As the basic version (Reg) requires 9 LOADs (Tab. 6) we need 9 cycles to perform all the LOADs with a single-port RAM and 9/2 = 5 cycles with a dual-port RAM. For the same reason, the minimum number of cycles for Rot and Red versions (3 LOADs) is 2 cycles. That is very important, as for all the explored configurations, the best energy was reached for the smallest ii. We can see that the average gain due to HLT is ×2.90. Moreover, with a singleport RAM, the gap between Reg and Red versions would be even greater, as the energy increases with the ii (Tab. 8). Finally, if we compare the configuration of the smallest area without HLT to the best Red, the average gain reaches ×3.49. We can perform the same analysis for the area (Tab. 7). There is an average area increase of 8%, 22% and 12% for each level of HLT optimization (Reg, Rot and Red). But if we compare the smallest area without HLT to the area associated to the best Red energy, we can see that best Red has a smaller area than the configuration without optimization (smallest Reg). HLT has also a (small) impact on area.

CONCLUSION AND FUTURE WORK

We have shown that high level transforms (HLT) are very efficient for both softcore on FPGA and ASIC. For softcore, Table 8. Impact of ii on the energy (pJ/pixel) for Red version of the morphological operator on ASIC: the smaller the better HLT provide a speedup of ×1.5 with instruction customization. For ASIC, the software optimizations are no more required as they are done by Catapult-C. Then, by reducing the number of memory accesses, HLT allow synthesis for a smaller value of the initiation interval: HLT provide a speedup of ×2.5. And as energy is related to the initiation interval, we have an average gain of ×2.90. Usually one has to choose between speed and low power consumption. With the combination of HLT and HLS, we do not have to choose: the ASIC is both faster and greener! In future works, we will implement HLT through algorithmic skeletons [START_REF] Saidani | Algorithmic skeletons within an embedded domain specific language for the cell processor[END_REF] to make the whole process (algorithm transformation and synthesis) fully automatic. For ASICs, we will implement banked single-port RAM to try to reach a 1cycle throughput. For softcores on FPGA we will evaluate other specialized instructions and the replacement of a directmapped cache by a set-associative cache like those available at OpenCores. Finally, for external accelerators we will implement a color-version of the algorithm to increase algorithm robustness and to provide more numbers to crunch for the accelerator.

4 foreach

 4 pixel x do [step #2: Ot computation] 5 Ot(x) = |Mt(x) -It(x)| 6 foreach pixel x do [step #3: Vt update]

Fig. 1 .

 1 Fig. 1. Instruction customization for NIOS II

Fig. 2 .

 2 Fig. 2. Example of Σ∆ processing. Left: original image of Hall sequence, middle: Σ∆ without post-processing, right: Σ∆ with 3 × 3 morphological opening (erosion + dilation).

Fig. 3 .

 3 Fig.3. Software pipelining and initiation interval. Top: ii=3 ⇒ one adder needed, middle: ii=2 ⇒ two adders needed, bottom: ii=1 (fully pipelined) ⇒ three adders needed. Example from HLS Blue Book[START_REF]High-Level Synthesis -Blue Book[END_REF]

Table 1 .

 1 rotation of the reduced registers] Morphological operator complexity and arithmetic intensity

	14				
	15	r b ← rc			
		version	OP	LD + ST	MV	AI
		Reg (1-pass of 2D-op)	8	9+1=10	0	0.8
		Rot 1 (1-pass of 2D-op)	8	3+1=4	6	2.0
		Rot 2 (2-pass 1D-op)	4	2(3+1)=8	0	0.5
		Red (1-pass 1D-op)	4	3+1=4	2	1.0
	3.2. Low Level Transforms: software and architectural
	optimizations			
	3.2.1. Software optimizations		

Table 2 .

 2 Complexity of if-then-else versions

	+ gt

4

r ← r + inc + dec 5

Table 4 .

 4 cpp of morphologicial operator on NIOS II processor

	version	SW	HW	gain SW/HW
	8-bit Reg	21.9	20.6	× 1.06
	8-bit Rot 1	22.0	21.0	× 1.05
	8-bit Red	14.1	14.0	× 1.01
	HLT gain (Reg/Red)	×1.55	×1.47	-
	32-bit Reg	31.4	5.9	×5.32
	32-bit Rot 1	46.6	6.3	×7.40
	32-bit Red	17.15	4.0	×4.29
	HLT gain (Reg/Red)	×1.83	×1.48	-
	total gain (Reg8 / Red32)	×1.28	×5.15	×5.48
	4.2. Full-custom ASIC			

Table 5 .

 5 Energy (pJ/pixel) of Σ∆ algorithm on 65 nm ASIC with ii=1

Table 6 .

 6 Energy (pJ/pixel) of the morphological operator on 65 nm ASIC with best ii for Reg, Rot 1 and Red versions

	freq (MHz)	200	400	600			800	average
	smallest Reg (ii=0)	6.45	6.67	7.44			7.79	7.09
	best Reg (ii=5)	5.49	5.76	6.44			5.87	5.89
	best Rot 1 (ii=2)	2.47	2.78	3.14			2.95	2.84
	best Red (ii=2)	1.80	2.02	2.25			2.05	2.03
	best Reg / best Red	×3.05	×2.85	×2.86	×2.86	×2.90
	smallest Reg / best Red	×3.58	×3.30	×3.31	×3.80	×3.49
	freq (MHz)	200	400	600		800	average
	smallest Reg (ii=0)	2893	2893	2893	2986	2916
	best Reg (ii=5)	3206	3208	3206	3030	3163
	ratio best / smallest	1.11	1.11	1.11	1.01	1.08
	smallest Rot 1 (ii=4)	2905	2908	2923	2847	2896
	best Rot 1 (ii=2)	3534	3534	3563	3443	3519
	ratio best / smallest	1.22	1.22	1.22	1.21	1.22
	smallest Red (ii=4)	2374	2378	2400	2408	2390
	best Red (ii=2)	2685	2685	2714	2616	2675
	ratio best / smallest	1.13	1.13	1.13	1.09	1.12
	smallest Reg / best Red	1.08	1.08	1.07	1.14	1.09

Table 7 .

 7 Area (µm 2) of the morphological operator on 65 nm ASIC with best ii for Reg, Rot 1 and Red versions: the smallest area and the area associated to the best energy