
HAL Id: hal-01835124
https://hal.science/hal-01835124

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Immersion of transitive tournaments in digraphs with
large minimum outdegree

William Lochet

To cite this version:
William Lochet. Immersion of transitive tournaments in digraphs with large minimum outdegree.
Journal of Combinatorial Theory, Series B, 2019, 134, pp.350-353. �10.1016/j.jctb.2018.05.004�. �hal-
01835124�

https://hal.science/hal-01835124
https://hal.archives-ouvertes.fr


Immersion of transitive tournaments in digraphs with large

minimum outdegree∗

William Lochet
a,b
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Université de Lyon, France

Abstract

We prove the existence of a function h(k) such that every simple digraph with minimum
outdegree greater than h(k) contains an immersion of the transitive tournament on k vertices.
This solves a conjecture of Devos, McDonald, Mohar and Scheide.

In this note, all digraphs are without loops. Let D be a digraph. We denote by V (D) its vertex
set and A(D) its arc set. A digraph D is simple if there is at most one arc from x to y for any
x, y ∈ V (D). Note that arcs in opposite directions are allowed. The multiplicity of a digraph D

is the maximum number of parallel arcs in the same direction in D. For an arc a = (u, v) of a
digraph D, we say that u is the tail of a and v its head. The outdegree (resp. indegree) of a vertex
v, denoted by d+(v) (resp. d−(v)), is equal to the number of arcs a of D such that v is the tail
(resp. head) of a. The outneighbourhood (resp. inneighbourhood) of a vertex v, denoted by N+(v)
(resp. N−(v)), is the set of vertices y such that (v, y) (resp. (y, v)) is an arc of D. A directed path

P in a digraph D is a set of vertices x1, . . . , xk such that (xi, xi+1) ∈ A(D) for all 1 ≤ i ≤ k − 1.
A directed cycle C in a digraph D is a set of vertices x1, . . . , xk such that (xi, xi+1) ∈ A(D) for all
1 ≤ i ≤ k− 1 and (xk, x1) ∈ A(D). A digraph D is a tournament if exactly one of (u, v) and (v, u)
is an arc of D for all distinct u, v ∈ V (D). The transitive tournament on k vertices, denoted by
TTk, is the unique tournament on k vertices without any directed cycle. The complete digraph on
k vertices is the simple digraph on k vertices with every possible arc.

We say that a digraph D contains an immersion of a digraph H if there exists a mapping such
that vertices of H are mapped to distinct vertices of D, and the arcs of H are mapped to directed
paths joining the corresponding pairs of vertices of D, in such a way that these paths are pairwise
arc-disjoint. If the directed paths are pairwise internally vertex-disjoint, we say that D contains a
subdivision of H.
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Understanding the necessary conditions for undirected graphs to contain a subdivision of a
clique is a very natural and well-studied question. One of the most important examples is the
following result by Mader [6]:

Theorem 1 ([6]). For every k ≥ 1, there exists an integer f(k) such that every undirected graph

with minimum degree greater than f(k) contains a subdivision of Kk.

Bollobás and Thomason [1] as well as Komlós and Szemerédi [4] proved that f(k) = O(k2).
In the case of digraphs, there exist examples of digraphs with large out- and indegree without a
subdivision of the complete digraph on three vertices, as shown by Thomassen [7] (see also [3] for a
simpler construction). However Mader [5] conjectured that an analogue should hold for transitive
tournaments TTk in digraphs with large minimum outdegree.

Conjecture 2 ([5]). For every k ≥ 1, there exists an integer g(k) such that every simple digraph
with minimum outdegree greater than g(k) contains a subdivision of TTk.

The question turned out to be much more difficult than the undirected case, as the existence of
g(5) remains unknown. Weakening the statement, Devos, McDonald, Mohar and Scheide [3] made
the following conjecture replacing subdivision with immersion and proved it for the case of Eulerian
digraphs.

Conjecture 3 ([3]). For every k ≥ 1, there exists an integer h(k) such that every simple digraph
with minimum outdegree greater than h(k) contains an immersion of TTk.

As with subdivisions, Devos et al. showed in [3] the existence of digraphs with large out- and
indegree without an immersion of the complete digraph on three vertices. Finding the right value
for h(k) in the case of undericted graphs is an interesting question on its own (see [2] for more
details).

The goal of this note is to present a proof of this conjecture. Let F (k, l) be the digraph consisting
of k vertices x1, . . . , xk and l arcs from xi to xi+1 for every 1 ≤ i ≤ k − 1. It is clear that F (k,

(

k
2

)

)
contains an immersion of TTk, so the following theorem implies Conjecture 3.

Theorem 4. For every k ≥ 1 and l, there exists a function f(k, l) such that every digraph with

minimum outdegree greater than f(k, l) and multiplicity at most kl contains an immersion of F (k, l).

Proof. We prove the result for f(k, l) = 2k3l2 and l ≥ 2. We proceed by induction on k. For k = 1
this is trivial because F (1, l) is one vertex. Suppose now that the result holds for k and assume for
a contradiction that it does not hold for k + 1. Let D be the digraph with the smallest number of
arcs and vertices such that D has multiplicity at most (k + 1)l, all but at most c1 = k + (k + 1)l
vertices have outdegree at least f(k+1, l) and without an immersion of F (k+1, l). By minimality
of D, every vertex has outdegree exactly f(k+1, l), expect c1 of them with outdegree 0. Call T the
set of vertices of outdegree 0. Suppose we want to remove arcs from D such that the multiplicity
of the remaining digraph is at most kl, while keeping the minimum outdegree as large as possible.
For a vertex v, the worst case is when, for every vertex y ∈ N+(v), the multiplicity of (v, y) is equal

to (k+1)l. In this case we have to remove at most l arcs for each of the f(k+1,l)
(k+1)l vertices of N+(v).

Therefore, removing T and some of the parallel arcs, we obtain a digraph of outdegree greater than
d′ = f(k+1, l)−c1(k+1)l− f(k+1,l)

k+1 with multiplicity kl. Because f(k+1, l)−f(k, l) = 2(3k2+3k+1)l2

and c1(k + 1)l + f(k+1,l)
(k+1) = k(k + 1)l + 3(k + 1)2l2, we get that d′ ≥ f(k, l) and by induction there
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exists an immersion of F (k, l) in D−T . Call X = {x1, · · · , xk} the set of vertices of the immersion
and, numbering the paths arbitrarily, Pi,j the jth directed path of this immersion from xi to xi+1.
We can assume this immersion is of minimum size, so that every vertex in Pi,j has exactly one
outgoing arc in Pi,j. Let D′ be the digraph obtained from D by removing all the arcs of the Pi,j

and the vertices x1, . . . , xk−1. By the previous remark, the outdegree of each vertex in D′ is either
0 if this vertex belongs to T or at least f(k + 1, l) − (k − 1)l − (k − 1)(k + 1)l.

For every vertex y ∈ D′ − xk, there do not exist l arc-disjoint directed paths from xk to y in
D′, for otherwise there would be an immersion of F (k + 1, l) in D. Hence, by Menger’s Theorem
there exists a set Ey of less than l arcs such that there is no directed path from xk to y in D′ \Ey.
Define Cy for every vertex y ∈ D′ − xk as the set of vertices which can reach y in D′ \ Ey. Now
take Y a minimal set such that ∪y∈YCy covers D′ − xk. We claim that Y consists of at least

c2 ≥ f(k+1,l)−(k−1)l−(k−1)(k+1)l
l

≥ 2c1 elements, as ∪y∈Y Ey must contain all the arcs of D′ with xk
as tail.

For each y ∈ Y , define Sy as the set of vertices which belong to Cy and no other Cy′ for y
′ ∈ Y .

Since Y is minimal, every Sy is non-empty. Note that for u ∈ Sy, if there exists y′ ∈ Y \ y and
v ∈ Cy′ such that uv ∈ A(D), then uv ∈ Ey′ . Note that T ⊂ Y as vertices in T have outdegree 0
and if y ∈ Y \ T then Sy consists only of vertices of outdegree f(k + 1, l) in D.

Let R be the digraph with vertex set Y and arcs from y to y′ if there is an arc from Sy to Cy′ .
As noted before, d−R(y) ≤ |Ey| ≤ l. The average outdegree of the vertices of Y \ T in R is then at

most c1l+(c2−c1)l
c2−c1

≤ 2l. Let y be a vertex of R \ T with outdegree at most this average. Let H be
the digraph induced on D′ by the vertices in Sy to which we add X, all the arcs that existed in
D (with multiplicity) from vertices of Sy to vertices of X and the following arcs: For each Pi,j , let
z1, z2, . . . , zl = Pi,j ∩ Sy, where zi appears before zi+1 on Pi,j and add all the arcs (zi, zi+1) to H.
Note that, if (x, y) is an arc of D′, then by minimality of the immersion of F (k, l), every time x

appears before y on some Pi,j , then Pi,j uses one of the arcs (x, y). Thus for each pair of vertices
x and y in H, either (x, y) ∈ A(D) and the number of (x, y) arcs in H is equal to the one in D, or
(x, y) 6∈ A(D) and the number of (x, y) arcs in H is bounded by (k − 1)l. This implies that H has
multiplicity at most (k + 1)l.

Claim 4.1. H is a digraph with multiplicity at most (k + 1)l, such that all but at most c1 vertices

have outdegree greater than f(k + 1, l) and H does not contain an immersion of F (k + 1, l).

Proof of the claim. Suppose H contains an immersion of F (k + 1, l), then by replacing the new
arcs by the corresponding directed paths along the Pi,j we get an immersion of F (k + 1, l) in D.
Moreover, we claim that the number of vertices in H with outdegree smaller than f(k + 1, l) is at
most k + 2l + (k − 1)l = c1. Indeed, the vertices of H that can have outdegree smaller in H than
in D are the xi, or the vertices with outgoing arcs in Ey′ for some y′ ∈ Y \ y, or the vertices along
the Pi,j. But with the additions of the new arcs, we know that there is at most one vertex per path
Pi,j that loses some outdegree in H. ⋄

However, since H is strictly smaller than D, we reach a contradiction.
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