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Abstract

We study a general class of nonlinear second-order variational inequalities with interconnected bilateral

obstacles, related to a multiple modes switching game. Under rather weak assumptions, using systems of

penalized unilateral backward SDEs, we construct a continuous viscosity solution of polynomial growth.

Moreover, we establish a comparison result which in turn yields uniqueness of the solution.
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1 Introduction

In this paper we study systems of variational inequalities with interconnected lower and upper obstacles. This

type of inequalities arises as the Bellman-Isaacs equation in a multiple modes switching game between two players.

Besides their classical fields of applications, multiple modes switching games are attracting a lot of interest in the

management of power plants (see Bernhart (2011) ([3]) and Perninge (2011) ([27]), where they are successfully

used to design optimal stopping and starting strategies for power flow control through activation of regulating

bids on a regulated power market.

The objective of this work is to establish existence and uniqueness of a continuous viscosity solution of the

following system of variational inequalities with oblique reflection:















min
{(

vij − Lij [~v]
)

(t, x), max
{(

vij − U ij [~v]
)

(t, x),

−∂tv
i,j(t, x) − Lvij(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv

ij(t, x))
}}

= 0,

vij(T, x) = hij(x),

(1.1)

for every pair (i, j) in the finite set of modes Γ1 × Γ2, where, for any (t, x) ∈ [0, T ]× Rk,

Lϕ(t, x) := b(t, x)Dxϕ(t, x) +
1

2
Tr[σσ⊤(t, x)D2

xxϕ(t, x)],
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and to any solution ~v = (vij)(i,j)∈Γ1×Γ2 we associate the lower obstacle operator

Lij [~v](t, x) := max
k∈Γ1, k 6=i

(

vkj − g
ik

)

(t, x),

and the upper obstacle operator

U ij [~v](t, x) := min
l∈Γ2, l 6=j

(

vil + ḡjl
)

(t, x),

where, g
ik

(resp. ḡjl) stands for the switching cost incurred when the first (resp. second) player decides to switch

from mode i to mode k (resp. from mode j to mode l). Finally, the function f ij stands for the instantaneous

payoff when the first player is in mode i and the second one in mode j.

The system (1.1) and related switching games have been studied by several authors. The most recent work

discussing this topic includes the papers by Hu and Tang (2008) ([21]) and Tang and Hou (2007) ([28]) (see also

the references therein) which deal with switching games related to (1.1), when the switching costs do not depend

on the state variable. To the best of our knowledge, Ishii and Koike (1991) ([18]) are the latest most general

existence and uniqueness results for the system (1.1), for state-dependent switching costs. They derive existence

and uniqueness of viscosity solutions of the elliptic version of (1.1) in a bounded domain of Rk whose boundary

is of class C2, when the so-called Fichera functions are strictly negative (see [18], Proposition 4.3).

The main result of the present paper, which is given in Theorem 5.4, establishes existence and uniqueness of a

continuous viscosity solution of the system (1.1), when the state space is the whole Rk and under rather weak

assumptions on the involved coefficients. Our approach is probabilistic and makes use of penalization schemes

that allow us to connect the related penalized PDEs with systems of reflected backward SDEs with unilateral

interconnected obstacles which, for instance, have been studied in [7], [11], [17] or [20]. With the help of these

sequences of solutions of reflected BSDEs and their connection with PDEs, via Feynman-Kac’s formula, we are

able to construct in Propositions 5.1 and 5.2 both a viscosity subsolution and a supersolution for the system

(1.1). Relying next both on the comparison result established in Theorem 4.2 and adapting the Perron’s method

we construct a solution for (1.1) which is therefore unique. Finally, using again the uniqueness result, we identify

the limit of the penalized decreasing scheme as the solution of the system (1.1).

We made this detour instead of trying to solve a related system of reflected BSDEs with interconnected bilateral

obstacles, as one would expect, simply because they satisfy neither the so-called Mokobodski condition nor

the condition of strict separation of the two obstacles, which would guarantee existence and uniqueness of the

solutions of the system of BSDEs, since these obstacles depend on the solution. The structure of these bilateral

obstacles suggests a rather new type of conditions to guarantee existence and uniqueness result for the related

system of reflected BSDEs. This problem is beyond the scope of the present paper and therefore left for future

research.

Our plan for this paper is as follows. In Section 2, we provide all the notations used in the paper, state the whole

list of required assumptions and define viscosity sub- and supersolutions along with equivalent characterizations.

In Section 3 we construct two approximation schemes (an increasing and a decreasing on), consisting of sequences

of penalized reflected BSDEs associated with standard switching problems. The counterpart of the decreasing

scheme (resp. the increasing one) in terms of PDEs stands for the penalized scheme of system (1.1) (resp. system

(1.2) given below). Section 4 is devoted to the proof of a comparison result related to the sub- and supersolutions

of (1.1). In Section 5, the decreasing limit is identified as a viscosity subsolution of (1.1) while a super-solution is

exhibited. Finally, we use Perron’s method to construct a viscosity solution of (1.1) and, thanks to the uniqueness

result, its connection with the limit of the decreasing scheme is obtained. As a by product, we also obtain a
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similar characterization of the limit of the increasing scheme as the unique solution in viscosity sense of the

following system of variational inequalities: For every (i, j) ∈ Γ1 × Γ2,















max
{(

vij − U ij [~v]
)

(t, x), min
{(

vij(t, x)− Lij [~v]
)

(t, x),

−∂tv
ij(t, x)− Lvij(t, x) − f ij(t, x, (vkl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv

ij(t, x))
}}

= 0,

vij(T, x) = hij(x).

(1.2)

We do not know whether the solutions of (1.1) and (1.2) coincide or not. We note that this is a very important

issue since this will enable to characterize this common solution as the value of the zero-sum switching game.

Since it is beyond the scope of the paper, this question is left for further research.

2 Preliminaries and notation

Let T (resp. k, d) be a fixed positive constant (resp. two integers) and Γ1 (resp. Γ2) denote the set of switching

modes for player 1 (resp. 2). For later use, we shall denote by Λ the cardinal of the product set Γ1 × Γ2 and for

(i, j) ∈ Γ1 ×Γ2, (Γ1)
−i

:= Γ1 −{i} and (Γ2)
−j

:= Γ2 −{j}. Next, for ~y = (ykl)(k,l)∈Γ1×Γ2 ∈ RΛ, (i, j) ∈ Γ1 ×Γ2,

and y ∈ R, we denote by [~y−(ij), y] the matrix which is obtained from ~y by replacing the element yij with y.

Next, let us introduce the following functions. For any (i, j) ∈ Γ1 × Γ2,

b : (t, x) ∈ [0, T ]× Rk 7→ b(t, x) ∈ Rk;

σ : (t, x) ∈ [0, T ]× R
k 7→ σ(t, x) ∈ R

k×d;

f ij : (t, x, ~y, z) ∈ [0, T ]× Rk+Λ+d 7→ f ij(t, x, ~y, z) ∈ R ;

g
ik

: (t, x) ∈ [0, T ]× Rk 7→ g
ik
(t, x) ∈ R (k ∈ (Γ1)−i);

ḡjl : (t, x) ∈ [0, T ]× Rk 7→ ḡjl(t, x) ∈ R (l ∈ (Γ2)−j);

hij : x ∈ Rk 7→ hij(x) ∈ R.

A function Φ : (t, x) ∈ [0, T ]× Rk 7→ Φ(t, x) ∈ R is called of polynomial growth if there exist two non-negative

real constants C and γ such that

|Φ(t, x)| ≤ C(1 + |x|γ), (t, x) ∈ [0, T ]× R
k.

Hereafter, this class of functions is denoted by Πg. Let C1,2([0, T ]× Rk) (or simply C1,2) denote the set of real-

valued functions defined on [0, T ] × Rk, which are once (resp. twice) differentiable w.r.t. t (resp. x) and with

continuous derivatives.

In this paper, we investigate existence and uniqueness of viscosity solutions ~v(t, x) := (vkl(t, x))(k,l)∈Γ1×Γ2 of the

following system of variational inequalities with upper and lower interconnected obstacles: For any (i, j) ∈ Γ1×Γ2,















min
{(

vij − Lij [~v]
)

(t, x), max
{(

vij − U ij [~v]
)

(t, x),

−∂tv
ij(t, x)− Lvij(t, x) − f ij(t, x, (vkl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv

ij(t, x))
}}

= 0

vij(T, x) = hij(x)

(2.1)

where, for any (t, x) ∈ [0, T ]× Rk,

Lϕ(t, x) := b(t, x)Dxϕ(t, x) +
1

2
Tr[σσ⊤(t, x)D2

xxϕ(t, x)],

and (i, j) ∈ Γ1 × Γ2,

Lij [~v](t, x) := max
k∈(Γ1)−i

(vkj(t, x) − g
ik
(t, x)) and U ij [~v](t, x) = min

l∈(Γ2)−j
(vil(t, x) + ḡjl(t, x)).
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The functions f ij stand for the instantaneous payoff when the first player is in mode i and the second one in

mode j, and g
ik

(resp. ḡjl) stands for the switching cost incurred when the first (resp. second) player decides to

switch from mode i to mode k (resp. from mode j to mode l).

The lower obstacle Lij [~v] and an upper obstacle U ij [~v] are called interconnected because each of them depends

on the underlying solution ~v := (vkl)(k,l)∈Γ1×Γ2 .

In a way, the system (2.1) is the Bellman-Isaacs system of equations associated with the zero-sum switching game

with utility functions (f ij)(i,j)∈Γ1×Γ2 , terminal payoffs (hij)(i,j)∈Γ1×Γ2 and switching costs for the maximizer

(resp. minimizer) given by (g
ij
)(i,j)∈Γ1×Γ2) (resp. (ḡij)(i,j)∈Γ1×Γ2)).

The following assumptions are in force throughout the rest of the paper.

(H0) The functions b and σ associated with the second order operator L are jointly continuous in (t, x), of linear

growth in (t, x) and Lipschitz continuous w.r.t. x, meaning that there exists a non-negative constant C

such that for any (t, x, x′) ∈ [0, T ]× Rk+k we have:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) and |σ(t, x) − σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ C|x− x′|.

(H1) Each function f ij

(i) is continuous in (t, x) uniformly w.r.t. the other variables (~y, z) and for any (t, x) and the mapping

(t, x) → f ij(t, x, 0, 0) is of polynomial growth.

(ii) satisfies the standard hypothesis of Lipschitz continuity with respect to the variables (~y := (yij)(i,j)∈Γ1×Γ2
, z),

i.e. ∀ (t, x) ∈ [0, T ]× Rk, ∀ (~y1, ~y2) ∈ RΛ × RΛ, (z1, z2) ∈ Rd × Rd,

|f ij(t, x, ~y1, z1)− f ij(t, x, ~y2, z2)| ≤ C (|~y1 − ~y2|+ |z1 − z2|) ,

where, |~y| stands for the standard Euclidean norm of ~y in RΛ.

(H2) Monotonicity: Let ~y = (ykl)(k,l)∈Γ1×Γ2 , then for any (i, j) ∈ Γ1 × Γ2 and any (k, l) 6= (i, j) the mapping

yk,l → f ij(s, ~y, z) is non-decreasing.

(H3) The functions hij , which are the terminal conditions in the system (2.1), are continuous with respect to x,

belong to class Πg and satisfy

∀ (i, j) ∈ Γ1 × Γ2 and x ∈ R
k, max

k∈(Γ1)−i

(

hkj(x)− g
ik
(T, x)

)

≤ hij(x) ≤ min
l∈(Γ2)−j

(

hil(x) + ḡjl(T, x)
)

.

(H4) The no free loop property: The switching costs g
ik

and ḡjl are non-negative, jointly continuous in (t, x),

belong to Πg and satisfy the following condition:

For any loop in Γ1×Γ2, i.e., any sequence of pairs (i1, j1), . . . , (iN , jN ) of Γ1×Γ2 such that (iN , jN ) = (i1, j1),

card{(i1, j1), . . . , (iN , jN )} = N − 1 and ∀ q = 1, . . . , N − 1, either iq+1 = iq or jq+1 = jq, we have

∀(t, x) ∈ [0, T ]× Rk,
∑

q=1,N−1

ϕiqiq+1(t, x) 6= 0, (2.2)

where, ∀ q = 1, . . . , N − 1, ϕiqiq+1 (t, x) = −g
iqiq+1

(t, x)11iq 6=iq+1 + ḡjqiq+1 (t, x)11jq 6=jq+1

(resp. ϕiqiq+1(t, x) = g
iq ,iq+1

(t, x)11iq 6=iq+1 − ḡjq,iq+1(t, x)11jq 6=jq+1 ).
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This assumption implies in particular that

∀ (i1, . . . , iN) ∈ (Γ1)N such that iN = i1 and card{i1, . . . , iN} = N − 1,

N−1
∑

p=1

g
ik,ik+1

> 0 (2.3)

and

∀ (j1, . . . , jN ) ∈ (Γ2)N such that jN = j1 and card{j1, . . . , jN} = N − 1,

N−1
∑

p=1

ḡjk,jk+1
> 0. (2.4)

By convention we set ḡj,j = g
i,i

= 0.

Conditions (2.3) and (2.4) are classical in the literature of switching problems and usually referred to as the no

free loop property.

Finally, let us mention that if we set

g
ij
(t, x) = |i− j|g(t, x) and ḡij(t, x) = |i− j|ḡ(t, x), (i, j) ∈ Γ1 × Γ2,

where both g and ḡ are functions such that, for any (t, x) ∈ [0, T ] × Rk, ḡ(t,x)
g(t,x) is not a rational number, then

assumption (2.2) holds.

We now define the notions of viscosity super (or sub)-solution of the system (2.1). This is done in terms of the

notions of subjet and superjet which we recall here.

Definition 1. (Subjet and superjet)

(i) For a lower semicontinuous (lsc) (resp. upper semicontinuous (usc)) function u : [0, T ]×Rk → R, we denote

by J−u(t, x) (resp. J+u(t, x)) the parabolic subjet (resp. superjet) of u at (t, x) ∈ [0, T ]×Rk, as the set of triples

(p, q,M) ∈ R× Rk × Sk satisfying

u(t′, x′) ≥ (resp. ≤) u(t, x) + p(t′ − t) + q⊤(x′ − x) +

1
2 (x

′ − x)⊤M(x′ − x) + o
(

|t′ − t|+ |x′ − x|2
)

where Sk is the set of symmetric real matrices of dimension k.

(ii) For a lsc (rep. usc) function u : [0, T ] × Rk → R, we denote by J̄−u(t, x) (resp. J̄+u(t, x)) the parabolic

limiting subjet (resp. superjet) of u at (t, x) ∈ [0, T ]×Rk, as the set of triples (p, q,M) ∈ R×Rk × Sk such that:

(p, q,M) = limn(pn, qn,Mn), (t, x) = limn(tn, xn) with (pn, qn,Mn) ∈ J−u(tn, xn)

(resp. J+u(tn, xn)) and u(t, x) = limn u(tn, xn).

Finally, given a locally bounded R-valued deterministic function u, we denote by u∗ (resp. u∗) its lower (resp.

upper) semicontinuous envelope defined by:

∀ (t, x) ∈ [0, T ]× R
k, u∗(t, x) = lim

(t′ ,x′)→(t,x); t′<T

u(t′, x′) and u∗(t, x) = lim
(t′,x′)→(t,x); t′<T

u(t′, x′). (2.5)

We now give the definition of a viscosity solution for the system (2.1).

Definition 2. Viscosity solution to (2.1)

(i) A function ~v = (vkl(t, x))(k,l)∈Γ1×Γ2 : [0, T ]× R
k 7→ R

Λ such that for any (i, j) ∈ Γ1 × Γ2, vij is lsc (resp.
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usc), is called a viscosity supersolution (resp. a viscosity subsolution) to (2.1) if for any (i, j) ∈ Γ1 ×Γ2, for any

(t, x) ∈ [0, T )× Rk and any (p, q,M) ∈ J̄−vij(t, x) (resp. J̄+vij(t, x)) we have:














min
{

vij(t, x) − Lij [~v](t, x),

max
{

−p− b(t, x).q − 1
2Tr[(σσ

⊤)(t, x)M ] − f ij(t, x, ~v(t, x), σ⊤(t, x)q); vij(t, x)− U ij [~v](t, x)
}}

≥ 0,

vi(T, x) ≥ hij(x),

(2.6)
(

resp.















min
{

vij(t, x) − Lij [~v](t, x),

max
{

−p− b(t, x).q − 1
2Tr[(σσ

⊤)(t, x)M ] − f ij(t, x, ~v(t, x), σ⊤(t, x)q); vij(t, x)− U ij [~v](t, x)
}}

≤ 0,

vij(T, x) ≤ hij(x)
)

.

(2.7)

(ii) A locally bounded function ~v = (vkl)(k,l)∈Γ1×Γ2 : [0, T ]×R
k → R

Λ is called a viscosity solution of (2.1) if the

associated lower (resp. upper) semicontinuous envelope (vkl∗ )(k,l)∈Γ1×Γ2 (resp. (vkl
∗
)(k,l)∈Γ1×Γ2) defined in (2.5)

is a viscosity supersolution (resp. subsolution) of (2.1).

If, in addition, for any (k, l) ∈ Γ1 × Γ2, vkl∗ = vkl∗, then (vkl)(k,l)∈Γ1×Γ2 is a continuous viscosity solution of

(2.1).

Remark 1. Under Assumptions (H0)-(H4), the above definition of a viscosity solution for (2.1) can be relaxed

replacing the limiting subjet J̄−(vij∗ )(t, x) of the supersolution v∗ (resp. the limiting superjet J̄+(vij,∗)(t, x) of v∗)

by the subjet J−(vij∗ )(t, x) (resp. by the superjet J+(vij,∗)(t, x)). This results from the continuity of the functions

b, σ, (f ij , hij , g
ij
, ḡij)(i,j)∈Γ1×Γ2 and the monotonicity property (H2) of (f ij)(i,j)∈Γ1×Γ2 .

3 Systems of reflected BSDEs and approximation schemes of the

solutions

Let (Ω,F ,P) be a fixed probability space on which is defined a standard d-dimensional Brownian motion B =

(Bt)0≤t≤T whose natural filtration is (F0
t := σ{Bs, s ≤ t})0≤t≤T . Let F = (Ft)0≤t≤T be the completed filtration

of (F0
t )0≤t≤T with the P-null sets of F , hence (Ft)0≤t≤T satisfies the usual conditions, i.e., it is right continuous

and complete. Furthermore, let

• P be the σ-algebra on [0, T ]× Ω of F-progressively measurable sets;

• H2,ℓ (ℓ ≥ 1) be the set of P-measurable and Rℓ-valued processes w = (wt)t≤T such that E[
∫ T

0
|ws|

2ds] < ∞;

• S2,ℓ (ℓ ≥ 1) be the subset of H2,ℓ of continuous processes such that E[supt≤T |wt|
2] < ∞. Finally let A+,2

be the subset of S2,1 of non-decreasing processes K = (Kt)t≤T such that K0 = 0 and E[K2
T ] < ∞.

Next, for n,m ≥ 0, let (Y ij,n,m, Zij,n,m)(i,j)∈Γ1×Γ2 be the solution of the following system of BSDEs.














(Y ij,n,m, Zij,n,m) ∈ S2,1 ×H2,d;

dY ij,n,m
s = −f ij,n,m(s,Xt,x

s , (Y kl,n,m
s )(k,l)∈Γ1×Γ2 , Zij,n,m

s )ds+ Zij,n,m
s dBs, s ≤ T,

Y
ij,nm
T = hij(Xt,x

T ),

(3.1)

where,

f ij,n,m(s,Xt,x
s , (yij)(i,j)∈Γ1×Γ2 , z) := f ij(s,Xt,x

s , (ykl)(k,l)∈Γ1×Γ2 , z)+

n(yij −maxk∈(Γ1)−i{ykj − g
ik
(s,Xt,x

s )})− −m(yij −minl∈(Γ2)−j{yil + ḡjl(s,X
t,x
s )})+.
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Note that by Assumption (H1) and the standard result on multi-dimensional BSDEs by Pardoux and Peng (1990)

([24]), the solution (Y ij,n,m, Zij,n,m)(i,j)∈Γ1×Γ2 exists and is unique. Since the generators and the terminal values

depend on (t, x), the processes Y ij,n,m and Zij,n,m also depend on (t, x) but, to avoid overload notation, we do

not mention this dependence in the sequel. Furthermore, the following monotonicity properties holds for the

double sequence (Y ij,n,m)n,m.

Proposition 3.1. For any (i, j) ∈ Γ1 × Γ2 and n,m ≥ 0 we have

P− a.s., Y ij,n,m ≤ Y ij,n+1,m and Y ij,n,m ≥ Y ij,n,m+1, (i, j) ∈ Γ1 × Γ2. (3.2)

Moreover, for any (i, j) ∈ Γ1 × Γ2 and n,m ≥ 0, there exists a deterministic continuous function vij,n,m in Πg

such that, for any t ≤ T ,

Y ij,n,m
s = vij,n,m(s,Xt,x

s ), s ∈ [t, T ]. (3.3)

Finally, for any (i, j) ∈ Γ1 × Γ2 and n,m ≥ 0,

vij,n,m(t, x) ≤ vij,n+1,m(t, x) and vij,n,m(t, x) ≥ vij,n,m+1(t, x), (t, x) ∈ [0, T ]× R
k. (3.4)

Proof. The second claim is just the representation of solutions of standard BSDEs by deterministic functions

in the Markovian framework (see e.g. El Karoui et al. (1997) ([13]) for more details). As for the first one, it

is based on the result by Hu and Peng (2006) ([22]) related to the comparison of solutions of multi-dimensional

BSDEs (we recall in Appendix (A1)). To prove this, it is enough to show that for any t, (yij)(i,j)∈Γ1×Γ2 ,

(ȳij)(i,j)∈Γ1×Γ2 ∈ RΛ and (zij)(i,j)∈Γ1×Γ2 , (z̄ij)(i,j)∈Γ1×Γ2 ∈ (Rd)Λ we have:

−4
∑

(i,j)∈Γ1×Γ2 y
−
ij

(

f ij,n,m(s,Xt,x
s , (y+kl + ȳkl)(k,l)∈Γ1×Γ2 , zij)− f ij,n+1,m(s,Xt,x

s , (ȳkl)(k,l)∈Γ1×Γ2 , z̄ij)
)

≤ 2
∑

(i,j)∈Γ1×Γ2 1[yij<0]‖zij − z̄ij‖
2 + C

∑

(i,j)∈Γ1×Γ2(y
−
ij)

2,

where, C is a constant, y−ij = max(−yij , 0) and y+ij = max(yij , 0). This inequality follows easily from the fact

that, for any (i, j) ∈ Γ1 × Γ2,

(i) f ij,n,m(s,Xt,x
s , (ykl)(k,l)∈Γ1×Γ2 , zij) ≤ f ij,n+1,m(s,Xt,x

s , (ȳkl)(k,l)∈Γ1×Γ2 , zij),

(ii) For any (ukl)(k,l)∈Γ1×Γ2 ∈ RΛ such that uij = 0 and ukl ≥ 0, for (k, l) 6= (i, j),

f ij,n,m(s,Xt,x
s , (ykl + ukl)(i,j)∈Γ1×Γ2 , zij) ≥ f ij,n,m(s,Xt,x

s , (ykl)(k,l)∈Γ1×Γ2 , zij).

(iii) fij depends only on zij and not on the other components zkl, (k, l) 6= (i, j).

Consequently, we have

P− a.s., Y ij,n,m ≤ Y ij,n+1,m, (i, j) ∈ Γ1 × Γ2.

In the same way one can show that Y ij,n,m+1 ≤ Y ij,n,m. Finally, the inequalities of (3.4) are obtained by taking

s = t in (3.2) in view of the representation (3.3) of Y ij,n,m by vij,n,m and Xt,x.

We now suggest two approximation schemes obtained from the sequence (Y ij,n,m, (i, j) ∈ Γ1 ×Γ2)n,m of the

solution of the system (3.1). The first scheme is a sequence of decreasing reflected BSDEs with interconnected

lower obstacles and the second one is an increasing sequence of reflected BSDEs with interconnected upper

obstacles.

Let us first introduce the decreasing approximation scheme by considering the following system of reflected

BSDEs with interconnected obstacles: ∀(i, j) ∈ Γ1 × Γ2,


























Ȳ ij,m ∈ S2,1, Z̄ij,m ∈ H2,d and K̄ij,m ∈ A2,+ ;

Ȳ ij,m
s = hij(Xt,x

T ) +
∫ T

s
f̄ ij,m(r,Xt,x

r , (Ȳ kl,m
r )(k,l)∈Γ1×Γ2 , Z̄ij,m

r )dr + K̄
ij,m
T − K̄ij,m

s −
∫ T

s
Z̄ij,m
r dBr,

Ȳ ij,m
s ≥ max

k∈(Γ1)−i
{Ȳ kj,m

s − g
ik
(s,Xt,x

s )}, s ≤ T,

∫ T

0 (Ȳ ij,m
s −maxk∈(Γ1)−i{Ȳ kj,m

s − g
ik
(s,Xt,x

s )})dK̄ij,m
s = 0,

(3.5)
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where, for any (i, j) ∈ Γ1 × Γ2, m ≥ 0 and (s, ~y, zij),

f̄ ij,m(s,Xt,x
s , ~y, zij) := f ij(s,Xt,x

s , (ykl)(k,l)∈Γ1×Γ2 , zij)−m
(

yij − min
l∈(Γ2)−j

(yil + ḡjl(s,X
t,x
s ))

)+
.

Thanks to Assumptions (H1)-(H3) and (2.3), by Theorem 3.5 in Hamadène and Zhang (2010) ([17]), the solution

of (3.5) exists and is unique. In fact, this holds again under weaker assumptions (see Hamadène and Morlais

(2011)([19], Theorem 1). For sake of completeness, a statement of this recent result is given in Appendix (A2).

Moreover, we have the following properties.

Proposition 3.2. For any (i, j) ∈ Γ1 × Γ2 and m ≥ 0, we have

(i)

E[ sup
t≤s≤T

|Y ij,n,m
s − Ȳ ij,m

s |2] → 0, as n → ∞, (3.6)

(ii)

P− a.s., Ȳ ij,m ≥ Ȳ ij,m+1.

(iii) There exists a unique Λ-uplet of deterministic continuous functions (v̄kl,m)(k,l)∈Γ1×Γ2 in Πg such that, for

every t ≤ T ,

Ȳ ij,m
s = v̄ij,m(s,Xt,x

s ), s ∈ [t, T ]. (3.7)

Moreover, for any (i, j) ∈ Γ1 × Γ2 and (t, x) ∈ [0, T ]× Rk, v̄ij,m(t, x) ≥ v̄ij,m+1(t, x).

Finally, (v̄ij,m)(i,j)∈Γ1×Γ2 is the unique viscosity solution in the class Πg of the following system of variational

inequalities with inter-connected obstacles. ∀ (i, j) ∈ Γ1 × Γ2,



























min{v̄ij,m(t, x)− max
k∈(Γ1)−i

(v̄kj,m(t, x) − g
ik
(t, x));

−∂tv̄
ij,m(t, x) − b(t, x)Dxv̄

ij,m(t, x)− 1
2Tr(σσ

⊤(t, x)D2
xxv̄

ij,m(t, x))

−f̄ ij,m(t, x, (v̄kl,m(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv̄
ij,m(t, x))} = 0,

v̄ij,m(T, x) = hij(x)

(3.8)

where,

f̄ ij,m(s, x, (ykl)(k,l)∈Γ1×Γ2 , z) = f ij(s, x, (ykl)(k,l)∈Γ1×Γ2 , z)−m
(

yij − min
l∈(Γ2)−j

(yil + ḡjl(s, x))
)+

.

Proof . Let us prove (i). For this, it is enough to consider the case m = 0, and we will do so, since for any

(i, j) ∈ Γ1 × Γ2, the function

(s, x, (ykl)(k,l)∈Γ1×Γ2) −→ −m
(

yij − min
l∈(Γ2)−j

(yil + ḡjl(s, x)))
+

has the same properties as f ij displayed in (H1)-(H2).

To begin with, let us show that for any i, j and n ≥ 0,

P− a.s., Y ij,n,0 ≤ Ȳ ij,0. (3.9)

First andt w.l.o.g. we may assume that f ij is non-decreasing w.r.t. (ykl)(k,l)∈Γ1×Γ2 , since thanks to Assumption

(H2), it is enough to multiply the solutions by e̟t, where ̟ is appropriately chosen in order to fall in this latter

case, since f ij is Lipschitz in yij . Now, for fixed n, let us define recursively the sequence (Ỹ k,ij,n)k≥0 as follows:
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For k = 0 and any (i, j) ∈ Γ1 × Γ2, we set Ỹ 0,ij,n := Ȳ ij,0 and, for any k ≥ 1, let us define (Ỹ k,ij,n, Z̃k,ij,n) ∈

S2,1 ×H2,d as the solution of the following system of BSDEs: ∀(i, j) ∈ Γ1 × Γ2,















−dỸ k,ij,n
s = f ij(s,Xt,x

s , (Ỹ k−1,pq,n
s )(p,q)∈Γ1×Γ2 , Z̃k,ij,n

s )ds+

n{Ỹ k,ij,n
s −maxl∈(Γ1)−i(Ỹ k−1,lj,n

s − g
ik
(s,Xt,x

s ))}−ds− Z̃k,ij,n
s dBs,

Ỹ
k,ij,n
T = hij(Xt,x

T )

(3.10)

The solution of (3.10) exists since it is a multi-dimensional standard BSDE with a Lipschitz coefficient, noting

that (Ỹ k−1,pq,n
s )(p,q)∈Γ1×Γ2 is already given. Since, n is fixed and the coefficient

ϕij,n(s, ω, (ykl)(k,l)∈Γ1×Γ2 , zij) := f ij(s,Xt,x
s , (ykl)(k,l)∈Γ1×Γ2 , zij) + n{yij − max

l∈(Γ1)−i
(ylj − g

il
(s,Xt,x

s )}−

is Lipschitz w.r.t. ((ykl)(k,l)∈Γ1×Γ2 , zij), the sequence (Ỹ k,ij,n)k converges in S2,1 to Y ij,n,0, as k → ∞, for any

i, j and n.

Using an induction argument w.r.t. k, we prove that, for any i, j and n,

P− a.s., Ỹ k,ij,n ≤ Ȳ ij,0, k ≥ 0.

Indeed, for k = 0 the inequalities hold true through the definition of Ỹ 0,ij,n. Assume now that these inequalities

are valid for some k − 1, i.e., for any i, j and n,

P− a.s., Ỹ k−1,ij,n ≤ Ȳ ij,0. (3.11)

Thus, taking into account that Ȳ ij,0 satisfies (3.5) with m = 0 and the fact that f ij is non-decreasing w.r.t.

(ykl)(k,l)∈Γ1×Γ2 then for any i, j, n, it holds

f ij(s,Xt,x
s , (Ỹ k−1,pq,n

s )(p,q)∈Γ1×Γ2 , zij) + n{Ȳ ij,0 −maxl∈(Γ1)−i(Ỹ k−1,lj,n
s − g

il
(s,Xt,x

s ))}−

≤ f ij(s,Xt,x
s , (Ȳ pq,0

s )(p,q)∈Γ1×Γ2 , zij).

Using the standard comparison result of solutions of one dimensional BSDEs we obtain that, for any n, i, j,

Ỹ k,ij,n ≤ Ȳ ij,0. a.s. Thus the property (3.11) is valid for any k. Taking the limit as k tends to ∞, we obtain

(3.9).

We can now apply Peng’s monotonic limit (see Peng (1999) ([26])) to the increasing sequence (Y ij,n,0)n≥0. This

yields the existence of processes Ŷ ij , Ẑij and K̂ij , (i, j) ∈ Γ1 × Γ2, such that:

(a) Ŷ ij is RCLL and uniformly P-square integrable. Moreover, for any stopping time τ , limn→∞ ր Y ij,n,0
τ = Ŷ ij

τ .

(b) K̂ij is RCLL non-decreasing, K̂ij
0 = 0 and for any stopping time τ , limn→∞ Kij,n,0

τ = K̂ij
τ , P− a.s.

(c) Ẑij ∈ H2,d and for any p ∈ [1, 2),

lim
n→∞

E[

∫ T

0

|Zij,n,0
s − Ẑij

s |pds] = 0.

(d) For any (i, j) ∈ Γ1 × Γ2, the triple (Ŷ ij , Ẑij , K̂ij) satisfies: ∀s ≤ T ,

{

Ŷ ij
s = hij(Xt,x

T ) +
∫ T

s
f ij(r,Xt,x

r , (Ŷ kl
r )(k,l)∈Γ1×Γ2 , Ẑij

r )dr + K̂
ij
T − K̂ij

s −
∫ T

s
Ẑij
r dBr

Ŷ ij
s ≥ maxk∈(Γ1)−i{Ŷ kj

s − g
ik
(s,Xt,x

s )}.
(3.12)

The remaining of the proof is the same as in Hamadène and Zhang (2010) (([17]), Theorem 3.2) and it mainly

consists in proving both the continuity of Ŷ ij and K̂ij and the Skorohod condition (these properties are deduced

using the no-free loop property (H4)). Finally we obtain that the triple (Ŷ ij , Ẑij , K̂ij) satisfies (3.5) with m = 0.

Hence, by uniqueness of the solutions of (3.5), Ŷ ij = Ȳ ij,0 a.s, which completes the proof of (i).
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(ii) is an immediate consequence of (i) and Proposition 3.1.

We now establish (iii). The existence of the deterministic continuous functions (v̄ij,m)(i,j)∈Γ1×Γ2 such that for

any s ∈ [t, T ], Y ij,m
s = v̄ij,m(s,Xs), (i, j) ∈ Γ1 × Γ2, m ≥ 0, and which satisfy the system (3.8), is obtained in

[19] (see Appendix A2, Theorem 6.2). Finally as Y ij,m ≥ Y ij,m+1 a.s., we deduce that v̄ij,m ≥ v̄ij,m+1, taking

into account (ii), which completes the proof.

We now introduce the increasing approximation scheme by considering the following system of reflected BSDEs

with interconnected obstacles: for any (i, j) ∈ Γ1 × Γ2,


































Y ij,n ∈ S2, Zij,n ∈ H2,d and Kij,n ∈ A2,+ ;

Y ij,n
s = hij(Xt,x

T ) +
∫ T

s
f ij,n(r,Xt,x

r , (Y kl,n
r )(k,l)∈Γ1×Γ2 , Zij,n

r )dr − (Kij,n
T −Kij,n

s )−
∫ T

s
Zij,n

r dBr,

Y ij,n
s ≤ min

l∈(Γ2)−j
{Y il,n

s + ḡjl(s,X
t,x
s )}, s ≤ T,

∫ T

0

(Y ij,n
s − min

l∈(Γ2)−j
{Y il,n

s + ḡjl(s,X
t,x
s )})dKij,n

s = 0,

(3.13)

where, for any (i, j) ∈ Γ1 × Γ2, n ≥ 0 and (s, ~y, zij),

f ij,n(s,Xt,x
s , ~y, zij) = f ij(s,Xt,x

s , (ykl)(k,l)∈Γ1×Γ2 , zij) + n
(

yij − max
k∈(Γ1)−i

{ykj − g
ik
(s,Xt,x

s )}
)−

.

Thanks to assumptions (H1)-(H3) and (H4)-(2.4), by Theorems 3.2 and 3.5 in Hamadène and Zhang (2010) ([17])

the solution of (3.5) exists and is unique.

Below is the analogous of Proposition 3.2. We do not give its proof since it is deduced from this latter proposition

in considering the equation satisfied by (−Y ij,n,−Zij,n,Kij,n).

Proposition 3.3. For any (i, j) ∈ Γ1 × Γ2 we have

(i)

E[ sup
t≤s≤T

|Y ij,n,m
s − Y ij,n

s |2] → 0 as m → ∞. (3.14)

(ii) For any n ≥ 0,

P− a.s., Y ij,n ≤ Y ij,n+1.

(iii) For every n ≥ 0, there exists a unique Λ-uplet of deterministic continuous functions (vkl,n)(k,l)∈Γ1×Γ2 in Πg

such that, for every t ≤ T ,

Y ij,n
s = vij,n(s,Xt,x

s ), t ≤ s ≤ T. (3.15)

Moreover, for any n ≥ 0 and (i, j) ∈ Γ1 × Γ2,

vij,n(t, x) ≤ vij,n+1(t, x), (t, x) ∈ [0, T ]× R
k.

Finally, (vij,n)(i,j)∈Γ1×Γ2 is the unique viscosity solution in the class Πg of the following system of variational

inequalities with inter-connected obstacles: ∀ (i, j) ∈ Γ1 × Γ2,


























max{vij,n(t, x) − min
l∈(Γ2)−j

(vil,n(t, x) + ḡik(t, x));

−∂tv
ij,n(t, x)− b(t, x)Dxv

ij,n(t, x) − 1
2Tr(σσ

⊤(t, x)D2
xxv

ij,n(t, x))

−f ij,n(t, x, (vkl,n(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv
ij,n(t, x))} = 0,

vij,n(T, x) = hij(x)

(3.16)

where,

f ij,n(s, x, (ykl)(k,l)∈Γ1×Γ2 , z) = f ij(s, x, (ykl)(k,l)∈Γ1×Γ2 , z) + n{yij − max
k∈(Γ1)−i

(ykj − g
ik
(s, x))}−.
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For (t, x) ∈ [0, T ]× Rk ∈ [0, T ]× Rk and (i, j) ∈ Γ1 × Γ2, let us define

v̄ij(t, x) := lim
m→∞

v̄ij,m(t, x) and vij(t, x) := lim
n→∞

vij,n(t, x).

Then, as a by-product of Propositions 3.2 and 3.3 we have

Corollary 1. For any (i, j) ∈ Γ1 × Γ2, the function v̄ij (resp. vij) is usc (resp. lsc). Moreover, v̄ij and vij

belong to Πg i.e., there exist deterministic constants C ≥ 0 and γ > 0 such that, for any (t, x) ∈ [0, T ]× Rk,

|v̄ij(t, x)| + |vij(t, x)| ≤ C(1 + |x|γ), (t, x) ∈ [0, T ]× R
k.

Finally, for any (t, x) ∈ [0, T ]× Rk,

vij(t, x) ≤ v̄ij(t, x).

Proof . For any (i, j) ∈ Γ1 × Γ2, v̄ij (resp. vij) is obtained as a decreasing (resp. increasing) limit of

continuous functions. Therefore, it is usc (resp. lsc). Next, for any (i, j) and n,m,

vij,n,m(t, x) ≤ vij,n,0(t, x), (t, x) ∈ [0, T ]× R
k,

as the sequence (vij,n,m)m≥0 is decreasing. Thus, taking the limit as m → ∞ we obtain

vij,n ≤ vij,n,0.

Now, using (3.3) and (3.6) it follows that, for any t ≤ T and s ∈ [t, T ], Y ij,n,0
s = vij,n,0(s,Xt,x

s ) and the processes

Y ij,n,0 converges in S2, as n → ∞, to Ȳ ij,0 solution of (3.5) with m = 0. Furthermore, by (3.7), there exists a

deterministic continuous function v̄ij,0 of class Πg such that for any t ≤ T and s ∈ [t, T ], Ȳ ij,0
s = v̄ij,0(s,Xt,x

s ).

Then, taking s = t and the limit as n → ∞ to obtain

vij(t, x) := lim
n→∞

vij,n(t, x) ≤ lim
n→∞

vij,n,0(t, x) = v̄ij,0(t, x), ∀(t, x) ∈ [0, T ]× R
k.

But, v̄ij,0 and vij,n belong to Πg and vij,n ≤ vij,n+1. Thus, vij belongs to Πg, for any (i, j) ∈ Γ1 × Γ2. In the

same way one can show that v̄ij belongs to Πg, for any (i, j) ∈ Γ1 × Γ2. The last inequality follows from (3.4)

and the definitions of v̄ij and vij .

4 A comparison result

In this section we investigate some qualitative properties of viscosity solutions of the system (2.1). In particular,

we show in Corollary 2 below that if the system (2.1) admits a viscosity solution in the class Πg, then it is unique

and continuous.

We first show that if (uij)(i,j)∈Γ1×Γ2 (resp. (wij)(i,j)∈Γ1×Γ2) is an usc subsolution (resp. lsc supersolution) of

(2.1) which belongs to Πg, then for any (i, j) ∈ Γ1×Γ2, uij ≤ wij . To begin with, we give an intermediary result

which is required in the second step of the proof of the comparison result.

Lemma 4.1. Let ~u := (uij)(i,j)∈Γ1×Γ2 (resp. ~w := (wij)(i,j)∈Γ1×Γ2) be an usc subsolution (resp. lsc supersolu-

tion) of (2.1). Let (t, x) ∈ [0, T ]× R
k and let Γ̃(t, x) be the following set.

Γ̃(t, x) := {(i, j) ∈ Γ1 × Γ2, uij(t, x)− wi,j(t, x) = max
(k,l)∈Γ1×Γ2

{ukl(t, x) − wkl(t, x)}.

Then, there exists (i0, j0) ∈ Γ̃(t, x) such that

ui0j0(t, x) > Li0j0 [~u](t, x) and wi0j0(t, x) < U i0j0 [~w](t, x). (4.1)
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Proof: Let (t, x) ∈ [0, T ]×Rk be fixed. Since the set Γ1×Γ2 is finite then Γ̃(t, x) is not empty. Next, let us show

the claim by contradiction. So for any (i, j) ∈ Γ̃(t, x) either uij(t, x) ≤ Lij [~u](t, x) or wij(t, x) ≥ U ij [~w](t, x)

holds. Let us first assume that:

uij(t, x) ≤ Lij [~u](t, x). (4.2)

Then, there exists some k ∈ (Γ1)
−i
, such that

uij(t, x) ≤ Lij [~u](t, x) = ukj(t, x) − g
ik
(t, x).

But, since ~w is a supersolution to (2.1) we also deduce

wij(t, x) ≥ wkj(t, x) − g
ik
(t, x),

which implies that

uij(t, x)− ukj(t, x) ≤ −g
ik
(t, x) ≤ wij(t, x) − wkj(t, x)

and then

uij(t, x)− wij(t, x) ≤ ukj(t, x) − wkj(t, x).

Since, by assumption (i, j) ∈ Γ̃(t, x), the two previous inequalities are instead equalities, (k, j) belongs to Γ̃(t, x),

k 6= i and finally it holds that

uij(t, x) − ukj(t, x) = −g
ik
(t, x) = wij(t, x)− wkj(t, x). (4.3)

Next, if (4.2) does not hold, then necessarily uij(t, x) > Lij [~u](t, x) and wij(t, x) ≥ U ij [~w](t, x). As (uij)i,j is a

subsolution of (2.1) we obtain

uij(t, x) ≤ U ij [~u](t, x) ≤ uil(t, x) + ḡjl(t, x), l ∈ Γ2
−j .

On the other hand, for some index l ∈ Γ2
−j it holds

wij(t, x)− wil(t, x) ≥ ḡjl(t, x) ≥ uij(t, x)− uil(t, x).

Once more as (i, j) ∈ Γ̃(t, x) then the previous inequalities yield that (i, l) ∈ Γ̃(t, x), l 6= j and

uij(t, x)− uil(t, x) = ḡjl(t, x) = wij(t, x)− wil(t, x). (4.4)

Repeating now this reasoning as many times as necessary, and since Γ1 × Γ2 is finite, there exits a loop

(i1, j1), . . . , (iN−1, jN−1), (iN , jN ) = (i1, j1) such that

∑

q=1,N−1

ϕiq ,iq+1(t, x) = 0,

which contradicts Assumption (H4), whence the claim is proved.

We now give the main result of this subsection.

Theorem 4.2. Assume that ~u = (uij)(i,j)∈Γ1×Γ2 (resp. ~w = (wij)(i,j)∈Γ1×Γ2) is an usc (resp. lsc) subsolution

(resp. supersolution) of the system (2.1) such that, for any (i, j) ∈ Γ1 × Γ2, both uij and wij belong to Πg, i.e.,

there exist two constants γ and C such that

∀(i, j) ∈ Γ1 × Γ2, ∀(t, x) ∈ [0, T ]× R
k, |uij(t, x)|+ |wij(t, x)| ≤ C(1 + |x|γ). (4.5)

Then, it holds that for any (i, j) ∈ Γ1 × Γ2,

uij(t, x) ≤ wij(t, x), (t, x) ∈ [0, T ]× R
k.
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Proof. Let us proceed by contradiction and let (uij)(i,j)∈Γ1×Γ2 (resp. ~w = (wij)(i,j)∈Γ1×Γ2) be usc (resp. lsc)

and a subsolution (resp. a supersolution) of the system (2.1) such that there exists ε0 > 0 and (t0, x0) ∈ [0, T ]×Rk

such that

max
i,j

(

(uij − wij)(t0, x0)
)

≥ ǫ0. (4.6)

Next, w.l.o.g. we may assume that for any (i, j) ∈ Γ1 × Γ2,

lim
|x|→∞

(uij − wij)(t, x) = −∞. (4.7)

Indeed, if this is not the case, one may replace wij with wij,ϑ,µ defined by

wij,ϑ,µ(t, x) = wij(t, x) + ϑe−µt|x|2γ+2, (t, x) ∈ [0, T ]× R
k,

which is still an usc supersolution of (2.1) for ϑ > 0 and µ ≥ µ0 which satisfies (4.7) (a proof of the supersolution

property for good choices of ϑ and µ can be found in e.g. Pham (2009) (([25]), pp.76). Therefore, it suffices

to show that uij(t, x) ≤ wij,ϑ,µ(t, x), (t, x) ∈ [0, T ] × R
k, since, by taking the limit as ϑ → 0, we deduce that

uij(t, x) ≤ wij(t, x), (t, x) ∈ [0, T ]×Rk. Thus, assume that (4.6) and (4.7) are satisfied. Then, there exists R > 0

such that

max(t,x)∈[0,T ]×Rk maxi,j{(u
ij − wij)(t, x)} = max(t,x)∈[0,T ]×B(0,R)maxi,j{(u

ij − wij)(t, x)}

= maxij(u
ij − wij)(t∗, x∗) ≥ ǫ0 > 0,

(4.8)

where, (t∗, x∗) ∈ [0, T ) × B(0, R), where, B(0, R) denotes the ball in Rk with center the origin and radius R,

since by definition uij(T, x) ≤ wij(T, x), for all (i, j) ∈ Γ1 × Γ2.

The remaining of the proof is obtained in two steps: the first step which is the main one establishes the comparison

result under the additional condition (4.9) and the second step provides the proof in the general case.

Step 1. Let us make the following assumption on the functions (f ij)(i,j)∈Γ1×Γ2 . For all

λ > c(f i,j)(Λ − 1), (i, j) ∈ Γ1 × Γ2, (t, x, ~y, z) ∈ [0, T ]× R
k × R

Λ+d, and (u, v) ∈ R
2 s.t.u ≥ v,

f ij(t, x, [~y−(ij), u], z)− f ij(t, x, [~y−(ij), v], z) ≤ −λ(u − v), (4.9)

where, c(f ij) is the Lipschitz constant of f ij w.r.t. (ykl)(k,l)∈Γ1×Γ2 . Next, let (i0, j0) be an element of Γ̃(t∗, x∗)

that satisfies (4.1). For n ≥ 1, let Φi0,j0
n be the function defined as follows.

Φi0,j0
n (t, x, y) := (ui0j0(t, x)− wi0j0(t, y))− φn(t, x, y), (t, x, y) ∈ [0, T ]× R

k+k,

where,

φn(t, x, y) := n|x− y|2γ+2 + |x− x∗|2γ+2 + (t− t∗)2.

Since Φi0,j0
n is usc in (t, x, y), there exists (tn, xn, yn) ∈ [0, T ]×B(0, R)2 such that

Φi0,j0
n (tn, xn, yn) = max

(t,x,y)∈[0,T ]×B(0,R)2
Φi0,j0

n (t, x, y).

Moreover,

Φi0,j0
n (t∗, x∗, x∗) = ui0,j0(t∗, x∗)− wi0,j0(t∗, x∗) ≤ ui0,j0(t∗, x∗)− wi0,j0(t∗, x∗) + φn(tn, xn, yn)

≤ ui0,j0(tn, xn)− wi0,j0(tn, yn).
(4.10)
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The definition of φn together with the growth condition of uij and wij implies that (xn − yn)n≥1 converges to 0.

Next, for any subsequence ((tnl
, xnl

, ynl
))l which converges to (t̃, x̃, x̃) we deduce from (4.10) that

ui0j0(t∗, x∗)− wi0j0(t∗, x∗) ≤ ui0,j0(t̃, x̃)− wi0j0(t̃, x̃),

since ui0j0 is usc and wi0j0 is lsc. As the maximum of ui0j0 −wi0j0 on [0, T ]×B(0, R) is reached in (t∗, x∗), then

this last inequality is actually an equality. Using the definition of φn and (4.10), we deduce that the sequence

((tn, xn, yn))n converges to (t∗, x∗, x∗) which also implies

n|xn − yn|
2γ+2 → 0 and (ui0j0(tn, xn), w

i0j0(tn, yn)) → (ui0j0(t∗, x∗), wi0j0(t∗, x∗)),

as n → ∞. This latter convergence holds, since we first obtain from (4.10) and in taking into account that ui0j0

and wi0j0 are lsc and usc respectively,

ui0j0(t∗, x∗)− wi0j0(t∗, x∗) ≤ limn(u
i0j0(tn, xn)− wi0j0(tn, yn)) ≤ limn(u

i0j0(tn, xn)− wi0j0(tn, yn))

≤ limn u
i0j0(tn, xn)− limn w

i0j0(tn, yn)) ≤ ui0j0(t∗, x∗)− wi0j0(t∗, x∗).

Thus the sequence (ui0j0(tn, xn)− wi0j0(tn, yn))n≥0 converges to ui0j0(t∗, x∗)− wi0j0(t∗, x∗) as n → ∞. Then

limn u
i0j0(tn, xn) = ui0j0(t∗, x∗)− wi0j0(t∗, x∗) + limn w

i0j0(tn, yn) ≥ ui0j0(t∗, x∗) ≥ limn u
i0j0tn, xn).

It follows that the sequence (ui0j0(tn, xn))n converges to ui0j0(t∗, x∗) and then (wi0j0(tn, yn))n converges also to

wi0j0(t∗, x∗).

Next, recalling that ui0j0 (resp. wi0j0) is usc (resp. lsc) and satisfies (4.1), then, for n large enough and at least

for a subsequence which we still index by n, we obtain

ui0j0(tn, xn) > max
k∈(Γ1)−i

(ukj0 (tn, xn)− gi0k(tn, xn)), (4.11)

and

wi0j0(tn, xn) < min
l∈(Γ2)−j

(wi0l(tn, xn)− gj0l(tn, xn)). (4.12)

Applying now Crandall-Ishii-Lions’s Lemma (see e.g. [5] or [10], pp.216) with Φi0j0
n and φn at the point (tn, xn, yn)

(for n large enough in such a way that this latter triple will belong to [0, T ]×B(0, R)2), there exist (pnu, q
n
u ,M

n
u ) ∈

J̄2,+(ui0j0)(tn, xn) and (pnw, q
n
w,M

n
w) ∈ J̄2,−(wi0j0)(tn, yn) such that

pnu − pnw = ∂tϕ̃n(tn, xn, yn) = 2(tn − t∗), qnu (resp. qnw) = ∂xϕn(tn, xn, yn) (resp.− ∂yϕn(tn, xn, yn)) and

(

Mn
u 0

0 −Nn
w

)

≤ An +
1

2n
A2

n, (4.13)

where, An = D2
(x,y)ϕn(tn, xn, yn). Taking into account that (uij)i,j (resp. (wij)i,j) is a subsolution (resp.

supersolution) of (2.1) and using once more (4.11) and (4.12) we get

−pnu − b(tn, xn)
⊤.qnu −

1

2
Tr[(σσ⊤)(tn, xn)M

n
u ]− f i0j0(tn, xn, (u

ij(tn, xn))(i,j)∈Γ1×Γ2 , σ(tn, xn)
⊤.qnu ) ≤ 0,

and

−pnw − b(tn, yn)
⊤.qnw −

1

2
Tr[(σσ⊤)(tn, yn)M

n
w]− f i0j0(tn, yn, (w

ij(tn, yn))(i,j)∈Γ1×Γ2 , σ(tn, yn)
⊤.qnw) ≥ 0.

Taking the difference between these two inequalities yields

−(pnu − pnw)− (b(tn, xn)
⊤.qnu − b(tn, yn)

⊤.qnw)−
1
2Tr[{σσ

⊤(tn, xn)M
n
u − σσ⊤(tn, yn)M

n
w}]

−{f i0j0(tn, xn, (u
ij(tn, xn))(i,j)∈Γ1×Γ2 , σ(tn, xn)

⊤ · qnu)

−f i0j0(tn, yn, (w
ij(tn, yn))(i,j)∈Γ1×Γ2 , σ(tn, yn)

⊤.qnw)} ≤ 0,

(4.14)
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and then

−{f i0j0(tn, xn, (u
ij(tn, xn))(i,j)∈Γ1×Γ2 , σ(tn, xn)

⊤.qnu)

−f i0j0(tn, yn, (w
ij(tn, yn))(i,j)∈Γ1×Γ2 , σ(tn, yn)

⊤.qnw)} ≤ ̺n,

with limn→∞ ̺n ≤ 0, using the fact that all the terms in the first line of (4.14) are converging sequences.

Linearizing f i0j0 (see Appendix A3), which is Lipschitz w.r.t. (yij)(i,j)∈Γ1×Γ2 , and using Assumption (4.9), we

obtain

λ(ui0j0(tn, xn)− wi0j0(tn, yn))−
∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0j0)

Θi,j
n (uij(tn, xn)− wij(tn, yn)) ≤ ̺n,

where, Θi,j
n is the increment rate of f i0j0 w.r.t. yij which is uniformly bounded (w.r.t. n) and non-negative

thanks to the monotonicity assumption (H2). Therefore,

λ(ui0j0(tn, xn) −wi0j0(tn, yn))

≤
∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0,j0)
Θi,j

n (uij(tn, xn)− wij(tn, yn)) + ̺n

≤ c(f i0j0)×
∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0,j0)
((uij(tn, xn)− wij(tn, yn))

+ + ̺n.

Taking the limit as n → ∞ we obtain

λ(ui0j0(t∗, x∗) −wi0j0(t∗, y∗))

≤ limn→∞ c(f i0j0)
(

∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0,j0)
(uij(tn, xn)− wij(tn, yn))

+
)

≤ c(f i0j0)
(

∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0,j0)
limn→∞(uij(tn, xn)− wij(tn, yn))

+
)

≤ c(f i0j0)
(

∑

(i,j)∈Γ1×Γ2,(i,j) 6=(i0,j0)
(uij(t∗, x∗)− wij(t∗, x∗))+

)

,

since uij (resp. wij) is usc (resp. lsc). As (i0, j0) belongs to Γ̃(t∗, x∗), we obtain

λ(ui0j0(t∗, x∗)− wi0j0(t∗, y∗)) ≤ c(f i0j0)
(

(Λ− 1)(ui0j0(t∗, x∗)− wi0j0(t∗, x∗))
)

.

But this is contradictory with (4.8) and (4.9). Thus, for any (i, j) ∈ Γ1 × Γ2, uij ≤ wij . ✷

Step 2. The general case.

For arbitrary λ ∈ R, if (uij)(i,j)∈Γ1×Γ2∈Γ1×Γ2 (resp. (wij)(i,j)∈Γ1×Γ2) is a subsolution (resp. supersolution) of

(2.1) then ũij(t, x) = eλtuij(t, x) and w̃ij(t, x) = eλtwij(t, x) is a subsolution (resp. supersolution) of the following

system of variational inequalities with oblique reflection. For every (i, j) ∈ Γ1 × Γ2,























min{ṽij(t, x) −maxl∈(Γ1)−i{ṽlj(t, x)− eλtg
il
(t, x)};

max{ṽij(t, x) −mink∈(Γ2)−j{eλtḡjk(t, x) + ṽij(t, x)};−∂tṽ
ij(t, x)− Lṽij(t, x) + λṽij(t, x)

−eλtf ij(t, x, (e−λtṽij(t, x))(i,j)∈Γ1×Γ2 , e−λtσ⊤(t, x).Dxṽ
ij(t, x))} = 0,

ṽij(T, x) = eλThij(x).

(4.15)

But, by choosing λ large enough the functions

F ij(t, x, (ukl)(k,l)∈Γ1×Γ2 , z) = −λuij + eλtf ij(t, x, (e−λtukl)(k,l)∈Γ1×Γ2 , e−λtz), (i, j) ∈ Γ1 × Γ2,

satisfy Condition (4.9). Hence, thanks to the result stated in Step 1, we have ũij ≤ ṽij , (i, j) ∈ Γ1 × Γ2. Thus,

uij ≤ vij , for any (i, j) ∈ Γ1 × Γ2, which is the desired result.

As a consequence of this comparison result, we obtain the following one related to uniqueness of the solution of

(2.1).
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Corollary 2. If the system (2.1) admits a viscosity solution in the class Πg, then it is unique and continuous.

Proof. Indeed, assume that (vij)(i,j)∈Γ1×Γ2 is a solution of (2.1) that belongs to Πg. Then, thanks to

the previous comparison result, for any (i, j) ∈ Γ1 × Γ2 we have vij,∗ ≤ v
ij
∗ . Thus, vij,∗ = v

ij
∗ and then

vij = v
ij
∗ = vij,∗, which means that vij is continuous. Next, if (v̂ij)(i,j)∈Γ1×Γ2 is another solution of (2.1) in the

class Πg, then it is also continuous and by the Comparison Theorem 4.2 we have vij ≤ v̂ij and vij ≥ v̂ij . Hence,

vij = v̂ij , (i, j) ∈ Γ1 × Γ2, i.e., uniqueness of the solution of (2.1).

5 Viscosity solution of the system (2.1)

In this section we prove that the family (v̄ij)i,j constructed in Section 3 provides the unique continuous solution

in viscosity sense of the system (2.1). For sake of clarity, the proof is divided into several steps.

Proposition 5.1. The family (v̄ij)(i,j)∈Γ1×Γ2 is a viscosity subsolution of the system (2.1).

Proof. First recall that for each (i, j) ∈ Γ1 × Γ2, v̄ij is usc, since v̄ij = limm ց vij,m, where vij,m is a

continuous function solution of the system (3.8). Thus, for any (i, j) ∈ Γ1 × Γ2, it holds that v̄ij,∗ = v̄ij . Next,

at T we have

v̄ij(T, x) = lim
m

ց vij,m(T, x) = hij(x), x ∈ R
k.

We shall now prove that, for any (t, x) in [0, T )× Rk, any ((i, j) ∈ Γ1 × Γ2 and (p, q,M) in J̄+v̄ij(t, x),

min[
(

v̄ij − L̄ij
)

(t, x),max{
(

v̄ij − Ū ij
)

(t, x),

−p− b(t, x)q − 1
2Tr(σσ

T (t, x)M)− f ij(t, x, (v̄kl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).q)}] ≤ 0,
(5.1)

with L̄ij and Ū ij defined as follows:

L̄ij(t, x) = max
k∈(Γ1)−i

(

v̄kj(t, x)− g
ik
(t, x)

)

and Ū ij(t, x) = min
l∈(Γ2)−j

(

v̄il(t, x) + ḡjl(t, x)
)

.

Now, let (i, j) ∈ Γ1 × Γ2 be fixed. Then it is equivalent to show that, either

(

v̄ij − L̄ij
)

(t, x) ≤ 0, (5.2)

or

max{
(

v̄ij − Ū ij
)

(t, x),−p− b(t, x)q −
1

2
Tr(σσT (t, x)M)− f ij(t, x, ~v(t, x), σ⊤(t, x).q)} ≤ 0. (5.3)

If (5.2) is satisfied then the subsolution property (5.1) holds. Therefore, from now on, we suppose that there

exists ǫ0 > 0 such that

v̄ij(t, x) ≥ L̄ij(t, x) + ǫ0, (5.4)

and show (5.3). Thanks to the decreasing convergence of (vij,m)m≥0 to v̄ij , (i, j) ∈ Γ1 ×Γ2, there exists m0 such

that for any m ≥ m0, we have

vij,m(t, x) ≥ Lij,m(t, x) +
ǫ0

2
. (5.5)

Next, by continuity of vij,m and Lij,m, there exists a neighborhood Om of (t, x) such that

vij,m(t′, x′) ≥ Lij,m(t′, x′) +
ǫ0

4
, (t′, x′) ∈ Om. (5.6)

Now, by Lemma 6.1 in [5] there exists a subsequence ((tk, xk))k≥0 such that

(tk, xk) →k→∞ (t, x) and v̄ij(t, x) = lim
k→∞

vij,k(tk, xk). (5.7)
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Moreover, there exists a sequence (pk, qk,Mk) ∈ J̄+
(

vij,k(tk, xk)
)

such that

lim
k→∞

(pk, qk,Mk) = (p, q,M). (5.8)

But, the subsequence ((tk, xk))k≥0 can be chosen in such a way that for any k ≥ 0, (tk, xk) ∈ Ok. Applying now

the viscosity subsolution property of vij,k (which satisfies (3.8)) at (tk, xk) and taking into account of (5.6) we

obtain

− pk − b(tk, xk)
⊤.qk −

1

2
Tr(σσ⊤(tk, xk)Mk)− f̄ ij,k(tk, xk, (v̄

pq,k(tk, xk))(p,q)∈Γ1×Γ2 , σ(tk, xk)
⊤qk) ≤ 0, (5.9)

where, once more,

f̄ ij,k(s, x, (ypq)(p,q)∈Γ1×Γ2 , z) = f ij(s, x, (ypq)(p,q)∈Γ1×Γ2 , z)− k
(

yij − min
l∈(Γ2)−j

(yil + ḡjl(s, x))
)+

.

Next, thanks to the boundedness of the sequence ((tk, xk))k≥0, the uniform polynomial growth of v̄pq,k k ≥ 0,

(by Proposition 3.2 and Corollary 1), the assumptions (H0)-(H2) on b, σ and f ij , and the convergence of

((pk, qk,Mk))k to (p, q,M), we deduce from (5.9) that

ǫk :=
(

v̄ij,k(tk, xk)− min
l∈(Γ2)−j

(

v̄il,k(tk, xk) + ḡjl(tk, xk)
)

)+ → 0, k → ∞.

But, for any fixed (t, x) and k0, the sequence (v̄il,k(t, x))k≥k0 is decreasing and then for any k ≥ k0 ≥ m0,

v̄ij,k(tk, xk) ≤ min
l 6=j

(

v̄il,k(tk, xk) + ḡjl(tk, xk)
)

+ ǫk ≤ min
l 6=j

(

v̄il,k0(tk, xk) + ḡjl(tk, xk)
)

+ ǫk.

Taking now the limit as k → +∞, in view of the continuity of v̄il,k0 , we get

lim
k

v̄ij,k(tk, xk) = v̄ij(t, x) ≤ min
j 6=l

(vil,k0 (t, x) + ḡjl(t, x)).

Finally, passing to the limit as k0 goes to +∞ to obtain

v̄ij(t, x) ≤ min
j 6=l

(v̄il(t, x) + ḡjl(t, x)) = Ū ij(t, x). (5.10)

Let us now consider a subsequence of (k), which we denote by (kl), such that for any (p, q) ∈ Γ1×Γ2, the sequence

(v̄pq,k(tkl
, xkl

))l is convergent. This subsequence exists since the functions v̄ij,kl are uniformly of polynomial

growth (by Proposition 3.2 and Corollary 1). Then, taking the limit w.r.t. l in equation (5.9), we obtain

−p− qb(t, x)− 1
2Tr(σσ

⊤(t, x)M ) ≤ liml→∞ f̄ ij,kl(tkl
, xk, (v̄

pq,kl (tkl
, xkl

))(p,q)∈Γ1×Γ2 , σ(tkl
, xkl

)⊤qkl
)

≤ liml→∞ f ij(tkl
, xk, (v̄

pq,kl(tkl
, xkl

))(p,q)∈Γ1×Γ2 , σ(tkl
, xkl

)⊤qkl
)

= f ij(t, x, (liml→∞ v̄pq,kl (tkl
, xkl

))(p,q)∈Γ1×Γ2 , σ(t, x)⊤q),

(5.11)

since f ij is continuous in (t, x, ~y, z). Now for any (p, q) ∈ Γ1 × Γ2, since v̄pq,n is continuous and v̄pq,n ≥ v̄pq,n+1,

∀n ≥ 0, it holds that

v̄pq,∗(t, x) = v̄pq(t, x) = lim
t′→t,x′→x,n→∞

v̄pq,n(t′, x′), (t, x) ∈ [0, T ]× R
k.

Therefore, for any (p, q) ∈ Γ1 × Γ2 ((p, q) 6= (i, j)), we have

v̄pq(t, x) ≥ lim
l→∞

v̄pq,kl (tkl
, xkl

) and v̄ij(t, x) = lim
l→∞

v̄ij,kl (tkl
, xkl

). (5.12)

As f ij is non-decreasing w.r.t. ykl, (k, l) ∈ Γ1 × Γ2, (k, l) 6= (i, j), we deduce from (5.11) and (5.12) that

−p− qb(t, x)− 1
2Tr(σσ

⊤(t, x)M ) ≤ f ij(t, x, (v̄pq(t, x))(p,q)∈Γ1×Γ2 , σ(t, x)⊤q). (5.13)
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Finally, under the condition (5.4), the relations (5.13), (5.10) imply that (5.3) is satisfied. Thus v̄ij is a viscosity

subsolution for














min[
(

v̄ij − Lij
)

(t, x),max{
(

v̄ij − U ij
)

(t, x),

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t, x)M )− f ij(t, x, (v̄kl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).q)}] = 0,

v̄ij(T, x) = hij(x).

Since (i, j) is arbitrary, (v̄ij)i,j∈Γ1×Γ2 is a viscosity subsolution for (2.1). This finishes the proof.

Proposition 5.2. Let m0 be fixed in N. Then, the family (v̄ij,m0 )(i,j)∈Γ1×Γ2 is a viscosity supersolution of the

system (2.1).

Proof. First and thanks to Proposition 3.2, we know that the triples ((Ȳ ij,m0 , Z̄ij,m0 , K̄ij,m0))(i,j)∈Γ1×Γ2

introduced in (3.5), solve the following system of reflected BSDEs: For every (i, j) ∈ Γ1 × Γ2,


























Ȳ ij,m0 ∈ S2,1, Z̄ij,m0 ∈ H2,d and K̄ij,m0 ∈ A2,+ ;

Ȳ ij,m0
s = hij(Xt,x

T ) +
∫ T

s
f̄ ij,m0(r,Xt,x

r , (Ȳ kl,m0
r )(k,l)∈Γ1×Γ2 , Z̄ij,m0

r )dr + K̄
ij,m0

T − K̄ij,m0
s −

∫ T

s
Z̄ij,m0
r dBr

Ȳ ij,m0
s ≥ max

k∈(Γ1)−i
{Ȳ kj,m0

s − g
ik
(s,Xt,x

s )}, s ≤ T ;

∫ T

0 (Ȳ ij,m0
s −maxk∈(Γ1)−i{Ȳ kj,m0

s − g
ik
(s,Xt,x

s )})dK̄ij,m0
s = 0

(5.14)

where, for any (i, j) ∈ Γ1 × Γ2 and (s, ~y, zij),

f̄ ij,m0(s,Xt,x
s , ~y, zij) = f i,j(s,Xt,x

s , (ykl)(k,l)∈Γ1×Γ2 , zij)−m0

(

yij − min
l∈(Γ2)−j

(yil + ḡjl(s,X
t,x
s ))

)+
.

Furthermore, it holds true that

∀(i, j) ∈ Γ1 × Γ2, ∀(t, x) ∈ [0, T ]× R
k, ∀s ∈ [t, T ], Ȳ ij,m0

s = v̄ij,m0(s,Xt,x
s ).

On the other hand, we note that Ȳ ij,m0 is the value function of a zero-sum Dynkin game (see Appendix A4),

i.e., it satisfies, for all s ≤ T

Ȳ ij;m0
s = ess supσ≥sess infτ≥sE[

∫ σ∧τ

s
f ij(r,Xt,x

r , (Ȳ ij;m0
r )(i,j)∈Γ1×Γ2 , Z̄ij;m0

r )dr+

maxk∈(Γ1)−i{Ȳ kj;m0
σ − g

ik
(σ,Xt,x

σ )}11[σ<τ ] + {Ȳ ij;m0
τ ∧minl∈(Γ2)−j{Ȳ il;m0

τ − ḡjl(τ,X
t,x
τ )}}11[τ≤σ<T ]

+hij(Xt,x
T )11[τ=σ=T ]|Fs].

(5.15)

Thus, by Theorem 3.7 in Hamadène-Hassani (2005) ([15]), it follows that v̄ij,m0 is the unique viscosity solution

for the following PDE with two obstacles.






















min[ϑ(t, x)−maxk∈(Γ1)−i{v̄kj,m0(t, x)− g
ik
(t, x)},max{ϑ(t, x)− v̄ij,m0(t, x) ∨minl∈(Γ2)−j (v̄il,m0 (t, x)− ḡjl(t, x)),

−∂tϑ(t, x) − b(t, x)⊤Dxϑ(t, x)−
1
2Tr(σσ

⊤(t, x)D2
xxϑ(t, x))−

f ij(t, x, (v̄kl,m0 (t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).Dxϑ(t, x))}] = 0 ;

ϑ(T, x) = hij(x).

Next, let (t, x) ∈ [0, T ] × Rk and (p, q,M) ∈ J̄−[v̄ij,m0 ](t, x). As v̄ij,m0 is a solution in a viscosity sense of the

previous PDE with two obstacles then it holds that

v̄ij,m0(t, x) ≥ max
k∈(Γ1)−i

{v̄kj,m0(t, x)− g
ik
(t, x)} (5.16)

and

max{v̄ij,m0(t, x)− v̄ij,m0(t, x) ∨minl∈(Γ2)−j (v̄il,m0 (t, x)− ḡjl(t, x)) ;

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t, x)M) − f ij(t, x, (v̄kl,m0 (t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).q)} ≥ 0.
(5.17)
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But, for any constants a, b ∈ R we have a− (a ∨ b) ≤ a− b and thus a− (a ∨ b) ≥ 0 ⇒ a− b ≥ 0. Therefore, we

have from (5.17),

max{v̄ij,m0(t, x)−minl∈(Γ2)−j (v̄il,m0 (t, x)− ḡjl(t, x)) ;

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t, x)M)− f ij(t, x, (v̄kl,m0 (t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).q)} ≥ 0.

Combining this inequality with (5.16) and since vij,m0(T, x) = hij(x) it follows that vij,m0 is a viscosity superso-

lution of the system






















min[ϑ(t, x) −maxk∈(Γ1)−i(v̄kj,m0(t, x) − g
ik
(t, x)) ; max{ϑ(t, x)−minl∈(Γ2)−j (v̄il,m0(t, x)− ḡjl(t, x));

−∂tϑ(t, x)− b(t, x)⊤Dxϑ(t, x) −
1
2Tr(σσ

⊤(t, x)D2
xxϑ(t, x))−

f ij(t, x, (v̄kl,m0 (t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x).Dxϑ(t, x))}] = 0,

ϑ(T, x) = hij(x).

Since (i, j) is arbitrary in Γ1 × Γ2, the system of continuous functions (vij,m0)(i,j)∈Γ1×Γ2 is a supersolution of

(2.1).

Consider now the set Um0 defined as follows.

U = {~u := (uij)(i,j)∈Γ1×Γ2 s.t. ~u is a subsolution of (2.1) and ∀ (i, j) ∈ Γ1 × Γ2, v̄i,j ≤ ui,j ≤ v̄ij,m0}.

Obviously, Um0 is not empty since it contains (v̄ij)(i,j)∈Γ1×Γ2 . Next for (t, x) ∈ [0, T ]× Rk and (i, j) ∈ Γ1 × Γ2,

let us set:
m0vij(t, x) = sup{uij(t, x), (ukl)(k,l)∈Γ1×Γ2 ∈ Um0}.

We now state the main result of this section.

Theorem 5.3. The family (m0vij)(i,j)∈Γ1×Γ2 does not depend on m0 and is the unique continuous viscosity

solution in the class Πg of the system (2.1).

Proof. We first note that for any (i, j) ∈ Γ1×Γ2, v̄ij ≤ m0vi,j ≤ v̄ij,m0 . Since v̄ij and v̄ij,m0 are of polynomial

growth, then (m0vij)(i,j)∈Γ1×Γ2 belongs to Πg.

The remaining of the proof is divided into two steps and mainly consists in adapting the Perron’s method (see

Crandall-Ishii-Lions, [5] Theorem 4.1, pp 23) to construct a viscosity solution to our general system of PDEs. To

ease notation, we denote (m0vij)(i,j)∈Γ1×Γ2 by (vij)(i,j)∈Γ1×Γ2 as no confusion is possible.

Step 1. We first show that (vij)(i,j)∈Γ1×Γ2 is a subsolution of (2.1). Indeed, it is clear that for any (t, x) ∈

[0, T ] × Rk, v̄ij(t, x) ≤ vij(t, x) ≤ v̄ij,m0(t, x). This implies that v̄ij ≤ vij,∗ ≤ v̄ij,m0 since, as pointed out

previously, v̄ij is usc and vij,m0 is continuous. Therefore, for any x ∈ Rk, we have vij,∗(T, x) = hij(x), since

v̄ij(T, x) = v̄ij,m0(T, x) = hij(x).

Next, fix (i, j) ∈ Γ1×Γ2 and let (ṽij)(i,j)∈Γ1×Γ2 be an arbitrary element of Um0 . Then, for any (t, x) ∈ [0, T )×Rk

and any (p, q,M) ∈ J̄+ṽi,j,∗(t, x) we have
{

min[
(

ṽij,∗ − Lij((ṽkl,∗)k,l)
)

(t, x),max{
(

ṽij,∗ − U ij((ṽkl,∗)k,l
)

(t, x) ,

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t, x)M)− f ij(t, x, (ṽkl,∗(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)q)}] ≤ 0.

By definition we have ṽkl ≤ vkl and then ṽkl,∗ ≤ vkl,∗ for any (k, l) ∈ Γ1×Γ2. Since the operators ~w = (wkl)k,l 7→

ṽij∗ − Li,j((wkl)k,l), ~w = (wkl)k,l 7→ ṽij∗ − U ij((wkl)k,l) are decreasing, in view of the monotonicity property

(H2) of the generator f ij , we have






min[
(

ṽij,∗ − Lij((vkl,∗)k,l)
)

(t, x) ; max{
(

ṽij,∗ − U ij((vkl,∗)k,l)
)

(t, x),

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t, x)M) − f ij(t, x, [(vkl,∗(t, x)) (k,l)∈Γ1×Γ2

(k,l)6=(i,j)

, ṽij,∗(t, x)], σ⊤(t, x)q)}] ≤ 0
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where [(vkl,∗(t, x)) (k,l)∈Γ1×Γ2

(k,l)6=(i,j)

, ṽij,∗(t, x)] is obtained from (ṽkl,∗(t, x))(k,l)∈Γ1×Γ2) by replacing ṽij,∗(t, x) with vij,∗(t, x).

This means that (t, x) ∈ [0, T )× Rk −→ ṽi,j(t, x) is a subsolution of the following equation.






min[
(

w − Lij((vkl,∗)k,l)
)

(t, x), max{
(

w − U ij((vkl,∗)k,l)
)

(t, x),

−p− b(t, x)⊤q −
1

2
Tr(σσ⊤(t, x)M)− f ij(t, x, [(vkl,∗(t, x)) (k,l)∈Γ1×Γ2

(k,l)6=(i,j)

, w], σ⊤(t, x)q)}] = 0.

Next, relying on the lower semi continuity of the function


















(t, x, w, p, q,M) ∈ [0, T ]× R
k+1+1+k × S

k 7−→ min{
(

w −maxk 6=i(v
kj,∗(t, x) − g

ik
(t, x))

)

,

max[
(

w −minl 6=j(v
il,∗(t, x) + ḡjl(t, x))

)

,−p− b(t, x)⊤q −
1

2
Tr(σσ⊤(t, x)M)

−f ij(t, x, [(vkl,∗(t, x)) (k,l)∈Γ1×Γ2

(k,l)6=(i,j)

, w], σ⊤(t, x)q)]}

and using Lemma 4.2, in Crandall et al. (1992) ([5], pp.23), related to suprema of subsolutions, combined with

the above result, it holds that vij is a subsolution of the following equation:















min[
(

w − Lij((vkl,∗)k,l)
)

(t, x), max{
(

w − U ij((vkl,∗)k,l)
)

(t, x),

−p− b(t, x)⊤q −
1

2
Tr(σσ⊤(t, x)M)− f ij(t, x, [(vkl,∗(t, x)) (k,l)∈Γ1×Γ2

(k,l)6=(i,j)

, w(t, x)], σ⊤(t, x)q)}] = 0,

vij(T, x) = hij(x).

(5.18)

Since (i, j) is arbitrary in Γ1 × Γ2, (vij)(i,j)∈Γ1×Γ2 is a subsolution of (2.1).

Step 2. In this step we use the so called Perron’s method to show that (vij)(i,j)∈Γ1×Γ2 is a viscosity supersolution

of (2.1).

Indeed, we first note for any (i, j) ∈ Γ1 × Γ2,

vij = vij∗ ≤ v̄ij∗ ≤ vij∗ ≤ v̄ij,m0
∗ = v̄ij,m0 ,

since v̄ij,m0 is continuous and vij is lsc. Therefore, for any x ∈ Rk,

vij∗ (T, x) = hij(x) (5.19)

thanks to vij(T, x) = hij(x) = v̄ij,m0(T, x). Next, assume that (vi,j)(i,j)∈Γ1×Γ2 is not a supersolution for (2.1).

Then, taking into account of (5.19) and Remark 1, there exists at least one pair (i, j) such that vi,j does not

satisfy the viscosity supersolution property: this means that for some point (t0, x0) ∈ [0, T )× Rk there exists a

triple (p, q,M) in J−(vij∗ )(t0, x0) such that
{

min[
(

v
ij
∗ − Lij((vkl∗ )(k,l)∈Γ1×Γ2)

)

(t0, x0) ; max{
(

v
ij
∗ − U ij((vkl∗ )(k,l)∈Γ1×Γ2)

)

(t0, x0),

−p− b(t0, x0)
⊤q − 1

2Tr(σσ
⊤(t0, x0)M)− f ij(t0, x0, (v

kl
∗ (t0, x0))(k,l)∈Γ1×Γ2 , σ⊤(t0, x0).q)}] < 0.

(5.20)

We now follow the same idea as in Crandall et al. (1992) ([5], pp.24). For any positive δ, γ and r, set uδ,γ and

Br as follows:

uδ,γ(t, x) = vij∗ (t0, x0) + δ + 〈q, x − x0〉+ p(t− t0) +
1

2
〈(M − 2γ)(x− x0), (x− x0)〉,

and

Br := {(t, x) ∈ [0, T ]× R
k, s.t. |t− t0|+ |x− x0| < r}.

Using (5.20) and continuity of all the data, choosing δ, γ small enough we obtain














min[
(

v
ij
∗ + δ − Lij((vkl∗ )(k,l)∈Γ1×Γ2))(t0, x0), max{

(

v
ij
∗ + δ − U ij((vkl∗ )(k,l)∈Γ1×Γ2))(t0, x0),

−p− b(t, x)⊤q − 1
2Tr(σσ

⊤(t0, x0)(M − 2γ))

−f ij(t0, x0, [(v
kl
∗ (t0, x0))(k,l) 6=(i,j) , v

ij
∗ (t0, x0) + δ], σ⊤(t0, x0)q)}] < 0.

(5.21)
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Next, let us define the function Υ as follows.

Υ(t, x) = min

{

uδ,γ(t, x)−max
k 6=i

(

vkj∗ − g
ik

)

(t, x), max{uδ,γ(t, x) −min
l 6=j

(

vil∗ + ḡjl
)

(t, x), ̟(t, x)}

}

,

where,

̟(t, x) = −p− b(t, x)⊤q −
1

2
Tr(σσ⊤(t, x)(M − 2γ))− f ij(t, x, [(vkl∗ (t, x))(k,l) 6=(i,j) , uδ,γ(t, x)], σ

⊤(t, x)q).

First we note that from (5.21), Υ(t0, x0) < 0, since uδ,γ(t0, x0) = v
ij
∗ (t0, x0) + δ. On the other hand by the

continuity of uδ,γ, Assumptions (H1)-(H2) on f ij and finally the lower semi-continuity of vkl∗ , (k, l) ∈ Γ1×Γ2, we

can easily check that the function Υ is usc. Thus, for any ε > 0, there exists η > 0 such that for any (t, x) ∈ Bη

we have Υ(t0, x0) ≥ Υ(t, x) − ǫ. Since Υ(t0, x0) < 0, then choosing ε small enough we deduce that Υ(t, x) ≤ 0

for any (t, x) ∈ Bη with an appropriate η. It follows that the function uδ,γ is a viscosity subsolution on Bη of the

following system.

min
{

̺(t, x)−maxk 6=i

(

v
kj
∗ − g

ik

)

(t, x), max{̺(t, x)−minl 6=j

(

vil∗ + ḡjl
)

(t, x),

−∂t̺(t, x) − b(t, x)⊤Dx̺(t, x)−
1
2Tr(σσ

⊤(t, x)D2
xx̺(t, x))

−f ij(t, x, [(vkl∗ (t, x))(k,l) 6=(i,j) , ̺(t, x)], σ
⊤(t, x)Dx̺(t, x))}

}

= 0.

Since, for any (k, l) ∈ Γ1 × Γ2, vkl∗ ≤ vkl,∗ and since f ij satisfies the monotonicity condition (H2), uδ,γ is also a

viscosity subsolution on Bη of the system

min
{

̺(t, x)−maxk 6=i

(

vkj,∗ − g
ik

)

(t, x); max{̺(t, x)−minl 6=j

(

vil,∗ + ḡjl
)

(t, x),

−∂t̺(t, x) − b(t, x)⊤Dx̺(t, x)−
1
2Tr(σσ

⊤(t, x)D2
xx̺(t, x))

−f ij(t, x, [(vkl,∗(t, x))(k,l) 6=(i,j) , ̺(t, x)], σ
⊤(t, x)Dx̺(t, x))}

}

= 0

(5.22)

Next, as (p, q,M) ∈ J −(vij∗ (t0, x0)) then

vij(t, x) ≥ v
ij
∗ (t, x) ≥ v

ij
∗ (t0, x0) + p(t− t0) + 〈q, x− x0〉

+ 1
2 〈M(x− x0), (x− x0)〉+ o(|t− t0|) + o(|x− x0|

2).

In view of the definition of uδ,γ and taking δ = r2

8 γ, it is easily seen that

vij(t, x) > uδ,γ(t, x),

as soon as r
2 < |x− x0| ≤ r and r small enough. We now take r ≤ η and consider the function ũij :

ũij(t, x) =

{

max(vij(t, x), uδ,γ(t, x)), if (t, x) ∈ Br,

vij(t, x), otherwise.

Then taking into account of (5.22) and using Lemma 4.2 in Crandall et al. (1992) ([5]), it follows that ũij is

a subsolution of (5.18). Next, as ũij ≥ vij and using once more the monotonicity assumption (H2) on fkl,

(k, l) ∈ Γ1 × Γ2, we get that [(vkl)(k,l) 6=(i,j), ũ
ij ] is also a subsolution of (2.1) which belongs to Πg. Thus, thanks

to the Comparison Theorem 4.2, [(vkl)(k,l) 6=(i,j), ũ
ij ] belongs also to Um0 . Finally, in view of the definition of vij∗ ,

there exists a sequence (tn, xn, v
ij(tn, xn))n≥1 that converges to (t0, x0, v

ij
∗ (t0, x0)). This implies that

lim
n
(ũij − vij)(tn, xn) =

(

uδ,γ − vij∗ )(t0, x0) = vij∗ (t0, x0) + δ − vij∗ (t0, x0) > 0.

This means that there are points (tn, xn) such that ũij(tn, xn) > vij(tn, xn). But this contradicts the definition

of vij , since [(vkl)(k,l) 6=(i,j), ũ
ij ] belongs also to Um0 . Therefore, (v

ij)(i,j)∈Γ1×Γ2 is also a supersolution for (2.1).
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Now, in view of Corollary 2, (m0vij)(i,j)∈Γ1×Γ2 is the unique continuous viscosity solution in the class Πg of (2.1).

Thus, using once more uniqueness, we deduce that (m0vij)(i,j)∈Γ1×Γ2 does not depend on m0.

As above, let us denote by (vi,j)(i,j)∈Γ1×Γ2 the family (m0vi,j)(i,j)∈Γ1×Γ2 . Here is the second main result of

the paper.

Theorem 5.4. For any (i, j) ∈ Γ1 ×Γ2, v̄ij = vij , i.e., (vij)(i,j)∈Γ1×Γ2 is continuous and is the unique viscosity

solution in the class Πg of the system (2.1).

Proof. For any (i, j) ∈ Γ1 × Γ2 and m0 ∈ N we have

v̄ij ≤ vij ≤ v̄ij,m0 .

Taking the limit as m0 → ∞ we obtain v̄ij = vij , for all (i, j) ∈ Γ1 × Γ2. Finally, Theorem 5.3 completes the

proof.

As a by-product of this result, we have the following theorem for the family (vij)(i,j)∈Γ1×Γ2 .

Theorem 5.5. The functions (vij)(i,j)∈Γ1×Γ2 are continuous, of polynomial growth and unique viscosity solution

in the class Πg of the following system of variational inequalities. For every (i, j) ∈ Γ1 × Γ2,















max
{

vij(t, x)−minl∈(Γ2)−j (vil + ḡjl)(t, x), min
{

vij(t, x) −maxk∈(Γ1)−i(vkj − g
ik
)(t, x),

−∂tv
ij(t, x)− Lvij(t, x)− f ij(t, x, (vkl(t, x))(k,l)∈Γ1×Γ2 , σ⊤(t, x)Dxv

ij(t, x))
}}

= 0

vij(T, x) = hij(x).

(5.23)

Proof. It is enough to consider (−vij)(i,j)∈Γ1×Γ2 which, in view of Theorem 5.4, is continuous, of polynomial

growth and the unique viscosity solution of the following system. For all (i, j) ∈ Γ1 × Γ2,















min
{

vij(t, x)−maxl∈(Γ2)−j (vil − ḡjl)(t, x), max
{

vij(t, x) −mink∈(Γ1)−i(vkj + g
ik
)(t, x),

−∂tv
ij(t, x) − Lvij(t, x) + f ij(t, x, (−vkl(t, x))(k,l)∈Γ1×Γ2 ,−σ⊤(t, x)Dxv

ij(t, x))
}}

= 0

vij(T, x) = −hij(x).

(5.24)

Using now the result by Barles ([2], pp. 18), we obtain that (vij)(i,j)∈Γ1×Γ2 are continuous, of polynomial growth

and unique viscosity solution in the class Πg of system (5.23), which is the desired result.

Remark 2. We do not know whether or not we have vij = v̄ij , (i, j) ∈ Γ1 × Γ2.
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[3] Bernhart, M.: Modélisation et méthodes d’évaluation de contrats gaziers: Approches par contrôle stochastique,
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6 Appendix

A1. Comparison of solutions of multi-dimensional BSDEs ([22], Theorem 1, pp.135)

Theorem 6.1. Let (Y, Z) (resp. (Ȳ , Z̄)) be the solution of the k-dimensional BSDE associated with (f :=

(fi(t, ω, y, z))i=1,k, ξ) (resp. (f̄ := (f̄i(t, ω, y, z))i=1,k, ξ̄)) where:

(i) ξ and ξ̄ are square integrable FT -random variables of Rk ;

(ii) the functions f(t, ω, y, z) and f̄(t, ω, y, z) defined on [0, T ]×Ω×Rk+k×d are Rk-valued, Lipschitz in (y, z)

uniformly in (t, ω) and the process (f(t, ω, 0, 0))t≤T (resp. (f̄(t, ω, 0, 0))t≤T ) belongs to H2,k;

(iii) for any i = 1, . . . , k, the i− th component fi (resp. f̄i) of f (resp. f̄) depends only on the i− th row of

the matrix z.

If there exists a constant C ≥ 0, such that for any y, ȳ ∈ Rk, z, z̄ ∈ Rk×d

−4
∑

i=1,k

y−i (fi(t, ω, y
+
1 + ȳ1, . . . , y

+
k + ȳk, z)− f̄i(t, ω, ȳ1, . . . , ȳk, z̄)) ≤ 2

∑

i=1,k

11[yi<0]|z − z̄|2 + C
∑

i=1,k

(y−i )
2

where y+i = max(yi, 0) and y−i = max(−yi, 0). Then for any i = 1, . . . , k, P-a.s., Y i ≤ Ȳ i.

A2. Systems of reflected BSDEs with one inter-connected barrier and their related systems of variational in-

equalities (see e.g. [17] or [19]).

Let J := {1, . . . ,m} and let us consider the following functions: for i, j ∈ J ,

fi : (t, x, y
1, . . . , ym, z) ∈ [0, T ]× Rk+m+d 7→ fi(t, x, y

1, . . . , ym, z) ∈ R ;

gij : (t, x) ∈ [0, T ]× Rk 7→ gij(t, x) ∈ R (i 6= j);

hi : x ∈ Rk 7→ hi(x) ∈ R.

We now make the following assumptions.

[Af]. For i ∈ J , fi satisfies
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(i) The function (t, x) 7→ fi(t, x, y
1, . . . , ym, z) is continuous uniformly w.r.t. (−→y , z) := (y1, . . . , ym, z).

(ii) The function fi is uniformly Lipschitz continuous with respect to (−→y , z) := (y1, . . . , ym, z), i.e., for some

C ≥ 0,

|fi(t, x, y
1, . . . , ym, z)− fi(t, x, ȳ

1, . . . , ȳm, z̄)| ≤ C(|y1 − ȳ1|+ · · ·+ |ym − ȳm|+ |z − z̄|).

(iii) The mapping (t, x) 7→ fi(t, x, 0, . . . , 0) is B([0, T ] × Rk)-measurable and of polynomial growth i.e. it

belongs to Πg;

(iv) Monotonicity. ∀i ∈ J , for any k ∈ J−i, the mapping yk ∈ R 7→ fi(t, x, y1, . . . , yk−1, yk, yk+1, . . . , ym) is

non-decreasing whenever the other components (t, x, y1, . . . , yk−1, yk+1, . . . , ym) are fixed.

[Ag]. (i) The function gij is jointly continuous in (t, x), non-negative, i.e., gij(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]×Rk and

belongs to Πg.

(ii) The no free loop property. for any (t, x) ∈ [0, T ]×Rk and for any sequence of indexes i1, . . . , ik such that

i1 = ik and card{i1, . . . , ik} = k − 1 we have

gi1i2(t, x) + gi2i3 (t, x) + · · ·+ gik−1ik(t, x) + giki1(t, x) > 0, ∀(t, x) ∈ [0, T ]× R
k.

As a convention we assume hereafter that gii(t, x) = 0 for any (t, x) ∈ [0, T ]× Rk and (i, j) ∈ Γ1 × Γ2.

[Ah1]. hi is continuous, belongs to Πg and satisfies:

∀x ∈ R, hi(x) ≥ max
j∈J−i

(hj(x)− gij((T, x)).

[Ah2]. The function hi is continuous, belongs to Πg and satisfies

∀x ∈ R, hi(x) ≥ min
j∈J−i

(hj(x) + gij((T, x)).

Then, we have

Theorem 6.2. Assume that [Ah], [Ag] and [Ah1] are fulfilled. Then, there exist m triples of processes

((Y i;t,x, Zi;t,x,Ki;t,x))i∈J that satisfy: ∀ i ∈ J ,























Y i,Ki ∈ S2, Zi ∈ H2,d, Ki non-decreasing and Ki
0 = 0;

Y i
s = hi(X

t,x
T ) +

∫ T

s
fi(r,X

t,x
r , Y 1

r , . . . , Y
m
r , Zi

r)dr +Ki
T −Ki

s −
∫ T

s
Zi
rdBr, ∀ s ≤ T

Y i
s ≥ maxj∈J−i{Y j

s − gij(s,X
t,x
s )}, ∀s ≤ T

∫ T

0
(Y i

s −maxj∈J−i{Y j
s − gij(s,X

t,x
s )})dKi

s = 0.

(6.1)

Moreover there exist m deterministic functions (vi(t, x))i∈J continuous and belonging to Πg such that:

∀s ∈ [t, T ], Y i;t,x
s = vi(s,Xt,x

s ).

Finally (vi(t, x))i∈J is the unique solution, in the sub-class of Πg of continuous functions, of the following system

of variational inequalities with inter-connected obstacles: ∀ i ∈ J



















min

{

vi(t, x)− max
j∈J−i

(−gij(t, x) + vj(t, x)),

−∂tvi(t, x) − Lvi(t, x)− fi(t, x, v
1(t, x), . . . , vm(t, x), σ⊤(t, x)Dxv

i(t, x))
}

= 0 ;

vi(T, x) = hi(x).

(6.2)
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Remark 3. In equations (6.1) and (6.2), if instead we have required an upper barrier reflection, then one would

have obtained a similar result which can be stated as follows.

Assume that [Af], [Ag] and [Ah2] are fulfilled. Then there exist m triples of processes ((Ỹ i;t,x, Z̃i;t,x, K̃i;t,x))i∈J

that satisfy, for all i ∈ J ,























Ỹ i, K̃i ∈ S2, Z̃i ∈ H2,d, K̃i non-decreasing and K̃i
0 = 0;

Ỹ i
s = hi(X

t,x
T ) +

∫ T

s
fi(r,X

t,x
r , Ỹ 1

r , . . . , Ỹ
m
r , Z̃i

r)dr − (K̃i
T − K̃i

s)−
∫ T

s
Z̃i
rdBr, t ≤ s ≤ T,

Ỹ i
s ≤ minj∈J−i{Ỹ j

s + gij(s,X
t,x
s )}, t ≤ s ≤ T,

∫ T

0 (Ỹ i
s −minj∈J−i{Ỹ j

s + gij(s,X
t,x
s )})dK̃i

s = 0.

(6.3)

Moreover, there exist m deterministic functions (ṽi(t, x))i∈J continuous and belong to Πg such that:

Ỹ i;t,x
s = ṽi(s,Xt,x

s ), s ∈ [t, T ].

Finally, (ṽi(t, x))i∈J is the unique solution, in the subclass of Πg of continuous functions, of the following system

of variational inequalities with interconnected obstacles. For all i ∈ J



















max

{

ṽi(t, x)− min
j∈J−i

(gij(t, x) + ṽj(t, x)),

−∂tṽi(t, x) − Lṽi(t, x)− fi(t, x, ṽ
1(t, x), . . . , ṽm(t, x), σ⊤(t, x)Dxṽ

i(t, x))
}

= 0 ;

ṽi(T, x) = hi(x).

(6.4)

The proof of this result is obtained straightforward from Theorem 6.2, in considering the equations satisfied by

((−Ỹ i,−Z̃i, K̃i))i∈J .

A3. Linearization procedure of Lipschitz functions. Let f be a function from R2 to R which with (x1, x2)

associates f(x1, x2) which is Lipschitz in its arguments. Then, we can write

f(x1, x2)− f(y1, y2) = f(x1, x2)− f(y1, x2) + f(y1, x2)− f(y1, y2)

= 11x1−y1 6=0
f(x1,x2)−f(y1,x2)

x1−y1
(x1 − y1) + 11x2−y2 6=0

f(y1,x2)−f(y1,y2)
x2−y2

(x2 − y2)

= a1(x1, x2, y1).(x1 − y1) + a2(x2, y1, y2).(x2 − y2)

(6.5)

where, a1 and a2 are measurable functions and bounded, i.e.,

|a1(x1, x2, y1)| ∨ |a2(x2, y1, y2)| ≤ C(f), i = 1, 2,

where, C(f) is the Lipschitz constant of f . Moreover, if f is non-decreasing with respect to x1 (resp. x1) when

x2 (resp. x1) is fixed, then ai ≥ 0, i = 1, 2.

Linearizing f consists of writing f as

f(x1, x2)− f(y1, y2) = a1(x1, x2, y1).(x1 − y1) + a2(x2, y1, y2).(x2 − y2).

A4. Representation of a penalization scheme of two barriers reflected BSDE.

For n ≥ 0 let (Y n, Zn,K+,n) be the solution of the following one barrier reflected BSDE.















(Y n, Zn,K+,n) ∈ S2,1 ×H2,d ×A+,2

Y n
t = ξ +

∫ T

t
g(s)ds− n

∫ T

t
(Y n

s − Us)
+ds+K

+,n
T −K

n,+
t −

∫ T

t
Zn
s dBs, t ≤ T ;

Y n
t ≥ Lt, 0 ≤ t ≤ T and

∫ T

0
(Y n

s − Ls)dK
+,n
s = 0

(6.6)
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where, the processes L and U belong to S2,1, (g(s))s≤T ∈ H2,1, ξ is square integrable and FT -measurable.

Moreover, we require that L ≤ U and LT ≤ ξ. Under these conditions, the solution (Y n, Zn,K+,n) exists and is

unique (see e.g. [12]). Next, for n ≥ 0 and t ≤ T , set Kn,−
t = n

∫ t

0 (Y
n
s − Us)

+ds. Then, K−,n ∈ A+,2 and
∫ T

0
(Y n

s − Y n
s ∨ Us)dK

−,n
s = 0. Therefore, the equation (6.6) can be expressed as a BSDE with two reflecting

barriers in the following manner. For all t ≤ T ,















Y n
t = ξ +

∫ T

t
g(s)ds+ (K+,n

T −K
+,n
t )− (K−,n

T −K
−,n
t )−

∫ T

t
Zn
s dBs;

Lt ≤ Y n
t ≤ Y n

t ∨ Ut,
∫ T

0 (Y n
s − Ls)dK

+,n
s =

∫ T

0 (Y n
s − Y n

s ∨ Us)dK
−,n
s = 0.

(6.7)

Thus, a result by Cvitanic and Karatzas [6] or Hamadène and Lepeltier [16] allows to represent Y n as a value

function of a Dynkin game, i.e., it holds true that for any t ≤ T ,

Y n
t = ess supσ≥tess infτ≥tE[

∫ σ∧τ

t
g(s)ds+ Lσ11[σ<τ ] + (Y n

τ ∨ Uτ )11[τ≤σ<T ] + ξ11[τ=σ=T ]|Ft]

= ess infτ≥tess supσ≥tE[
∫ σ∧τ

t
g(s)ds+ Lσ11[σ<τ ] + (Y n

τ ∨ Uτ )11[τ≤σ<T ] + ξ11[τ=σ=T ]|Ft].

where τ and σ are F -stopping times.

27


	1 Introduction
	2 Preliminaries and notation
	3 Systems of reflected BSDEs and approximation schemes of the solutions 
	4 A comparison result
	5 Viscosity solution of the system (??)
	6 Appendix

