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Abstract. In this paper, we consider textual interaction data involving two disjoint sets
of individuals/objects. An example of such data is given by the reviews on web platforms
(e.g. Amazon, TripAdvisor, etc.) where buyers comment on products/services they bought.
We develop a new generative model, the latent topic block model (LTBM), along with an
inference algorithm to simultaneously partition the elements of each set, accounting for the
textual information. The estimation of the model parameters is performed via a variational
version of the expectation maximization (EM) algorithm. A model selection criterion is formally
obtained to estimate the number of partitions. Numerical experiments on simulated data are
carried out to highlight the main features of the estimation procedure. Two real-world datasets
are finally employed to show the usefulness of the proposed approach.

1 Introduction
In all aspects of everyday life, the recent digitalization of the systems has resulted in a massive
generation of data, including text data. For instance, many e-commerce websites (such as
Amazon or TripAdvisor) ask their clients to make comments about the products/services
they bought. Similarly, major hospitals have fully numerical information systems which allow
doctors to directly record surgery reports, biopsy reports or medical prescriptions about their
patients. In these examples, the texts are the result of the interactions between individuals
of type A (doctors, customers, etc.) and type B (patients, products, etc.). Since datasets
have become larger and larger, clustering methods have been proposed as a tool to reduce the
dimension and to provide a synthetic view of the available information. Taking the example
of customers rating products, instead of focusing on the raw data, it is rather more relevant
to look for coherent groups (also known as clusters) of both customers and goods. The task
of simultaneously clustering the rows and the columns of such an array (here defined by the
interactions between individuals and objects) is known as co-clustering. When the interactions
are textual (e.g. a review), the text can provide significant information to perform a more
realistic clustering. For instance, a group of users could review the same goods but with
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different arguments. Unfortunately, a large amount of the existing co-clustering methods
do not account for the textual information. The aim of this paper is to tackle this issue
by providing a new model-based method to co-cluster both individuals and objects while
accounting for the textual content of their interactions.

1.1 Model-based co-clustering
Let us consider a binary table with M rows and P columns. A non-null entry at position (i, j)
corresponds to an observed interaction between i (individual) and j (object). If no interaction
occurred, the same entry is zero. Such table is called incidence matrix and can be used to
summarize the observed interactions between two disjoint sets of M and P actors/objects,
respectively. In the statistics and machine learning literature, methods for the co-clustering of
rows and columns of an incidence matrix can be split into two main categories: deterministic
approaches (see for instance George and Merugu, 2005; Banerjee et al., 2007; Wang and
Huang, 2017) and model-based approaches. The selection of the number of row and column
clusters (see Section 3.3) is one of the most important tasks in co-clustering analysis and
model-based approaches provide a well defined framework for model selection. Moreover,
model-based approaches are usually very flexible: accounting for groups of different sizes, the
allow to manage different types of data. These are the main reasons motivating us to adopt
the model-based point of view.

Several model-based methods for co-clustering are based on the the latent block model
(LBM, Govaert and Nadif, 2003). In its original version, LBM assumes that the rows and
the columns of the incidence matrix are clustered in hidden groups. The probability that the
entry (i, j) of the matrix is 1 only depends on the row cluster of i and the column cluster
of j. The model was extended later to deal with counting data (Govaert and Nadif, 2010),
real data (Lomet, 2012), categorical data (Keribin et al., 2015) and ordinal data (Jacques
and Biernacki, 2017). Several inference procedures have been proposed for LBM, including
likelihood based methods (Govaert and Nadif, 2008), variational inference (Keribin et al.,
2012), Bayesian inference (Keribin et al., 2012; Wyse and Friel, 2012) and greedy search
approaches (Wyse et al., 2017). A recent algorithm (knows as Largest Gaps) of Brault and
Channarond (2016) allows to perform clustering and model selection in LBM, only using the
marginals (sum of the entries in rows and columns) of the incidence matrix, thus dramatically
reducing the computational complexity of the estimation procedure. However, the algorithm
is only consistent under certain assumptions concerning the degree distributions of rows and
columns.

The contributions mentioned so far do not involve the analysis of textual data. For instance,
if the individual i reviews the object j, the standard LBM would neglect the textual content of
the review and just consider the entry (i, j) of the incidence matrix (equal to 1). However, the
textual content of the review could be the key to perform a more realistic clustering. Before
illustrating how we proceed to integrate the text analysis into a co-clustering model based
method, we pass through some of the most well known statistical models for text analysis.

1.2 Statistical models for text corpora
One of the first contributions to the statistical modeling of texts is the work of Papadimitriou
et al. (1998), based on latent semantic indexing (LSI) (Deerwester et al., 1990). LSI is known
in particular for allowing the recovery of linguistic notions such as synonymy and polysemy
from “term frequency - inverse document frequency” (tf-idf) data. Hofmann (1999) proposed
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an alternative model for LSI, called probabilistic latent semantic analysis (pLSI), which models
each word within a document using a mixture model. In pLSI, each mixture component is
modeled by a multinomial random variable and the latent groups can be viewed as “topics”.
Thus, each word is generated from a single topic and different words in a document can be
generated from different topics. However, pLSI has no model at the document level and may
suffer from overfitting. Notice that pLSI can also be viewed has an extension of the mixture
of unigrams, proposed by Nigam et al. (2000). The model which finally concentrates most
desired features was proposed by Blei et al. (2003) and is called latent Dirichlet allocation
(LDA). The LDA model has rapidly become a standard tool in statistical text analytics and
is even used in different scientific fields such has image analysis (Lazebnik et al., 2006) or
transportation research (Côme et al., 2014) for instance. The idea of LDA is that documents
are represented as random mixtures over latent topics, where each topic is characterized by a
distribution over words. LDA is therefore similar to pLSI except that the topic distribution in
LDA has a Dirichlet distribution. Several inference procedures have been proposed for LDA,
including variational inference (Blei et al., 2003; Teh et al., 2006) and Bayesian inference, via
Gibbs sampling (Phan et al., 2008). More recently Anandkumar et al. (2012); Podosinnikova
et al. (2015) introduced new inference procedures based on moment matching and tensorial
decomposition.

A limitation of LDA would be the inability to take into account possible topic correlations.
This is due to the use of the Dirichlet distribution to model the variability among the topic
proportions. To overcome this limitation, the correlated topic model (CTM) was also developed
by Blei and Lafferty (2006). From another point of view, other works extend LDA to account
for co-clustering of words and documents. In Shafiei and Milios (2006), given each document’s
specific parameter, words within a document are no longer i.i.d. They still follow a mixture
distribution over latent topics depending on the segment (paragraph) of the document. In this
way, each document is partitioned in segments that are topic homogeneous. Instead, Wang
et al. (2009) use a Bayesian framework to simultaneously cluster documents and words of a
document-term matrix, in such a way that topic proportions are no longer specific to each
document but to each cluster of documents. This approach is partially related with the one
we adopt as will we see in Section 2.3. More recently the work of Wang et al. (2009) was
generalized by Kumar et al. (2016) who introduced statistical dependence between row and
column clusters of a document-term matrix.

1.3 Contributions and organization of the paper
The present paper introduces a new model, the latent topic block model (LTBM), along with
an inference algorithm, to simultaneously cluster the rows and columns of an incidence matrix
accounting for the textual information associated with the non-null entries. In other words, a
non-null entry (i, j) in the incidence matrix corresponds to a textual interaction between i and
j, and the text is part of the generative model we introduce. Moreover, our approach aims at
estimating the topics used for the textual interactions associated with the incidence matrix,
thus allowing a deeper understanding of the co-clustering. In real data applications (Section
5), each topic (or argument) is identified by a list of most representative words. These words
are used to decrypt the topic and therefore the clusters.

We stress that our aim is to cluster the rows/columns of an incidence matrix and not those
of a document-term matrix. In this sense, (i) the approach introduced here can be seen as
an extension of LBM and (ii) the co-clustering we perform is not the same as in Wang et al.
(2009), who focus on the co-clustering of the rows and columns of a document-term matrix.
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That said, our generative model is related to LDA, as discussed in Section 2.3. Finally, our
model-based approach is related to the one introduced in Bouveyron et al. (2016) for network
analysis. However, in that paper the scope is to cluster the nodes of a graph, whereas we aim
here at co-clustering two disjoint sets of actors.

The present paper is organized as follows. Section 2 introduces the LTBM and details its
relationship with other generative models. Section 3 describes the inference procedure adopted
to estimate the model parameters. It also discusses further issues such as the initialization of
the estimation algorithm and model selection. Section 4 focuses on experiments on synthetic
data. The aim is to assess the capacity of the estimation algorithm to recover the true
partitions (and the number of groups), when they are known. Finally, in Section 5, two real-
world datasets are analysed in order to show the appeal of our methodology. The former
dataset is collected from the Amazon e-commerce system, the latter is collected from the
PubMed database.

2 The Latent Topic Block Model
In this section, we describe the latent topic block model that we introduce. The observed data
is represented by an M ×P incidence matrix A and a corpus of documents W . The observed
connections (i.e. non null entries in A) are characterized by documents. If Aij = 1, a set of
Dij documents W d

ij, d ∈ {1, . . . , Dij} is associated with the connection between i and j (e.g.
the review of i of the good j). Hence Wij := {W d

ij}d≤Dij
and W = {Wij}i≤M,j≤P .

2.1 Modeling of connections
Following LBM, we assume that the rows of A (the individuals) are grouped into Q latent row
clusters. An hidden M ×Q binary matrix Y is introduced such that the i-th row is denoted by
Yi and its entries are all zeros but one. In more details, Yiq = 1 if and only if the i-th row of
A belongs to the q-th row cluster, where q ∈ {1, . . . , Q}. The rows Y1, . . . , YM are assumed
to be independent random vectors such that

P(Yiq = 1) = ρq,

∀i ∈ {1, . . . ,M}, where ρq > 0 and ∑Q
q=1 ρq = 1. Similarly, the columns of A are grouped

into L column clusters and an hidden P ×L binary matrix is introduced such that the row Xj

is an indicator of the cluster of the j-th column of A. For all j ∈ {1, . . . , P}, we assume that

P(Xjl = 1) = δl,

where δl > 0 and ∑L
l=1 δl = 1. The label matrices Y and X are assumed to be independent.

Hence
p (Y,X|ρ, δ) = p (Y |ρ)× p (X|δ)

=
M∏
i=1

Q∏
q=1

ρYiq
q ×

P∏
j=1

L∏
l=1

δ
Xjl

l .
(1)

As in LBM, we assume that the probability of a connection between i and j only depends
on their clusters. Thus, conditionally on Y and X, Aij is assumed to be a random variable
following a Bernoulli distribution

p(Aij|XiqYjl = 1) = B(Aij; πql) := π
Aij

ql (1− πql)1−Aij , (2)
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where πql ∈ [0, 1]. We denote by π the Q × L matrix of the connections probabilities.
Conditionally on Y and X, the entries of A are then all assumed to be independent

p (A|Y,X, π) =
M∏
i=1

P∏
j=1

p(Aij|Yi, Xj, π)

=
M∏
i=1

P∏
j=1

 Q∏
q=1

L∏
l=1

(
B (Aij, πql)

)YiqXjl
 .

(3)

Finally, the complete data likelihood of the model detailed is

p(A, Y,X|π, ρ, δ) = p (A|Y,X, π) p(Y |ρ)p(X|δ). (4)

2.2 Modeling of documents
As pointed out previously, when Aij 6= 0, a sequence of Dij documents W 1

ij, . . . ,W
Dij

ij is
associated with the interaction between the i-th individual and the j-th object. In LTBM, a
document is defined as a set of words extracted from a common dictionary with V words. The
number of words in W d

ij (the d-th document sent from i to j) is Nd
ij and the n-th word in

W d
ij is denoted by W dn

ij . As in the latent Dirichlet allocation (LDA, Blei et al., 2003) model,
each word within a document follows a mixture distribution over a set of latent topics whose
number K is unknown and must be estimated. However, while in LDA the topic proportions
of words are specific to each document, in the model we propose, this proportions only depend
on the row cluster of the i-th row of A and the column cluster of the j-th column of A.

Thus, we introduce a binary random vector Zdn
ij , of length K, such that the k-th entry

Zdnk
ij is 1 if and only if W dn

ij is sampled from the k-th topic, k ∈ {1, . . . , K}, 0 otherwise.
Then, conditional on Yi and Xj, Zdn

ij follows a multinomial distribution

Zdn
ij |{YiqXjlAij = 1} ∼ M (1, θql = (θql1, . . . , θqlK)) ,

where θqlk ≥ 0 and ∑K
k=1 θqlk = 1. Moreover, conditional on Yi, Xj and θ, the random vectors

Zd1
ij , . . . , Z

Nd
ij

ij are all assumed to be independent. Therefore

p (Z|A, Y,X, θ) =
M∏
i=1

P∏
j=1

Dij∏
d=1

p
(
Zd
ij|Yi, Xj, θ

)Aij

=
M∏
i=1

P∏
j=1

Dij∏
d=1

 Q∏
q=1

L∏
l=1

p
(
Zd
ij|θql

)YiqXjl

Aij

=
M∏
i=1

P∏
j=1

Dij∏
d=1

 Q∏
q=1

L∏
l=1

Nd
ij∏

n=1

K∏
k=1

θ
Zdnk

ij

qlk


YiqXjl


Aij

,

(5)

where Zd
ij := (Z1

ij, . . . , Z
Nd

ij

ij ), Zij := {Z1
ij, . . . , Z

Dij

ij } and finally Z := {Zij}i,j. For each pair
(q, l) of row and column clusters, the model proportions θql are themselves assumed to be
independent random vectors, each one following a Dirichlet distribution

θql ∼ D(α = (α1, . . . , αK)). (6)
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Indexes Variables

i, j Row/column indicators Yi The row cluster indicator of the i-th row of A
q, l Row/column clusters Xj The column cluster indicator of the j-th column of A
k Topics Aij The entry (i, j) of the M × P incidence matrix A
n Word indicator W dn

ij The n-th word in the d-th document W d
ij

d Document indicator Zdnij The topic of W dn
ij

v Word v of the vocabulary θql The topic proportions for the pair of groups (q, l)

Numbers Parameters

Q Number of row clusters ρ Multinomial distribution parameters (Y )
L Number of column clusters δ Multinomial distribution parameters (X)
K Number of topics πql Connection probability between classes q and l
M Number of individuals/rows βk Multinomial distribution probabilities (k-th topic)
P Number of objects/columns α Dirichlet distribution parameters (θ)
Nd
ij Number of words in W d

ij

V Number of vocables in the vocabulary

Table 1: Notations in LTBM.

Given Zdn
ij , the word W dn

ij is finally assumed to be drawn from a multinomial distribution

W dn
ij |Zdnk

ij = 1 ∼M(1, βk = (βk1, . . . , βkV )), (7)

where βkv > 0 and ∑V
v=1 βkv = 1, for all k ∈ {1, . . . , K}. Henceforth, β denotes the K × V

matrix whose k-th row is βk. Notice that, unlike θ, the matrix β depends neither on the row
clusters nor on the column clusters. Moreover, note that the number K of topics is the same
for all cluster pairs. Thus, the following conditional distribution is obtained by independence

p(W |Z,A, β) =
M∏
i=1

P∏
j=1

Dij∏
d=1

p
(
W d
ij|Zd

ij, β
)Aij

=
M∏
i=1

P∏
j=1

Dij∏
d=1

Nd
ij∏

n=1
p
(
W dn
ij |Zdn

ij , β
)

Aij

=
M∏
i=1

P∏
j=1

Dij∏
d=1

Nd
ij∏

n=1

K∏
k=1

(
V∏
v=1

(βkv)W
dnv
ij

)Zdnk
ij


Aij

.

(8)

Finally, the complete-data likelihood for the textual part of the model is obtained by condi-
tioning

p(W,Z, θ|A, Y,X, β, α) = p(W |Z,A, β)p(Z|A, Y,X, θ)p(θ|α). (9)
All the notations used for the description of LTBM are given in Table 1. A graphical

representation of the model can be seen in Figure 1.

2.3 Links with related models
As pointed out previously, the sampling scheme of the documents is similar to the one of LDA,
but not identical. Indeed, assuming that Y and X are known, the joint distribution in (9) can
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θ

Zij

Wij

α

β

Yi

ρ

Xj

δ

Aij
π

Figure 1: Graphical representation of LTBM.

be written as

p (W,Z, θ|A, Y,X, β, α) = p (θ|α)
M∏
i=1

P∏
j=1

p (Wij, Zij|Yi, Xj, θ, β)Aij

= p (θ|α)
M∏
i=1

P∏
j=1

(p (Wij|Zij, β) p (Zij|Yi, Xj, θ))Aij

= p (θ|α)
M∏
i=1

P∏
j=1

p (Wij|Zij, β)
 Q∏
q=1

L∏
l=1

p (Zij|θql)YiqXjl

Aij

= p(θ|α)
M∏
i=1

P∏
j=1

Q∏
q=1

L∏
l=1

(p(Wij|Zij, β)p(Zij|θql))YiqYjlAij

≡
Q∏
q=1

L∏
l=1

p (Wql|Zql, β) p (Zql|θql) p (θql|α) ,

where Wql =: {Wij|AijYiqXjl = 1, ∀i, j} is the meta document of all the exchanged docu-
ments involving the pair of clusters (q, l). Similarly Zql =: {Zij|AijYiqXjl = 1,∀i, j} is the
set of all the topic labels in the exchanged documents involving the pair of clusters (q, l).
Therefore, the joint distribution of W and Z, can be seen from the LDA perspective: there
are Q × L independent documents with their own topic proportions. However, notice that
this analogy with LDA crucially hinges on the knowledge of Y and X. Since Y and X are
unknown, LTBM is more general than LDA and the related inference more difficult.

When K = 1 and a single topic is associated with all the connections, the text analysis
does not bring any further information and LTBM reduces to LBM. Finally, as mentioned in
Section 1.3, LTBM is related to the stochastic topic block model (STBM, Bouveyron et al.,
2016). However, while STBM characterizes textual interactions between actors/objects in the
same set, LTBM models textual interactions between two disjoint sets of actors/objects.

3 Inference
The main goal of this section is to detail a variational expectation maximization (VEM, Demp-
ster et al., 1977; Hathaway, 1986) algorithm to estimate the LTBM model parameters and to
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provide estimates of Y , X as well as Z. After having introduced the optimization procedure,
we focus our attention on the algorithm initialization (3.2) and on the model selection (3.3)
task.

3.1 Variational inference
In this section, the values of Q (number of row clusters), L (number of column clusters)
and K (number of topics) are assumed to be known. The choice of Q, L and K will be
discussed in Section 3.3. In this context, we aim at estimating the hidden labels Y,X, the
model parameters (π, ρ, δ) as well as β. In order to simplify both the exposition and the
derivation of the results, the parameter α is considered fixed and it is not part of the inference
procedure. In all the experiments in Section 4, we set α1 = · · · = αK = 1 for all pairs (q, l),
thus inducing a uniform distribution over the (K − 1)-simplex of all θql.

We focus on the following log-likelihood

log p(W,A, Y,X|π, ρ, δ, β) = log p(W |A, Y,X, β) + log p(A, Y,X|π, ρ, δ), (10)

where the second term on the right hand side of the equality is detailed in (4) and the first
one is obtained from (9), by integrating out Z and θ. We aim at maximizing the above
log-likelihood with respect to (β, ρ, δ, π) and (X, Y ). Let us consider log p(W |A, Y,X, β) at
first. Although this term is not explicitly tractable, we can take advantage of the following
variational decomposition

log p (W |A, Y,X, β) =
∫
θ

∑
Z

q (Z, θ) log p (W,Z, θ|A, Y,X, β)
q (Z, θ) dθ

−
∫
θ

∑
Z

q (Z, θ) log p (Z, θ|W,A, Y,X, β)
q (Z, θ) dθ,

(11)

where q(Z, θ) is any distribution over the pair (Z, θ). The sum inside the integral is taken
over the set of all the possible outcomes of Z. The last term on the right hand side of the
above equation is the Kullback-Leibler (KL) divergence between the approximate and the true
posterior distribution of the pair (Z, θ). The KL divergence is known to be positive and null
if and only if q(·) is equal to p(·|W,A, Y,X, β). As a consequence, the first term on the right
hand side of (11) is a lower bound for the integrated log-likelihood log p (W |A, Y,X, β). We
denote it

L(q(·)|A, Y,X, β) : =
∫
θ

∑
Z

q (Z, θ) log p (W,Z, θ|A, Y,X, β)
q (Z, θ) dθ

= EZ,θ
[
log p (W,Z, θ|A, Y,X, β)

q (Z, θ)

]
,

(12)

where the expectation is taken with respect to (Z, θ) following q(·). Since the posterior
distribution of (Z, θ) is not tractable (due to similar arguments as in Blei et al., 2003), the
following mean field variational approximation is adopted to specify q(·)

q(Z, θ) := q(θ)q(Z) = q(θ)
M∏
i=1

P∏
j=1

Dij∏
d=1

Nd
ij∏

n=1
q(Zdn

ij ), (13)

corresponding to an independence assumption over the approximate posterior distribution.
The basic idea is then to replace the log-likelihood in (11) by its lower bound

log p (W |A, Y,X, β) ≥ L(q(·)|A, Y,X, β)
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and to use a VEM algorithm (Hathaway, 1986) to maximize the right hand side of the above
inequality with respect to q(·) in (13) and β. We stress that this maximization corresponds
to minimizing the KL divergence between the approximate and true posterior distribution of
the pair (Z, θ). Thus, we can go back to (10) and notice that

log p(W,A, Y,X|π, ρ, δ, β) = log p(W |A, Y,X, β) + log p(A, Y,X|π, ρ, δ)
≥ L(q(·)|A, Y,X, β) + log p(A, Y,X|π, ρ, δ),

(14)

where the term log p(A, Y,X|π, ρ, δ) is independent from the variational approximation adopted.
The proposed estimation procedure is detailed in the following two steps:

1. Y and X being fixed, a VEM algorithm is applied to alternatively maximize the right
hand side of (14) with respect to q(·) in (13) (E-step) and the model parameters (π, ρ, δ)
and β (M-step), up to convergence.

2. The model parameters (π, ρ, δ, β) being fixed, a greedy search strategy is adopted to
maximize the right hand side of (14) with respect to Y and X. Each row (respectively
column) of A is switched from its current cluster to all the other row clusters (resp.
column cluster) and the switch leading to the highest increase of the right hand side of
(14) is finally retained.

The two steps above are iteratively repeated until convergence. The estimation algorithm
detailed alternates a variational EM step with a classification step. Hence, it is referred to as
the C-VEM algorithm. It was first used in Bouveyron et al. (2016) and it is built upon the
Classification-EM (CEM) algorithm (Celeux and Govaert, 1991). Each step of the C-VEM
algorithm is now analyzed in detail.

3.1.1 Variational EM step

In this section Y and X are fixed and we provide the updating formulas for q(Z, θ) and the
model parameters.

Maximization of L with respect to q(Z, θ). The E step of the VEM algorithm is given
by the following two propositions.

Proposition 1. The VEM update step for distribution q(Zij
n ) is given by

q(Zdn
ij ) =M(Zdn

ij ; 1, φdnij = (φdn1
ij , . . . , φdnKij )),

where

φdnkij ∝
(

V∏
v=1

β
W dnv

ij

kv

) Q∏
q=1

L∏
l=1

exp
(
ψ(γqlk)− ψ

(
K∑
k′=1

γqlk′

))YiqXjl

, ∀(n, k) (15)

where φdnkij is the approximate posterior probability of word W dn
ij being in topic k, γqlk is

defined in the following proposition and ψ(·) denotes the digamma function.

Proof. In Appendix A.1.
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Proposition 2. The VEM update step for distribution q(θ) is given by

q(θ) =
Q∏
q=1

L∏
l=1
D(θql; γql = (γql1, . . . , γqlK)),

where

γqlk = αk +
M∑
i=1

P∑
j=1

Dij∑
d=1

Nd
ij∑

n=1
AijYiqXjlφ

dnk
ij , ∀(q, l).

Proof. In Appendix A.2.

Maximization of L with respect to the model parameters. The following proposition
details the M step of the VEM algorithm providing the estimates of the model parameters
(π, ρ, δ, β). These are obtained through the maximization of the lower bound in (14) .

Proposition 3. The estimates of (β, π, ρ) and δ are given by

βkv ∝
M∑
i=1

P∑
j=1

Dij∑
d=1

Nd
ij∑

n=1
AijW

dnv
ij φdnkij , ∀(k, v) (16)

πql ∝
M∑
i=1

P∑
j=1

YiqXjlAij, ∀(q, l) (17)

ρq ∝
M∑
i=1

Yiq, ∀q, (18)

δl ∝
P∑
j=1

Xjl, ∀l. (19)

Proof. In Appendix A.4.

3.1.2 Maximization with respect to (Y,X)

The model parameters being estimated in the previous step, a greedy search strategy is now
employed to maximize the lower bound on the right hand side of the inequality in (14) with
respect to Y andX. Greedy search methods are generally used to solve combinatorial problems
that are too computationally intensive to be treated (QMLP combinations to test in our case).
However, these methods are not guaranteed to reach a global maximum (for non-convex
objective functions). One way to solve this drawback is to run the greedy search several times,
with different initializations, in order to choose the estimates leading to the highest value of
the objective function.

Let us consider Y at first and assume that an initial clustering of the rows of A in Q cluster
is provided (see Section 3.2 for more details). If the i-th row is in the q-th row cluster, the
algorithm assesses the increase/decrease in the lower bound due to switching i to the cluster
q′, for each q′ 6= q. The switch (if any) leading to the highest increase of the lower bound
is actually performed and the entire routine is iteratively applied to all the rows of A until
no further increase of the lower bound is possible. The maximization with respect to X is
performed similarly.

Note that Wyse et al. (2017) used a greedy search approach similar to the one described
above to perform inference in bipartite graphs using LBM. However, the greedy search algo-
rithm they introduced is also used to perform model selection by maximizing the complete
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data integrated log-likelihood of LBM. In our case, the number of clusters is assumed fixed
during the maximization and a row (column) of A which is alone in its own cluster cannot be
switched.

3.2 Initialization strategy
EM-like algorithms are known to be sensible to the initialization and are not guaranteed to
converge toward a global maximum. A possible strategy consists in choosing several random
initializations and finally retaining the estimate leading to the highest value of the lower bound
of the observed data log-likelihood. Alternatively, the algorithm can be initialized relying
on other (simpler) clustering algorithms (k-means, spectral clustering, etc.) hoping that the
initialization provided is not so far from the global optimum. See Biernacki et al. (2003) for
a further inspection of this point.

In our case, we need to get initial estimates of Y and X in order to perform the variational
step detailed in Section 3.1.1. When testing the C-VEM algorithm on synthetic data, in
Section 4, several initializations are compared. One of them proves to work very well and
it is now described. Henceforth, this initialization is referred to as the spectral initialization
strategy. Consider at first the label vector Y :

1. LDA is run on the whole set of documents W . We recall that each set of documents
W d
ij corresponds to a non null entry of A. Via LDA, we can estimate the main topic

discussed in each document set Wij = {W 1
ij, . . . ,W

Dij

ij }. Hence, an M × P matrix T
is obtained such that Tij = k if Aij = 1 and k is the main topic appearing in Wij. If
Aij = 0, then Tij = 0.

2. An M ×M similarity matrix S is created such that its entry (i, i′) is defined as

Si,i′ =
P∑
j=1

AijAi′j1{Tij=Ti′j},

where 1I denotes the indicator function on a set I. The above equation states that if
i and i′ have a common connection j and they share the same main topic associated
with this connection, then their similarity increases.

3. The spectral clustering algorithm can be used to produce an estimate of Y based on
the graphs Laplacians associated with S (see von Luxburg, 2007, for a detailed review
of graphs Laplacians and the spectral clustering algorithm).

An initial estimate of X can be obtained similarly and the VEM step (Section 3.1.1) can
be implemented.

3.3 Model selection
The following proposition details a model selection criterion to estimate the number Q of row
clusters, the number L of column clusters as well as the number K of topics, from the data.
Proposition 4. A ICL criterion for LTBM can be obtained

ICLLTBM = max
β
L(q(·)|A, Y,X, β)−KV − 1

2 log(QL)

+ max
π,ρ,δ

log p(A, Y,X|π, ρ, δ, Q, L)− QL

2 log(MP )− Q− 1
2 logM − L− 1

2 logP.
(20)
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Figure 2: Schematic representation of the model parameters in each setup. Each image
represents the parameters π and θ. The density of the coloured grids represents the probability
of connections. All the individuals/objects are uniformly split into the row/column clusters.
Different colors are associated with different topics.

Proof. In Appendix A.5.

This result relies on two Laplace approximations, the Stirling formula and a variational
estimation. In particular, the first term L(q(·)|A, Y,X, β) on the right hand side of the equality
is defined in (12). For a detailed description of the Laplace and Stirling approximations to
obtain ICL we recommend the original paper of Biernacki et al. (2000).

4 Experiments on synthetic data
In this section, we carry out some experiments on simulated datasets to test the estimation
strategy detailed in the previous section.

4.1 Synthetic datasets
Three different setups are considered. In each setup, an individual i connects with an object
j either with a higher probability of 30% or with a lower probability of 2%. As detailed in
Section 1.1, these probabilities only depend on the clusters of the pair (i, j). Once i and j
are connected, a document is sampled and associated with the connection. The words in each
document are extracted from three texts from BBC news. One text is about black holes in
astrophysics (A), the second is about the birth of Princess Charlotte (B) and the third one
focuses on UK politics (C). Notice that the three texts have been chosen different enough
and specific, such that they can be considered as "pure" topics. The number of words in a
document is drawn from a Poisson distribution of mean 100. The topic proportions in each
text then only depend on the clusters of the corresponding pair (i, j).

The three setups are illustrated in more details in Figure 2. For instance, the first picture
on the left hand side represents the connectivity matrix π in the first setup, where the number
of row clusters is equal to the number of column clusters (Q = L = 3). Denser colored
grids on the diagonal represent the higher connection probabilities of 30%. Two colors are
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Figure 3: LTBM is fitted on a dataset simulated according to Setup 3. The evolution of the
lower bound during the optimization process can be seen on the left. In the colored adjacency
matrix on the right, rows and columns are reorganized according to the final clustering provided
by the C-VEM algorithm.

associated with two different topics: (A) in red and (B) in blue. Notice that, relying solely
on the textual analysis, it would be impossible to distinguish the three row clusters. Similarly,
the first and the second column cluster would look as a single group.

An illustration. We now consider the third setup. An incidence matrix with M = 150
individuals and P = 120 objects is simulated according to the parametrization in Figure 2.
The C-VEM algorithm is provided with the true values of K as well as Q and L, used to
assign each row (respectively column) to its row (column) cluster. An illustration can be seen
in Figure 3. On the left hand side, we can see the lower bound at each step of the C-VEM
algorithm. The right pane of the same figure shows the reorganized adjacency matrix, in which
rows and columns are permuted according to the clustering provided by the algorithm. As it
can be seen, this matrix looks very similar (up to label switching) to the one on the right hand
side of Figure 2.

4.2 Initialization performance
The aim of the present section is to compare the clustering results provided by the C-VEM
algorithm when different initializations are adopted. The datasets we use are sampled according
to the setups illustrated in the previous section. The C-VEM algorithm is always provided with
the actual values of Q, L as well as K, and four initialization techniques are tested:

1. Random. Each row (resp. column) of the incidence matrix is randomly assigned to a
row (column) cluster.

2. k-means. The k-means algorithm is applied to the rows (resp. columns) of the incidence
matrix to estimate Y (X).

3. Spectral. The initialization strategy described in Section 3.2.

4. LBM. LBM is fitted on the incidence matrix to provide initial estimates of Y and X.
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The quality of the estimates provided by the C-VEM algorithm is assessed via the adjusted
Rand index (ARI, Rand, 1971). This index compares two partitions (for example the true Y
and its estimate Ŷ provided by C-VEM) and measures how close they are. More specifically,
the ARI takes real values in [0, 1], where a value of 1 means that the two classifications are
identical (up to label switching).

Twenty datasets are simulated for each setup. The results are illustrated in Figure 4
which also reports statistics concerning the lower bound. The LBM initialization works well in
situations where all the available information is encoded in π and the analysis of the textual
content does not bring any further insight. In Setup 1, for example, the row and column
clusters can be detected by solely looking at the interaction frequency and LBM is perfectly
able to uncover the hidden partitions. In Setup 2, the column clusters 1 and 2 would be
indistinguishable based on the interaction frequency. However, despite the LBM initialization,
C-VEM does not remain trapped into local maxima and the ARI is still good in rows and
columns. However, in Setup 3, the LBM initialization penalizes heavily the C-VEM algorithm.

Interestingly, the random initializations can lead to good results in all scenarios. However,
the variance of the clustering results remain high. Finally, we clearly see that the spectral
initialization outperforms its competitors: the ARI is 1 most of the time.

4.3 Model selection
So far, we have assumed that Q, L and K were known in advance. In this section, several
datasets are sampled according to the different setups and the C-VEM algorithm is run on
each dataset for different values of (Q,L,K). The model selection in (20) is then used to
estimate the number of clusters/topics and the aim of this section is to assess how well it
works.

For each setup, 50 independent datasets are generated. The C-VEM is run for all values
of Q, L and K ranging from 1 to 10. Table 2 reports the results of the model selection. As
it can be seen, the criterion selects the actual model most of the time and when it fails, the
number of clusters/topics is misclassified by one unit (except for one case in Setup 1).

5 Real data
In the following, in order to illustrate the appeal of the methodology outlined in this paper,
LTBM is fitted on two real datasets.

5.1 Amazon Fine Foods
This section focuses on a real dataset consisting of reviews of fine foods from Amazon. The
dataset can be freely downloaded at the following address https://snap.stanford.edu/
data/web-FineFoods.html. A time horizon of 10 years is considered, up to October 2012.
The number of reported reviews is 568,464 and in the original dataset, each row corresponds
to one review. Some additional information is reported for each review: the user/product
numerical identifiers, a summary of the review and a rating attributed to the product by the
user. The rating is expressed via an integer number spanning from 1 (very bad) to 5 (very
good). The original dataset was preprocessed as follows. To focus on the most meaningful
part of the data, we only considered the users reviewing more than 20 times and the products
being reviewed more than 50 times. Each review was preprocessed in a classical way: very
short words (less than three characters) and stop words were removed and punctuation and
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Figure 4: Four initialization techniques are compared on datasets sampled according to
Setups 1,2 and 3. Twenty datasets are sampled for each setup.
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Dataset Type: Setup 1
K = 2 K = 3

Q\L 2 3 4 5 Q\L 2 3 4 5
2 3 0 2 0 2 1 0 0 0
3 0 43 2 0 3 2 0 0 0
4 0 2 0 0 4 0 0 0 0
5 0 0 0 0 5 0 0 0 0

Dataset Type: Setup 2
K = 3 K = 4

Q\L 2 3 4 5 Q\L 2 3 4 5
2 0 47 0 0 2 0 2 0 0
3 0 1 0 0 3 0 0 0 0
4 0 0 0 0 4 0 0 0 0
5 0 0 0 0 5 0 0 0 0

Dataset Type: Setup 3
K = 3 K = 4

Q\L 2 3 4 5 Q\L 2 3 4 5
2 0 0 0 0 2 0 0 0 0
3 0 0 0 0 3 0 0 0 0
4 0 47 0 0 4 0 2 0 0
5 0 0 1 0 5 0 0 0 0

Table 2: Model selection. The numbers in bold are the actual values of the parameters Q,
L and K.

16



Reorganized incidence matrix

L (object)

Q
 (

in
di

vi
du

al
)

1

2
3
4

5

6

7

8

9
10

11

12

1 2 3 6 7 8 9 10 14

Figure 5: The Reorganized incidence matrix where nearby rows/columns belong to the same
row/column cluster (delimited by grey lines). The colors of the cells mark the main topic
used for the corresponding reviews. One colored dash marks an interaction/review between
the corresponding pair.

numbers ignored. Moreover, the vocables appearing less than 10 times in the whole corpus
were neglected. The main features of the resulting dataset are summarized in Table 3.

Number of users (M) 1644
Number of objects (P ) 1733
Number of reviews 32836
Number of vocables (V ) 11151

Table 3: Amazon fine food dataset statistics.

The C-VEM algorithm was run on the dataset for several initializations and we tested all
values of Q, L and K in a range from 1 to 20. The model selection criterion in (20) finally
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12

Words associated to each topic
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Figure 6: A list of the most representative words of each topic.

selected Q = 12 row clusters, L = 14 column clusters and K = 12 topics. The estimates
of Y and X allowed us to permute the rows and the columns of the incidence matrix of the
dataset, in such a way that nearby rows/columns belong to the same row/column cluster. The
reorganized incidence matrix can be observed in Figure 5. The grey grid (horizontal and vertical
lines) delimits the blocks estimated by the C-VEM algorithm. In the matrix, each colored dash
corresponds to one user reviewing the corresponding object. The color of each block marks
the main topic used for the reviews inside the block. A list of the most representative words
of each topic can be seen in Figure 6. So, for instance the orange block at position (1, 9) in
the reorganized incidence matrix corresponds to the reviews that the users in the row cluster
q = 1 made about the objects in the column cluster l = 9. The main topic used for such
reviews is the orange one, namely Topic 8 whose key words are "coffee", "pods", "pod", etc.
Figure 7 displays the estimated topic proportions θql for each meta document associated with
the pair (q, l). For instance, the entry (12, 11) is blue and green, meaning that reviewers in
row cluster q = 12 used Topics 2 and 4 (respectively) to review the items in column cluster
l = 11. Topic 4 is the most used. In general, the denser the colored grids inside a cell, the
higher the interaction frequency.

We now move to some (non-exhaustive) remarks about the results shown in the three
figures.

1. The buyers in the row cluster q = 2 are mainly involved in reviewing a specific brand of
cat food. Indeed, all the reviewed products in the column cluster l = 3 belong to the
same brand. The mean rating for this pair is 2.51 but the mode is 1, corresponding to
289 very bad ratings. All the negative reviews are from different reviewers and contain
the following sentence "Filler food is empty, leaves your cat always needing more".
Notice that the most representative words of Topic 12 (brown) include "cat", "food"
and "hungry". Since it is not credible that 289 different users adopt the very same
sentence, we think that they are robots or anyway a fake.

2. In a similar fashion, the buyers in the row cluster q = 6 are mainly involved in reviewing
a specific brand of tea, whose name "alvita" appears between the most representative
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Figure 7: A graphical representation of the estimated topic proportions θql for each meta-
document. The denser the colored grids, the higher the frequency of the interactions/reviews.

words of Topic 9 (light violet). The products of this brand are grouped in the column
cluster l = 4. The reviews are very positive and the most common rating is 5 (60 %
of times). In this case, distinct users provide different reviews for each product of the
brand, but strangely each reviewer gives the very same review for each product.

3. The column cluster l = 11 groups dog food items of the same brand "wellness". These
products are only reviewed by the users in the row cluster q = 12, with very positive
ratings. In this case too, the reviews for the same product are all different but the single
review of each user is spread to all products of the brand. As it can be seen in Figure 7
there are two topics involved in these reviews: Topic 2 and Topic 4. Both of them
contain the two key words "dog" and "food". Moreover, Topic 4 contains the key word
"wellness" which is the brand of the dog food. Interestingly the words "cat" appears
among the most representative words of Topic 4. This is due to the presence of some
reviews in which reviewers discuss about differences between the dogs and the cats diet.

4. The first row cluster (q = 1) consists of 277 buyers mainly reviewing the products in the
ninth column cluster (l = 9). The reviews associated with this pair of clusters are the
40% of the total number of reviews. The scores are globally positive with a mean value
of 3.88. The reviewed products are foods and beverages. The most commented three
items are an Italian style coffee drink, an energy drink and a Ginger lemon beverage
drink. Topic 8 (orange) is the main topic associated with this pair of clusters and it
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contains some key words like "coffee pods", "drink", "flavor", "taste", "like" and "fair".
Interestingly, the items in the column cluster l = 9 are plenty reviewed by the users
in row cluster q = 8. This cluster is made of 850 actors who globally behave as the
users in cluster q = 1 except for the main topic used to review goods in columns cluster
l = 9. Indeed, the main topic used for these reviews by the users in the row cluster
q = 1 is Topic 8 whereas the main topic used by the reviewers in the row cluster q = 8
is Topic 11. These two topics are quite similar. However, Topic 11 seems to be more
food oriented. For example the two key words "granola" and "popchips" are related with
two brands producing chocolate and chips, respectively. These two words are not key
words in Topic 8, which conversely has "marley" has a key word, which is a coffee brand.
Notice that, if colors were removed the row clusters 1 and 8 would be indistinguishable
and a LBM could fail to detect them both. This is an useful application of LTBM.

5. The row cluster q = 9 groups 34 users. This group is peculiar for two reasons

i) It is the only group to massively use Topic 6 (red).
ii) Its users are the main reviewers of the items in the column cluster l = 13.

All the items in the column cluster l = 13 are foods of the same brand. More precisely,
the items are packs of beef "jerky" (dried up) meat. There are 11 distinct reviews of any
single product, but each review is repeated for all the products. The reviewers in group
q = 9 also reviews the items in the column cluster l = 2. The main items that they
review are packs of almonds of the same brand, whose name is "Blue Diamond". Notice
that the three words "almond", "blue" and "diamond" appear as key words in Topic 6
(Figure 6). Globally, the reviews formulated by the users in the row cluster q = 9 are
very positive.

6. The reviewers in the row cluster q = 11 are the main users of Topic 10. The first key
words of this topic are "cheese", "potato", "kettle". Indeed, the most reviewed items
in the column cluster l = 7 are the Kettle chips (several items of the same brand).
Interestingly, the same objects are also reviewed by the users in the row cluster q = 4.
This explains why the same key words appear on top of Topic 3 in Figure 6. However,
the buyers in the row cluster q = 11 also review chocolate cookies (for instance), which
is not the case for the row cluster q = 4. Indeed, "cookies" and "chocolate" are key
words of Topic 10 but not of Topic 3.

5.2 PubMed data
This section focuses on a dataset extracted from the National Center for Biotechnology Infor-
mation (NCBI) databases, via the free search engine PubMed (https:www.ncbi.nlm.nih.
gov/pubmed/). The CRAN package RISmed (https://cran.r-project.org/package=
RISmed) was used by the statistical software R to query PubMed about the keyword “col-
orectal”, over a time horizon spanning from 2012 to 2016. As a result, we obtained a list of
scientific articles, published during the selected time horizon, about colorectal pathologies. In
order to capture the most significant information, the list of articles was pre-processed in order
to remove the authors submitting less than 10 articles and the journals publishing less than 20
times over the considered time period. Moreover, only the abstracts written in English were
taken into account. Finally, we obtained a table of 111 117 rows and 3 columns.

The data in the table previously described can be modelled via LTBM in the following way.
Each author corresponds to an individual and one journal to an object. Overall, there are
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Figure 8: The Reorganized incidence matrix where nearby rows/columns belong to the same
row/column cluster (delimited by grey lines). The colors of the cells mark the main topic used
for the corresponding article. One coloured dash marks an interaction/article involving the
corresponding pair.

Q = 4918 authors/individuals and P = 1367 objects/journals. If the i-th author published
(one or more articles) on the j-th journal, the corresponding entry (i, j) of a Q×P incidence
matrix was set to one, zero otherwise. The abstracts of the articles for the pair (i, j) were
collected into Wij and used for the textual analysis. Overall, 74 817 abstracts were analysed,
corresponding to V = 21 014 different vocables. The C-VEM algorithm for LTBM was run
on the data for several values of Q, L and K and several initialisations. Finally the algorithm
selected Q = 8 row clusters, L = 14 column clusters and K = 9 topics. The estimates
provided for Y and X were used to permute the rows and columns of the incidence matrix in
order to obtain the reorganized incidence matrix in Figure 8, whose interpretation is the same
as discussed in the previous section. Similarly, the most representative words for each topic
can be seen in Figure 9. Some remarks about these figures can be done starting from the
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Figure 9: A list of the most representative words of each topic.

topic analysis.

Topic 1. Containing some key words like "colonoscopy", "screening" and "polyps" this topic
is clearly related with prevention. Moreover it is widely correlated with the articles published
in journals belonging to the column cluster l = 10. In particular it is the main topic related
with the articles of the cluster pair (q = 6, l = 10).

Topic 4. The key words are "surgery", "resection", "postoperative" and it is related with
surgical treatment, preparation and monitoring for colorectal diseases. As in can be seen in
Figure 8, Topic 4 is mainly associated with the column cluster l = 5 which contains journals
like "Annals of surgical oncology", "Surgical endoscopy" and "Annals of surgery".

Topics 6 and 8. Topic 6 focuses on chemoterapy and other remedies for metastatic colorec-
tal cancer (mCRC). In particular, "Bevacizumab", "Folfiri" and "Folfox" are names of specific
drugs used to treat mCRC. Topic 8 also exhibits the words "chemoterapy" and "metastasis"
and seems to be very closed to Topic 6 but no specific drug name is reported and this seems
to be the main difference between the two topics. Moreover, Topic 6 is often the main topic
in the journals in column cluster l = 8 (including for instance the "British journal of cancer",
"Annals of oncology" and other American or European journals) whereas Topic 8 is central in
column cluster l = 7 ("Oncology reports", "Anticancer research" and other Asiatic journals).

Topics 5 and 9. These two topics characterize articles on fundamental biology, with exper-
iments "in vitro" on cells ("cell", "lines"). However, while Topic 5 seems to focus on signaling
pathways in cells ("signal", "activation", "growth", "proliferation", "expression"), Topic 9 is
more involved the role of mi-RNA ("mir") and some experiments are carried out on "mice". It
is interesting to observe that these two topics are mainly used by authors in row cluster q = 5
but in different journal clusters: Topic 5 in column cluster l = 2 and Topic 9 in column cluster
l = 3 (see Figures 8 and 10).
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Topic 7. This topic is certainly related with genetics, which play a crucial role in colorectal
diseases, especially the colorectal cancer (CRC). Not only the words "genes", "gene", "genetic"
appear as key words, but also "msi" and "mlh" are technical abbreviations related with gene
expressions or DNA repair. Topic 7 is central in the articles submitted by authors in row cluster
q = 1 and published in journals in column cluster l = 11 (Figure 8). However, unlike Topic 4,
is is not associated with one particular column cluster.

Distribution of topics between groups (θqr)

Object

In
di

vi
du

al
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Q=5

Q=6

Q=7
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Figure 10: A graphical representation of the estimated topic proportions θql for each meta-
document. The denser the colored grids, the higher the frequency of the interactions/published
articles.

6 Conclusion
This paper introduces a novel model-based co-clustering method to simultaneously cluster the
rows and columns of an array of textual interaction data. The peculiarity of the model that
we propose, called latent topic block model (LTBM) is the ability to account for both the
presence/absence of interactions (as in a standard LBM) and the textual content associated
with the interactions. We detailed an inference procedure to estimate the model parameters
and obtained a model selection criterion to select the number of row clusters, columns clusters
and discussed topics. Experiments on both simulated and real datasets were used to assess
the appeal of the proposed methodology. In particular, we showed that LTBM allows a fine
and improved understanding of two complex real-world datasets such as the Amazon reviews
and the PubMed scientific publications.
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A Appendix
A.1 Proof of Proposition 1
For all pairs (i, j) such that Aij = 1, the update step for q(Zdnij ) (for all n) is given by

log q(Zdnij ) = EZ\i,j,d,n,θ [log p(W |A,Z, β) + log p(Z|A, Y,X, θ)] + const

=
K∑
k=1

Zdnkij

V∑
v=1

W dnv
ij log βkv +

Q∑
q=1

L∑
l=1

YiqXjl

K∑
k=1

Zdnkij Eθql
[log θqlk] + const

=
K∑
k=1

Zdnkij

(
V∑
v=1

W dnv
ij log βkv +

Q∑
q=1

L∑
l=1

YiqXjl

(
ψ(γqlk)− ψ

(
K∑
k′=1

γqlk′

)))
+ const,

where the constant term includes everything not depending on Zdnkij and ψ(·) denotes the digamma function.
The functional form of a multinomial distribution can be recognized in the above equation. Hence

q(Zdnij ) =M(Zdnij ; 1, φdnij = (φdn1
ij , . . . , φdnKij )),

where

φdnkij ∝

(
V∏
v=1

β
Wdnv

ij

kv

)
Q∏
q=1

L∏
l=1

exp
(
ψ(γqlk)− ψ

(
K∑
k′=1

γqlk′

))YiqXjl

.

A.2 Proof of Propostion 2
The VEM update step for q(θ) can be obtained as follows

log q(θ) = EZ [log p(Z|A, Y,X, θ)] + p(θ|α) + const

=
M∑
i=1

P∑
j=1

Aij

Dij∑
d=1

Nd
ij∑

n=1

Q∑
q=1

L∑
l=1

YiqXjl

K∑
k=1

EZ [Zdnkij ] log θqlk +
Q∑
q=1

L∑
l=1

K∑
k=1

(αk − 1) log θqlk + const

=
Q∑
q=1

L∑
l=1

K∑
k=1

αk +
M∑
i=1

P∑
j=1

AijYiqXjl

Dij∑
d=1

Nd
ij∑

n=1
φdnkij − 1

 log θqlk + const,

where the constant term includes everything not depending on θ. The functional form of factorizing Dirichlet
distributions can be detected in the above equation. Therefore

q(θ) =
Q∏
q=1

L∏
l=1
D(θql; γql = (γql1, . . . , γqlK)),

where

γqlk = αk +
M∑
i=1

P∑
j=1

Dij∑
d=1

Nd
ij∑

n=1
AijYiqXjlφ

dnk
ij .
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A.3 Computing the lower bound
In this section, we compute the expectation in (12). In the following, the expectation is denoted by EZ,θ and
it is taken with respect to the probability distribution defined in (13), conditionally on A,X, Y being known.

L(q(·)|A, Y,X, β) : = EZ,θ
[
log p(W,Z, θ|A, Y,X, β)

q(Z, θ)

]
= EZ [log p(W |A,Z, β)] + EZ,θ[log p(Z|A, Y,X, θ)] + Eθ[log p(θ)]− EZ [log q(Z)]− Eθ[log q(θ)]

=
M∑
i=1

P∑
j=1

Aij

Dij∑
d=1

Nd
ij∑

n=1

K∑
k=1

φdnkij

V∑
v=1

W dnv
ij log βkv

+
M∑
i=1

P∑
j=1

Aij

Dij∑
d=1

Nd
ij∑

n=1

Q∑
q=1

L∑
l=1

YiqXjl

K∑
k=1

φdnkij

(
ψ(γqlk)− ψ

(
K∑
k′=1

γqlk′

))

+
Q∑
q=1

L∑
l=1

(
log Γ

(
K∑
k=1

αk

)
−

K∑
k=1

log Γ(αk) +
K∑
k=1

(αk − 1)
(
ψ(γqlk)− ψ

(
K∑
k′=1

γqlk′

)))

−
M∑
i=1

P∑
j=1

Aij

Dij∑
d=1

Nd
ij∑

n=1

K∑
k=1

φdnkij log φdnkij

−
Q∑
q=1

L∑
l=1

(
log Γ

(
K∑
k=1

γqlk

)
−

K∑
k=1

log Γ(γqlk) +
K∑
k=1

(γqlk − 1)
(
ψ(γqlk)− ψ

(
K∑
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γqlk′

)))
.

(21)

A.4 Proof of Proposition 3
In order to obtain the stationary point in (16), we need to maximize the lower bound in (21) with respect to
βkv. Hence, all terms in (21) depending on β are grouped in the following objective function

g(β, λ) :=
M∑
i=1

P∑
j=1

Aij

Dij∑
d=1

Nd
ij∑

n=1

K∑
k=1

φdnkij

V∑
v=1

W dnv
ij log βkv +

K∑
k=1

λk

(
V∑
v=1

βkv − 1
)
,

where K Lagrange multipliers are introduced to account for the constraint
∑V
v=1 βkv = 1. Setting the

derivative of g(·) with respect to βkv equal to zero, we immediately obtain (16).
The optimal πql in (17) can be obtained by observing that the distribution p(A|Y,X, π) in (4) is the only

one involved with π. Hence, taking the log we get

log p(A|Y,X, π) =
N∑
i=1

P∑
j=1

Q∑
q=1

L∑
l=1

YiqXjl(Aij log πql + (1−Aij) log(1− πql))

and setting the derivative with respect to πql equal to zero, we obtain (17). Equations (19) and (18) are
obtained in a very similar fashion.

A.5 Proof of Proposition 4
This section outlines the main steps needed to obtain (20). We preliminarily recall that the topic proportions
θql are assumed to be i.i.d. following a symmetric Dirichlet distribution with parameter α = 1. First of all, we
look for a BIC approximation of the following term

log p(W |A, Y,X) = log
(∫

β

p(W |β,A, Y,X)p(β)dβ
)
,

where p(W |β,A, Y,X) appeares in (11), and p(β) denotes a prior density function on β. Following the
approach adopted in Bouveyron et al. (2016) and Than and Ho (2012), the number of i.i.d. observations is
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equal to the number of meta documents (conditionally to {β,A, Y,X}). Therefore, we adopt the following
BIC criterion to approximate log p(W |A, Y,X)

log p(W |A, Y,X) ≈ max
β

p(W |β,A, Y,X)−KV − 1
2 log(QL), (22)

where the first term on the right hand side of the equality is replaced by the lower bound in (12) evaluated
at β̂ provided by (16) and K(V − 1) accounts for the number of free parameters in β. We now focus on the
LBM part of the log-likelihood

log p(A, Y,X|Q,L) = log
∫
π,ρ,δ

p(A, Y,X|π, ρ, δ,Q, L)p(π, ρ, δ)dπdρdδ,

where p(π, ρ, δ) denotes any prior distribution over (π, ρ, δ). An ICL criterion is adopted to approximate the
above log-likelihood:

log p(A, Y,X|Q,L) ≈ max
π,ρ,δ

log p(A, Y,X|π, ρ, δ,Q, L)

− QL

2 log(MP )− Q− 1
2 logM − L− 1

2 logP.
(23)

The same criterion was already introduced in the literature for model selection in binary LBM (see for instance
Keribin et al., 2012). Equation (20) follows immediately from (22) and (23).
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