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Viscosity solutions for second order integro-differential equations

without monotonicity condition: The probabilistic Approach

Said Hamadène∗ and Marie-Amelie Morlais†

January 17, 2018

Abstract

In this paper, we establish a new existence and uniqueness result of a continuous viscosity solution for

integro-partial differential equation (IPDE in short). The novelty is that we relax the so-called monotonicity

assumption on the driver which is classically assumed in the literature of viscosity solution of equation with

non local terms. Our method strongly relies on the link between IPDEs and backward stochastic differential

equations (BSDEs in short) with jumps for which we already know that the solution exists and is unique. In

the second part of the paper, we deal with the IPDE with obstacle and we obtain similar results.

AMS Classification subjects: 60H30

Keywords: Integro-differential equation ; Backward stochastic differential equation with jumps ; Viscosity

solution ; Non-local term.

1 Introduction

In this paper, our objective is to establish a new existence and uniqueness result of the solution in viscosity sense

of the following system of integro-partial differential equations: ∀i ∈ {1, . . . ,m},



































−∂tu
i(t, x)− b(t, x)⊤Dxu

i(t, x) − 1
2Tr

(

σσ⊤(t, x)D2
xxu

i(t, x)
)

−Kui(t, x)

−h(i)(t, x, (ui(t, x))i=1,m, (σ⊤Dxu
i)(t, x), Biu

i(t, x)) = 0, (t, x) ∈ [0, T ]× R
k;

ui(T, x) = gi(x), ∀ i ∈ {1, · · ·m}, m ∈ N
∗

(1.1)

where the operators Bi and Ki are defined by

Biu
i(t, x) =

∫

E
γi(t, x, e)

(

ui(t, x+ β(t, x, e)) − ui(t, x)
)

λ(de) and

Kui(t, x) =
∫

E

(

ui(t, x + β(t, x, e))− ui(t, x) − β(t, x, e)⊤Dxu
i(t, x)

)

λ(de).

(1.2)

We first note that, due to the presence of Biu
i and Kiu

i in equation (1.1), such an IPDE is called of non-local

type. IPDEs with non-local terms have been considered by several authors (see e.g. [1, 2, 3, 4, 8, 10, 12], etc. and
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the references therein). It is by now well-known that this IPDE is connected with the following multi-dimensional

backward stochastic differential equation with jumps: ∀i ∈ {1, . . . ,m},

{

dY i;t,x
s = −f (i)(s,Xt,x

s , (Y i;t,x
s )i=1,m, Zi;t,x

s , U i;t,x
s )ds+ Zi;t,x

s dBs +
∫

E
U i;t,x
s (e)µ̃(ds, de), s ≤ T ;

Y
i;t,x
T = gi(Xt,x

T )
(1.3)

where (t, x) ∈ [0, T ]×R
k, B := (Bs)s≤T is a Brownian motion, µ an independant Poisson random measure with

compensator dsλ(de) (λ is the Lévy measure of µ) and µ̃(ds, de) := µ(ds, de)− dsλ(de).

For completeness, let us recall some already known results in the IPDE literature (and also those concerning

the related BSDE with jumps). In [13], Tang-Li have shown that this BSDE with jumps (1.3) has a unique

solution while Barles et al., in [2], have made the connection between this BSDE and the IPDE (1.1). Actually

in [2], the authors have shown that if the coefficients f (i), i = 1, ...,m, have the following form:

f (i)(t, x, ~y, z, ζ) = h(i)(t, x, ~y, z,
∫

E
γi(t, x, e)ζ(e)λ(de)) (1.4)

and, mainly, if

(i) γi ≥ 0

(ii) q 7−→ h(i)(t, x, ~y, z, q), is non-decreasing ;

then the deterministic continuous functions (ui(t, x))i=1,m, defined by means of the representation of Feynman

Kac’s type of the processes (Y i;t,x)i=1,m, i.e.,

∀i = 1, . . . ,m, Y i;t,x
s = ui(s,Xt,x

s ) for s ∈ [t, T ] and then ui(t, x) := Y
i;t,x
t , (1.5)

is the unique viscosity solution of (1.1) in the class of functions of polynomial growth. The two assertions (i)-(ii)

above shall be referred later as the monotonicity conditions.

Therefore and in the first part of this paper, the main objective is to deal with IPDE (1.1) without assuming the

two points (i)-(ii) above related to the non local term and the functions h(i). Actually we show that when the

measure λ is finite, equation (1.1) has a unique solution. Our method relies mainly on the following points:

(a) the characterization of the jump part of the BSDE (1.3) ;

(b) the existence and uniqueness of a solution of (1.3) for general f (i), i = 1, . . . ,m, which are merely Lipschitz

in (y, z, ζ) and nothing more ;

(c) the existence and uniqueness result of a solution of the IPDE (1.1) in the case when h(i) does not depend

on the component ζ, which involves the jump part. This result is already obtained in [2].

Thus, our main contribution consists in proving the following result: there exists a unique viscosity solution

of the general IPDE (1.1) (uniqueness holds within the class of continuous functions with at most polynomial

growth (w.r.t. x)). Besides, the solution being given by the representation (1.5) of Feynman Kac’s type, we fill

in the gap between existence and uniqueness results for BSDE with jumps of the form (1.3) (results which are

already available for BSDEs and do not require the monotonicity conditions) and the results available in the

IPDE literature. Finally, let us mention that, due to the presence of the operator K inside the functional h in

IPDE (1.1) and since neither (i) or (ii) holds, one cannot prove, as it is usual in viscosity literature, the classical

comparison theorem. This motivates the introduction of a new definition of viscosity solution, which coincides

with the usual one when h does not depend on the jump part and which allows to apply the classical results such

as those obtained in [2].

According to the best of our knowledge and without assuming the two points (i)-(ii), such a result of existence

and uniqueness of the solution of IPDE (1.1) has not been obtained so far. We should also mention here one
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crucial point: since we assume the Lévy measure λ is bounded, the operators Biu
i are well-posed for functions

which grow as polynomials w.r.t. x at infinity. Thus we naturally introduce a new definition of viscosity solution

(for IPDES with or without obstacle). The main point is that even if our definitions are a bit different from the

ones given in [2, 8, 10], etc., but one can show that they coincide if (i)-(ii) above are satisfied. As a consequence,

our study naturally extends the already known results in the IPDE literature.

In the second part of this paper, we consider the following IPDE with obstacle (m = 1):















min
{

u(t, x)− ℓ(t, x);−∂tu(t, x)− b(t, x)⊤Dxu(t, x)−
1
2Tr

(

σσ⊤(t, x)D2
xxu(t, x)

)

−Ku(t, x)− h(t, x, u(t, x), (σ⊤Dxu)(t, x), Bu(t, x))
}

= 0, (t, x) ∈ [0, T ]× R
k;

u(T, x) = g(x)

(1.6)

where the operators Bu and Ku are defined similarly as in (1.2) (just take m = 1). Once again, this IPDE with

obstacle (1.6) is connected with the following reflected BSDE with jumps:














dY t,x
s = −f(s,Xt,x

s , Y t,x
s , Zt,x

s , U t,x
s )ds− dKt,x

s + Zt,x
s dBs +

∫

E
U t,x
s (e)µ̃(ds, de), s ≤ T ;

Y t,x
s ≥ ℓ(s,Xt,x

s ), s ≤ T and
∫ T

0 (Y t,x
s − ℓ(s,Xt,x

s ))dKt,x
s = 0;

Y
t,x
T = g(Xt,x

T )

(1.7)

for which Hamadène-Ouknine [9] provide a unique solution for general generators f by means of a fixed point

theorem. The related IPDE is considered in several papers amongst one can quote ([8, 10], etc.). However in

those papers the conditions (i)-(ii) above on γ1 and h are assumed. Therefore our second main objective is to deal

with the IPDE with obstacle (1.6) for general functions h and γ which do not satisfy (i)-(ii). Indeed, similarly to

the framework without obstacle, by using reflected BSDEs with jumps, we show that equation (1.6) has a unique

solution when the Lévy measure λ is bounded. This solution is also obtained with the help of the representation

of Feynman Kac’s formula of the unique solution of (1.7).

The outline of the paper is as follows: in the following second section, we provide all the necessary notations,

assumptions and preliminary results concerning the study of general IPDEs (1.1) and related BSDEs with jumps

as well. In the third and fourth sections, we proceed with the two main results of the paper: (i) we first provide

the main theoretical result of the paper, i.e. the existence and uniqueness of the solution of the general non linear

IPDE ; (ii) we generalize the result of the first part to IPDEs with obstacle. For completeness, usual definitions

for viscosity solutions for both a non linear IPDE with and without obtacle are provided in an Appendix.

2 Preliminary results on BSDEs with jumps and their associated

IPDEs

For sake of clarity, let us give the framework of our study as well as some notations which shall be used throughout

the paper. In particular, we shall deeply rely on the relationship between the viscosity solution of some IPDEs

and the solution of the related BSDE with jumps. Therefore and for sake of completeness, we need to introduce

the stochastic framework and then give the connection with the integro-partial differential equation we shall study.

Let (Ω,F , (Ft)t≤T ,P) be a stochastic basis such that F0 contains all P-null sets of F , and Ft = Ft+ :=
⋂

ε>0 Ft+ε, t ≥ 0, and we suppose that the filtration is generated by the two mutually independant processes:

(i) B := (Bt)t≥0 a d-dimensional Brownian motion and

(ii) a Poisson random measure µ on R
+ × E, where E := R

ℓ − {0} is equipped with its Borel field E (ℓ ≥ 1).

The compensator ν(dt, de) = dtλ(de) is such that {µ̃([0, t] × A) = (µ − ν)([0, t] × A)}t≥0 is a martingale for all

3



A ∈ E and satisfies λ(A) < ∞. We also assume that λ is σ-finite measure on (E, E) which integrates the function

(1 ∧ |e|2)e∈E .

Next we denote by:

(iii) P (resp. P) the field on [0, T ]× Ω of (Ft)t≤T -progressively measurable (resp. predictable) sets ;

(iv) L2(λ) the space of Borel measurable functions ϕ := (ϕ(e))e∈E from E into R such that ‖ϕ‖2L2(λ) :=
∫

E
|ϕ(e)|2λ(de) < ∞ ;

(v) S2(Rℓ) (ℓ ∈ N
∗) the space of RCLL (for right continuous with left limits) P-measurable and R

ℓ-valued

processes such that E
(

sups≤T |Ys|
2
)

< ∞ ; A2
c is its subspace of continuous non-decreasing processes (Kt)t≤T

such that K0 = 0 ;

(vi)H2(Rℓ×d) the space of processes Z := (Zs)s≤T which are P-measurable, Rℓ×d-valued and satisfying E[
∫ T

0
|Zs|

2ds] <

∞ ;

(vii) H2(L2(λ)) the space of processes U := (Us)s≤T which are P-measurable, L2(λ)-valued and satisfying

E[
∫ T

0 ‖Us(ω)‖
2
L2(λ)ds] < ∞ ;

(viii) Πg the set of deterministic functions ̟: (t, x) ∈ [0, T ]× R
k 7→ ̟(t, x) ∈ R of polynomial growth, i.e., for

which there exists two constants C and p such that for any (t, x) ∈ [0, T ]× R
k,

|̟(t, x)| ≤ C(1 + |x|p).

The subspace of Πg of continuous functions will be denoted by Πc
g ;

(ix) For any process θ := (θs)s≤T and t ∈ (0, T ], θt− = limsրt θs and ∆tθ = θt − θt−.

Now let b and σ be the following functions:

b : (t, x) ∈ [0, T ]× R
k → b(t, x) ∈ R

k

σ : (t, x) ∈ [0, T ]× R
k → σ(t, x) ∈ R

k×d.

We assume that they are jointly continuous in (t, x) and Lipschitz continuous w.r.t. x uniformly in t, i.e., there

exists a constant C such that

∀ (t, x, x′) ∈ [0, T ]× R
k+k, |b(t, x)− b(t, x′|+ |σ(t, x) − σ(t, x′)| ≤ C|x − x′|. (2.1)

Since b and σ are jointly continuous then by (2.1), we easily deduce that they are of linear growth, i.e., there

exists a constant C such that

∀ (t, x) ∈ [0, T ]× R
d |b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|). (2.2)

Let β : (t, x, e) ∈ [0, T ]×R
k ×E → β(t, x, e) ∈ R

k be a measurable function such that for some real constant

C, and for all e ∈ E,

(i) |β(t, x, e)| ≤ C(1 ∧ |e|);

(ii) |β(t, x, e) − β(t, x′, e)| ≤ C|x − x′|(1 ∧ |e|);

(iii) the mapping (t, x) ∈ [0, T ]× R
k → β(t, x, e) ∈ R

k is continuous uniformly w.r.t. e.

(2.3)

Next let (t, x) ∈ [0, T ] × R
k and (Xt,x

s )s≤T be the stochastic process solution of the following standard

stochastic differential equation of diffusion-jump type:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dBr +
∫ s

t

∫

E
β(r,Xt,x

r− , e)µ̃(dr, de), for s ∈ [t, T ] and Xt,x
s = x if s ≤ t.

(2.4)
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Under assumptions (2.1), (2.2) and (2.3) the solution of equation (2.4) exists and is unique (see [11] for more

details). Moreover it satisfies the following estimates: ∀p ≥ 2, x, x′ ∈ R
k and s ≥ t,

E[ sup
r∈[t,s]

|Xt,x
r − x|p] ≤ Mp(s− t)(1 + |x|p)] and E[ sup

r∈[t,s]

|Xt,x
r −Xt,x′

r − (x− x′)|p] ≤ Mp(s− t)|x− x′|p (2.5)

for some constant Mp.

Once for all and throughout this paper, we assume that (2.1), (2.2) and (2.3) are satisfied.

Let us now consider the followingm-dimensional backward stochastic differential equation with jumps ((t, x) ∈

[0, T ]× R
k):














~Y t,x := (Y i;t,x)i=1,m ∈ S2(Rm), Zt,x ∈ H2(Rm×d), U t,x := (U i;t,x)i=1,m ∈ (H2(L2(λ))m;

∀i ∈ {1, . . . ,m}, Y i
T = gi(Xt,x

T ) and ∀s ≤ T,

dY i;t,x
s = −f (i)(s,Xt,x

s , ~Y t,x
s , Zi;t,x

s , U i;t,x
s )ds− Zi;t,x

s dBs −
∫

E
U i;t,x
s (e)µ̃(ds, de).

(2.6)

where for any i ∈ {1, . . . ,m},

(i) f (i) is a deterministic measurable function from [0, T ]× R
k+m+m×d × L2(λ) into R ;

(ii) Zi;t,x
s is the i-th row of Zt,x

s and U i;t,x
s is the i-th component of U t,x

s ;

(iii) gi are Borel measurable deterministic functions from R
k to R.

We now consider the following assumptions:

(H1): For any i ∈ {1, . . . ,m},

(i) f (i) is Lipschitz in (y, z, u) uniformly in (t, x), i.e., there exists a real constant C such that for any

(t, x) ∈ [0, T ]× R
k, (y, p, ζ) and (y′, p′, ζ′) elements of Rm+d × L2(λ),

|f (i)(t, x, y, p, ζ)− f (i)(t, x, y′, p′, ζ′)| ≤ C(|y − y′|+ |p− p′|+ ‖ζ − ζ′‖L2(λ)). (2.7)

(ii) the functions f (i)(t, x, 0, 0) and gi are of polynomial growth, i.e., belong to Πg.

(H2): For any i ∈ {1, . . . ,m}:

(i) the functions gi are continuous ;

(ii) the mapping (t, x) ∈ [0, T ]× R
k 7−→ f (i)(t, x, ~y, z, ζ) ∈ R is continuous uniformly w.r.t. (~y, z, ζ).

BSDEs with jumps have been already considered by Li-Tang in [13] where they have provided the following

result related to existence and uniqueness of the solution of (2.6) (see also the paper by Barles et al. [2]).

Proposition 2.1. (Tang-Li, [13]): Assume that Assumption (H1) is fulfilled. Then for any (t, x) ∈ [0, T ]× R
k,

the BSDE (2.6) has a unique solution (~Y t,x, Zt,x, U t,x).

Next let us consider the following structure condition on the functions (f (i))i=1,m.

(H3): For any i ∈ {1, . . . ,m}, there exists a Borel measurable deterministic function h(i) from [0, T ]×R
k+m+d+1

into R such that:

f (i)(t, x, ~y, z, ζ) = h(i)(t, x, ~y, z,
∫

E
ζ(e)γi(t, x, e)λ(de)) (2.8)

where for i = 1, . . . ,m, γi is Borel measurable and verifies: ∀(t, x, x′) ∈ [0, T ]× R
k+k and e ∈ E, there exists a

constant C ≥ 0,

(i) |γi(t, x, e)| ≤ C(1 ∧ |e|)

(ii) |γi(t, x, e)− γi(t, x
′, e)| ≤ C(1 ∧ |e|)|x− x′|

(iii) the mapping t ∈ [0, T ] 7−→ γ(t, x, e)is continuous uniformly w.r.t. (x, e).

(2.9)
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We then have the following result whose proof is given in Barles et al. ([2], Proposition 2.5 and Theorems

3.4, 3.5):

Proposition 2.2. ([2]): Assume that (H1), (H2) and (H3) are fulfilled. Then there exist deterministic continuous

functions (ui(t, x))i=1,m which belong to Πg such that for any (t, x) ∈ [0, T ]×R
k, the solution of the BSDE (2.6)

verifies:

∀i ∈ {1, . . . ,m}, ∀s ∈ [t, T ], Y i;t,x
s = ui(s,Xt,x

s ). (2.10)

(c) Moreover if for any i ∈ {1, . . . ,m},

(c-i) γi ≥ 0 ;

(c-ii) for any fixed (t, x, ~y, z) ∈ [0, T ]×R
k+m+d, the mapping q ∈ R 7−→ h(i)(t, x, ~y, z, q) ∈ R is non-decreasing;

then (ui)i=1,m is a continuous viscosity solution (in Barles et al.’s sense, see Definition 4.1 in Appendix) of the

following system of IPDEs: ∀i ∈ {1, . . . ,m},















−∂tu
i(t, x)− b(t, x)⊤Dxu

i(t, x)− 1
2Tr

(

σσ⊤(t, x)D2
xxu

i(t, x)
)

−Kui(t, x)

−h(i)(t, x, (ui(t, x))i=1,m, (σ⊤Dxu
i)(t, x), Biu

i(t, x)) = 0, (t, x) ∈ [0, T ]× R
k;

ui(T, x) = gi(x)

(2.11)

where
Biu

i(t, x) =
∫

E
γi(t, x, e){u

i(t, x+ β(t, x, e))− ui(t, x)}λ(de) and

Kui(t, x) =
∫

E
{ui(t, x + β(t, x, e))− ui(t, x) − β(t, x, e)⊤Dxu

i(t, x)}λ(de).

(2.12)

Finally, the solution (ui(t, x))i=1,m is unique in the class of continuous functions of Πg.

Remark 2.1. By (2.10), for any i ∈ {1, . . . ,m} and (t, x) ∈ [0, T ]× R
k,

ui(t, x) := Y
i;t,x
t . (2.13)

3 The first main result: Existence and uniqueness of the solution for

system of IPDEs

To begin with, we are going to deal with the link between the stochastic process U i;t,x of the BSDE (2.6) and

the function ui defined in (2.13). For that, we need to assume additionally the following hypothesis on the Lévy

measure λ.

(H4): The measure λ is finite, i.e., λ(E) < ∞.

Proposition 3.1. Assume that (H1)-(H4) are fulfilled. Then for any i = 1, . . . ,m,

U i;t,x
s (e) = ui(s,Xt,x

s− + β(s,Xt,x
s− , e))− ui(s,Xt,x

s− ), ds⊗ dP⊗ dλ on [t, T ]× Ω× E. (3.1)

Proof. Let i be fixed. First note that since ui belongs to Πg and β is bounded then by (H4) we have

E[

∫ T

0

∫

E

{|U i;t,x
s (e)|2 + |ui(s,Xt,x

s− + β(s,Xt,x
s− , e)− ui(s,Xt,x

s− )|2}λ(de)ds] < ∞

and hence, due to the finiteness of λ, one has

E[

∫ T

0

∫

E

{|U i;t,x
s (e)|+ |ui(s,Xt,x

s− + β(s,Xt,x
s− , e)− ui(s,Xt,x

s− )|}λ(de)ds] < ∞.

6



Therefore and referring to [5], pp. 60,

∀s ∈ [t, T ],

∫ s

t

∫

E

U i;t,x
r (e)µ̃(dr, de) =

∫ s

t

∫

E

U i;t,x
r (e)µ(dr, de)−

∫ s

t

∫

E

U i;t,x
r (e)λ(de)dr.

On the other hand, since Y i;t,x satisfies the BSDE (2.6) then for any s ∈ [t, T ],

∑

t<r≤s

{Y i;t,x
r − Y

i;t,x
r− } =

∫ s

t

∫

E

U i;t,x
r (e)µ(dr, de). (3.2)

Next, for any s ∈ [t, T ], Y i;t,x
s = ui(s,Xt,x

s ) and ui is continuous then
∫ s

t

∫

E

(ui(r,Xt,x
r− + β(s,Xt,x

s− , e)− ui(r,Xt,x
r−)µ(dr, de) =

∑

t<r≤s

{Y i;t,x
r − Y

i;t,x
r− }. (3.3)

It follows that for any s ∈ [t, T ],
∫ s

t

∫

E

(ui(r,Xt,x
r− + β(r,Xt,x

r− , e))− ui(r,Xt,x
r−)− U i;t,x

r (e))µ(dr, de) = 0.

Taking now the quadratic variation of this last process and then expectation to obtain

E[

∫ T

t

dr

∫

E

|ui(r,Xt,x
r− + β(r,Xt,x

r− , e))− ui(r,Xt,x
r−)− U i;t,x

r (e)|2λ(de)] = 0

which provides the desired equality.

Remark 3.1. This characterization of U i;t,x in terms of ui which is given in (3.1) plays a prominent role in the

proof of our main result. It is obtained under the condition (H4) of finiteness of the Lévy measure λ. However

it can also be obtained under other conditions by using e.g. Malliavin calculus (see e.g. [7], pp.84). But the

use of Malliavin calculus requires stringent regularity condition on the data, therefore we do not use it as we are

interested in obtaining results for quite general IPDEs.

3.1 Existence and uniqueness of the solution of the system of IPDEs

We first give our meaning of the definition of the viscosity solution of system (1.1). It is not exactly the same as

the one of Barles et al.’s paper (see Definition 4.1 in Appendix).

For any function φ belonging to C1,2([0, T ]× R
k) and R-valued, we define LXφ by

LXφ(t, x) =
1

2
Tr[(σσ⊤)(t, x)D2

xxφ(t, x)] + b(t, x)⊤Dxφ(t, x) +Kφ(t, x), (t, x) ∈ [0, T ]× R
k,

where Kφ(t, x) is given in (2.12), and it is actually well-posed for any φ in C1,2([0, T ]× R
k).

Definition 3.2. A family of deterministic functions u = (ui)i=1,m, such that, for any i ∈ {1, . . . ,m}, the map

ui : (t, x) 7→ ui(t, x) belongs to Πc
g (spaces of continuous functions with at most polynomial growth w.r.t x), is

said to be a viscosity sub-solution (resp. super-solution) of the IPDE (1.1) if: ∀i ∈ {1, . . . ,m},

(i) ∀x ∈ R
k, ui(T, x) ≤ gi(x) (resp. ui(T, x) ≥ gi(x)) ;

(ii) For any (t, x) ∈ (0, T )×R
k and any function φ of class C1,2([0, T ]×R

k) such that (t, x) is a global maximum

(resp. minimum) point of ui − φ and (ui − φ)(t, x) = 0, one has

−∂tφ(t, x) − LXφ(t, x) − h(i)(t, x, (ui(t, x))i=1,m, σ⊤(t, x)Dxφ(t, x), Bi(u
i)(t, x)) ≤ 0,

(resp.

−∂tφ(t, x) − LXφ(t, x) − h(i)(t, x, (ui(t, x))i=1,m, σ⊤(t, x)Dxφ(t, x), Bi(u
i)(t, x)) ≥ 0.)

The family u = (ui)i=1,m is a viscosity solution of (1.1) if it is both a viscosity sub-solution and viscosity

super-solution.
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Let us now compare the two definitions 3.2 and 4.1 of viscosity solutions:

Remark 3.3.

(i) If for any i ∈ {1, . . . ,m}, the function h(i) does not depend on its last component ζ then Definitions 3.2 and

4.1 are the same.

(ii) In our Definition 3.2, we have used Biu
i instead of Biφ: indeed Biu

i is well posed since ui is in Πg, β is

bounded and λ finite while it is replaced by Biφ (φ being the smooth test function) in Barles et al.’s definition

(Definition 4.1 in Appendix). In the latter definition of Barles et al.’s this is the lack of regularity of ui which

makes that Biu
i is ill-posed.

(iii) We finally mention that this new definition is crucial in our proof of the existence result and more precisely

to prove that our candidate is a viscosity solution: more precisely and by using this new definition, we shall be

able to use classical existence results for IPDE obtained in Barles et al. [2]: the main point being that, when the

non local term is frozen, we fall in Barles et al.’s framework.

The main result of this paper is the following one:

Theorem 3.4. Under Assumptions (H1)-(H4), the family of functions (ui)i=1,m which belong to Πc
g defined in

(2.13) is a viscosity solution of (1.1). Moreover it is unique in the class Πc
g.

Proof. Let us consider the following multi-dimensional BSDE:























































~Y
t,x

:= (Yi;t,x)i=1,m ∈ S2(Rm), Zt,x ∈ H2(Rm×d), Ut,x := (Ui;t,x)i=1,m ∈ (H2(L2(λ))m;

∀i ∈ {1, . . . ,m}, Yi
T = gi(Xt,x

T ) and ∀s ≤ T,

dYi;t,x
s = −h(i)(s,Xt,x

s , ~Y
t,x

s ,Zi;t,x
s ,

∫

E
γi(s,X

t,x
s , e){ui(s,Xt,x

s + β(s,Xt,x
s , e))− ui(s,Xt,x

s )}λ(de))ds

+Zi;t,x
s dBs +

∫

E
Ui;t,x

s (e)µ̃(ds, de).

(3.4)

As, for any i = 1, ...,m, ui belongs to Πc
g, β(t, x, e) is bounded and verifies (2.3) and since λ is finite, the solution

of this equation exists and is unique by Proposition 2.1, noting that the functions gi and

(t, x, y, z) 7−→ h(i)(t, x, y, z,

∫

E

γi(t, x, e){u
i(t, x+ β(t, x, e))− ui(t, x)}λ(de))

verify Assumptions (H1). Moreover, by Proposition 2.2, there exists a family of deterministic continuous functions

of polynomial growth (ui)i=1,m such that for any (t, x) ∈ [0, T ]× R
k,

∀s ∈ [t, T ], Yi;t,x
s = ui(s,Xt,x

s ).

Next by Proposition 2.2 and Remark 3.3-(i), the family (ui)i=1,m is a viscosity solution of the following system:















−∂tu
i(t, x)− b(t, x)⊤Dxu

i(t, x)− 1
2Tr

(

σσ⊤(t, x)D2
xxu

i(t, x)
)

−Kui(t, x)

−h(i)(t, x, (ui(t, x))i=1,m, (σ⊤Dxu
i)(t, x), Biu

i(t, x)) = 0, (t, x) ∈ [0, T ]× R
k;

ui(T, x) = gi(x)

(3.5)

Note that in this system (3.5), the last component of h(i) is Biu
i(t, x) and not Biu

i(t, x).
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Next and once more, let us consider the system of BSDEs by which the family (ui)i=1,m is defined through

the Feynman Kac’s formula (2.13). Such a system of BSDEs is given by























































~Y t,x := (Y i;t,x)i=1,m ∈ S2(Rm), Zt,x ∈ H2(Rm×d), U t,x := (U i;t,x)i=1,m ∈ (H2(L2(λ))m;

∀i ∈ {1, . . . ,m}, Y i
T = gi(Xt,x

T ) and ∀s ≤ T,

dY i;t,x
s = −h(i)(s,Xt,x

s , ~Y t,x
s , Zi;t,x

s ,
∫

E
γi(s,X

t,x
s , e)U i;t,x

s (e)λ(de))ds

+Zi;t,x
s dBs +

∫

E
U i;t,x
s (e)µ̃(ds, de).

(3.6)

Since we know that, for any i in {1, · · · ,m}, ui belongs to Πc
g, therefore and due to Proposition 3.1, one has

U i;t,x
s (e) = ui(s,Xt,x

s + β(s,Xt,x
s , e))− ui(s,Xt,x

s ), ds⊗ dP⊗ dλ on [t, T ]× Ω× E.

Plugging now this relation in the first term of the right-hand side of the second equality of (3.6), one obtains,

by uniqueness of the solution of the BSDE (3.4), that for any s ∈ [t, T ] and i ∈ {1, . . . ,m}, Yi;t,x
s = Y i;t,x

s . Thus

for any i ∈ {1, . . . ,m}, ui = ui. Henceforth, the family (ui)i=1,m is a viscosity solution of (1.1) in the sense of

Definition 3.2.

Next, let us show that it is unique in the class Πc
g. So let (ūi)i=1,m be another family of Πc

g which is solution

of the system (1.1) in the sense of Definition 3.2.

Let us consider the following system of BSDEs:























































~̄Y t,x := (Ȳ i;t,x)i=1,m ∈ S2(Rm), Z̄t,x ∈ H2(Rm×d), Ū t,x := (Ū i;t,x)i=1,m ∈ (H2(L2(λ))m;

∀i ∈ {1, . . . ,m}, Ȳ i
T = gi(Xt,x

T ) and ∀s ≤ T,

dȲ i;t,x
s = −h(i)(s,Xt,x

s , ~̄Y t,x
s , Z̄i;t,x

s ,
∫

E
γi(s,X

t,x
s , e){ūi(s,Xt,x

s + β(s,Xt,x
s , e))− ūi(s,Xt,x

s )}λ(de))ds

+Z̄i;t,x
s dBs +

∫

E
Ū i;t,x
s (e)µ̃(ds, de).

(3.7)

Therefore there exists a family of deterministic continuous functions (vi)i=1,m of class Πg such that

∀s ∈ [t, T ], Ȳ i;t,x
s = vi(s,Xt,x

s ).

Additionally, by Definition 4.1 and Proposition 2.2, (vi)i=1,m is the unique solution in the subclass Πc
g of contin-

uous functions of the following system:















−∂tv
i(t, x)− b(t, x)⊤Dxv

i(t, x)− 1
2Tr

(

σσ⊤(t, x)D2
xxv

i(t, x)
)

−Kvi(t, x)

−h(i)(t, x, (vi(t, x))i=1,m, (σ⊤Dxv
i)(t, x), Biū

i(t, x)) = 0, (t, x) ∈ [0, T ]× R
k;

vi(T, x) = gi(x)

(3.8)

But, the family (ūi)i=1,m belongs to Πc
g and solves system (3.8). Therefore, by the uniqueness result of Propo-

sition 2.2 and Remark 3.3 -(i), for any i ∈ {1, . . . ,m}, one deduces that ūi = vi. On the other hand, by the

characterization of the jumps of Proposition 3.1, for any i ∈ {1, . . . ,m}, it holds

Ū i;t,x
s (e) = vi(s,Xt,x

s− + β(s,Xt,x
s− , e))− vi(s,Xt,x

s− )

= ūi(s,Xt,x
s− + β(s,Xt,x

s− , e))− ūi(s,Xt,x
s− ).
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Next by replacing in (3.7) the quantity ūi(s,Xt,x
s− + β(s,Xt,x

s− , e))− ūi(s,Xt,x
s− ) with Ū i;t,x

s (e), we deduce that

∀ i ∈ {1, . . . ,m}, Ȳ i;t,x = Y i;t,x

since the solution of the BSDE (3.7) is unique. Thus and for any i ∈ {1, . . . ,m}, ui = ūi = vi which means that

the solution of (1.1) in the sense of Definition 3.2 is unique inside the class Πc
g.

Remark 3.5. Since the Lévy measure λ is assumed to be bounded then one can relax a bit the conditions (2.3)

and (2.9) on β and (γi)i=1,m respectively.

3.2 The second main result: Generalization to IPDEs with obstacles

The previous result can be generalized to IPDEs with one (either lower or upper) obstacle. Actually assume that

m = 1 and let us denote f (1), h(1), g1 and γ1 simply by f , h, g and γ respectively. Next let us consider the

following IPDE with obctacle ℓ, which is a function of (t, x):














min
{

u(t, x)− ℓ(t, x);−∂tu(t, x)− b(t, x)⊤Dxu(t, x)−
1
2Tr

(

σσ⊤(t, x)D2
xxu(t, x)

)

−Ku(t, x)− h(t, x, u(t, x), (σ⊤Dxu)(t, x), Bu(t, x))
}

= 0, (t, x) ∈ [0, T ]× R
k;

u(T, x) = g(x)

(3.9)

where once again the operators Bu and Ku are given by:

Bu(t, x) =
∫

E
γ(t, x, e){u(t, x+ β(t, x, e)) − u(t, x)}λ(de) and

Ku(t, x) =
∫

E
{u(t, x+ β(t, x, e))− u(t, x)− β(t, x, e)⊤Dxu(t, x)}λ(de).

(3.10)

Note that under (H4) if u belongs to Πg then the operator Bu is well-posed.

The general reflected BSDE with jumps associated with IPDE with obstacle (3.9) is the following one:






























































Y t,x ∈ S2(R), Zt,x ∈ H2(Rd), U t,x ∈ H2(L2(λ)) and Kt,x ∈ A2
c ;

dY t,x
s = −f(s,Xt,x

s , Y t,x
s , Zt,x

s , U t,x
s )ds− dKt,x

s + Zt,x
s dBs +

∫

E
U t,x
s (e)µ̃(ds, de), s ≤ T ;

Y t,x
s ≥ ℓ(s,Xt,x

s ), s ≤ T and
∫ T

0 (Y t,x
s − ℓ(s,Xt,x

s ))dKt,x
s = 0;

Y
t,x
T = g(Xt,x

T )

(3.11)

where (t, x) ∈ [0, T ]× R
k is fixed.

The following result related to existence and uniqueness of a solution for this reflected BSDE with jumps

(3.11) is given in ([9], Theorem 1.2.b).

Proposition 3.2. [9] Assume that:

(i) f is Lipschitz in (y, z, ζ) ∈ R
1+d × L2(λ) uniformly w.r.t. (t, x) and the function

(t, x) ∈ [0, T ]× R
k 7−→ f(t, x, 0, 0, 0) belongs to Πg ;

(ii) g belongs to Πg and ℓ(T, x) ≥ g(x), ∀x ∈ R ;

(iii) ℓ is continuous and belongs to Πg.

Then the BSDE (3.11) has a unique solution (Y t,x, Zt,x, U t,x,Kt,x). Moreover is satisfies the following estimate:

E

[

sup
s≤T

|Y t,x
s |2+(Kt,x

T )2+

∫ T

0

{|Zt,x
s |2+‖U t,x

s ‖2L2(λ)}ds
]

≤ CE

[

|g(Xt,x
T )|2+sup

s≤T

|ℓ(s,Xt,x
s )|2+

∫ T

0

|f(s,Xt,x
s , 0, 0, 0)|2ds

]

.

(3.12)
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Our main objective is now to connect the solution of the RBSDE with jumps with the solution in viscosity

sense of IPDE with obstacle (3.9). To begin with let us precise the definition of viscosity solution we deal with.

Definition 3.6. We say that a function u(t, x) which belongs to Πc
g is a viscosity sub-solution (resp. super-

solution) of the IPDE (3.9) if:

(i) ∀x ∈ R
k, u(T, x) ≤ g(x) (resp. u(T, x) ≥ g(x)) ;

(ii) For any (t, x) ∈ (0, T )×R
k and any function φ of class C1,2([0, T ]×R

k) such that (t, x) is a global maximum

(resp. minimum) point of u− φ and (u − φ)(t, x) = 0, one has

min
{

u(t, x)− ℓ(t, x);−∂tφ(t, x) − LXφ(t, x) − h(t, x, u(t, x), σ⊤(t, x)Dxφ(t, x), Bu(t, x))
}

≤ 0,

(resp.

min
{

u(t, x)− ℓ(t, x);−∂tφ(t, x) − LXφ(t, x) − h(t, x, u(t, x), σ⊤(t, x)Dxφ(t, x), Bu(t, x))
}

≥ 0.)

The function u is a viscosity solution of (3.9) if it is both a viscosity sub-solution and viscosity super-solution.

Next let us introduce the following assumptions:

(H5)

(i) The assumptions of Proposition 3.2 are satisfied ;

(ii) the function γ(t, x, e) verifies (2.9) ;

(iii) the function h(t, x, y, z, η) such that

f(t, x, y, z, ζ) = h(t, x, y, z,
∫

E
ζ(e)γ(t, x, e)λ(de)) (3.13)

is continuous in (t, x, y, z, η) and Lipschitz in (x, y, z, η) uniformly w.r.t. t ;

(iv) the function g is continuous in x.

We then have the following result related to the solution of (3.11) which exists under (H5).

Proposition 3.3. Assume that (H4)-(H5) are fulfilled. Then there exists a continuous deteministic function u

which belongs to Πc
g such that:

∀s ∈ [t, T ], Y t,x
s = u(s,Xt,x

s ). (3.14)

and

U t,x
s (e) = u(s,Xt,x

s− + β(s,Xt,x
s− , e))− u(s,Xt,x

s− ), ds⊗ dP⊗ dλ on [t, T ]× Ω× E. (3.15)

Proof. Let Σ := H2(R)×H2(L2(λ)) and Ψ be the functional which with a pair of processes (y, v) which belongs

to Σ associates Ψ(y, v) := (Y, V ) such that (Y, Z, V,K) is the solution of the following reflected BSDE with jumps:































































Y ∈ S2(R), Z ∈ H2(Rd), V ∈ H2(L2(λ)) and K ∈ A2
c ;

dYs = −f(s,Xt,x
s , ys, Zs, vs)ds− dKs + ZsdBs +

∫

E
Vs(e)µ̃(ds, de), s ≤ T ;

Ys ≥ ℓ(s,Xt,x
s ), s ≤ T and

∫ T

0
(Ys − ℓ(s,Xt,x

s ))dKs = 0 ;

YT = g(Xt,x
T )

(3.16)
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where (t, x) ∈ [0, T ]× R
k is fixed (we have omitted the dependance in (t, x) of (Y, V ) as there is no confusion).

The solution of this equation exists thanks to ([9], Theorem 1.2.b). Next for α ∈ R, let us define the norm ‖.‖α

on Σ by:

‖(y, v)‖α :=

√

E[

∫ T

0

eαs{|ys|2 + ‖vs‖2L2(λ)}ds].

As in [9], Theorem 1.2.b, one can show that for an appropriate α0, Ψ is a contraction on (Σ, ‖.‖α0
) and thus, this

mapping has a unique fixed point (Y t,x, U t,x) which with Zt,x and Kt,x gives the unique solution of (3.11). Let

us now consider the following sequence of processes:

(Y 0, V 0) = (0, 0) and for n ≥ 1, (Y n, V n) = Ψ(Y n−1, V n−1).

Then obviously (Y n, V n)n≥0 converges in (Σ, ‖.‖α0
) to (Y t,x, U t,x). Next by an induction argument we have: for

any n ≥ 0:

(i) there exists a deterministic continuous function un : (t, x) ∈ [0, T ]× R
k 7→ un(t, x) which belongs to Πg

such that for any s ∈ [t, T ], Y n
s = un(s,Xt,x

s ) ;

(ii) un belongs to Πc
g and

V n
s (e) := un(s,Xt,x

s− + β(s,Xt,x
s− , e))− un(s,Xt,x

s− ), ds⊗ dP⊗ dλ on [t, T ]× Ω× E.

Indeed for n = 0, the properties (i), (ii) are valid. So suppose that they are satified for some n. Then

(Y n+1, Zn+1, V n+1,Kn+1) verifies: ∀s ∈ [t, T ],






















































dY n+1
s = −f(s,Xt,x

s , un(s,Xt,x
s ), Zn+1

s ,
∫

E
{un(s,Xt,x

s− + β(s,Xt,x
s− , e))− un(s,Xt,x

s− )}γ(s,Xt,x
s− , e)λ(de))ds

−dKn+1
s + Zn+1

s dBs +
∫

E
V n+1
s (e)µ̃(ds, de), ;

Y n+1
s ≥ ℓ(s,Xt,x

s ) and
∫ T

t
(Y n+1

s − ℓ(s,Xt,x
s ))dKn+1

s = 0 ;

Y n+1
T = g(Xt,x

T ).

(3.17)

Therefore the existence and continuity of un+1 are obtained in the same way as in ([8], [10]) since the generator

of Y n+1 does not depend on V n+1. Note that by (3.12) we easily deduce that un+1 belongs to Πg. Finally the

last property of (ii), i.e.,

V n+1
s (e) := un+1(s,Xt,x

s− + β(s,Xt,x
s− , e))− un+1(s,Xt,x

s− ), ds⊗ dP⊗ dλ on [t, T ]× Ω× E.

is obtained in a similar fashion as in Proposition 3.1. The proof of the induction procedure and thus of the two

claims (i) and (ii) is now complete.

It now remains to justify that the two representations (3.14) and (3.15) of both processes Y t,x and U t,x hold

at the limit (when n goes to ∞). Then and to proceed we note that the following inequality holds:

∫ T

t
(Y n+1;t,x

s − Y n+1;t,x
s )d(Kn+1;t,x

s −Kn+1;t,x
s ) ≤ 0. (3.18)

Next by Itô’s formula and (3.18) for any n,m ≥ 0 we have: ∀s ∈ [t, T ],

(Y n+1
s − Y m+1

s )2 +
∫ T

s
|Zn+1

r − Zm+1
r |2dr +

∑

s<r≤T (∆r(Y
n+1 − Y m+1

r ))2

≤
∫ T

s
(Y n+1

r − Y m+1
r )(f(r,Xt,x

r , Y n
r , Zn+1

r , V n
r )− f(r,Xt,x

r , Y m
r , Zm+1

r , V m
r ))dr

−2
∫ T

s
(Y n+1

r − Y m+1
r )(Zn+1

r − Zm+1
r )dBr − 2

∫ T

s

∫

E
{(Y n+1

r− − Y m+1
r− )(V n+1

r (e)− V m+1
r (e))µ̃(de, dr).
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Then in a classical way we obtain that

E[ sup
t≤s≤T

|Y n+1
s − Y m+1

s |2] → 0 as n,m → ∞.

Therefore, the sequence of functions (un)n≥0 converges pointwisely in [0, T ]× R
k to a deterministic function u.

Moreover for any (t, x) ∈ [0, T ]× R
k we have

∀s ∈ [t, T ], Y t,x
s = u(s,Xt,x

s ).

Finally the continuity of u is obtained in a similar way as in (([8]), pp.6) or ([10]), pp.45) and relying to the proof

of Proposition 3.1 we obtain (3.15) since λ is finite.

We now are ready to give the main result of this subsection.

Theorem 3.7. Assume that (H4), (H5) are fulfilled. Then the function u defined in (3.14) is the unique viscosity

solution of (3.9) in the class Πc
g.

Proof. : The proof is similar to the case without obstacle and based on the following facts:

(i) u is continuous and belongs to Πg ;

(ii) The solution of the BSDE (3.11) exists and is unique and is connected to u by relation (3.14);

(iii) The characterization of the jumps of Y t,x by relation (3.15) ;

(iv) The generalization of Barles et al.’s definition (from the case without obstacle) to the case with obstacle

and which is given in Appendix (Definition 4.2). This generalization coincides with our definition when the

generator h does not depend on ζ.

The details of the proof are almost the same as the ones of the proof of Theorem 3.4 therefore they are left to

the care of the reader.

4 Conclusion

In this paper, we provide a new theoretical result of existence and uniqueness for solutions of some general

class of non linear IPDEs. Especially and to our knowledge, there does not exist any study concerning viscosity

solutions of such equations without assuming the monotonicity condition on the driver (with respect to its jump

component). We note that our result deeply relies on the relationship between the solution of the non linear IPDE

and the one of the related BSDE with jumps, relation given by the Feynman-Kac’s formula. We also mention

that since our proof is based on this relationship with some explicit BSDE (or reflected BSDE) with jumps, we

obtain without additional difficulties the (existence and uniqueness) result both for the multidimensional case

and for non linear IPDEs with one obstacle (see last Section 3.2). As a consequence, this enlarges the class

of economic and financial optimizations and/or control problems we can deal with which naturally lead to the

study of partial differential equations (or system of equations). Additionnaly , this study reinforces the interest

of using probabilistic tools in order to study PDEs or system of variational inequalities related to optimization

problems. Another future application we have in mind is that this new result could be applied to obtain numerical

implementations of such IPDEs.

Appendix
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Definition 4.1. [2]: Barles et al.’s definition of a viscosity solution of (1.1).

We say that a family of deterministic functions u = (ui)i=1,m, defined on [0, T ]×R
k and R-valued and such that

for any i ∈ {1, . . . ,m}, ui is continuous, is viscosity sub-solution (resp. super-solution) of the IPDE (1.1) if, for

any i ∈ {1, . . . ,m}:

(i) ∀x ∈ R
k, ui(T, x) ≤ gi(x) (resp. ui(T, x) ≥ gi(x)) ;

(ii) For any (t, x) ∈ (0, T )× R
k and any function of class C1,2([0, T ]× R

k) such that (t, x) is a global maximum

point of ui − φ (resp. a global minimum point of ui − φ) and (ui − φ)(t, x) = 0, one has

−∂tφ(t, x) − LXφ(t, x) − h(i)(t, x, (ui(t, x))i=1,m, σ⊤(t, x)Dxφ(t, x), Bi(φ)(t, x)) ≤ 0,

(resp.

−∂tφ(t, x)− LXφ(t, x) − h(i)(t, x, (ui(t, x))i=1,m, σ⊤(t, x)Dxφ(t, x), Bi(φ)(t, x)) ≥ 0.)

The family u = (ui)i=1,m is a viscosity solution of (1.1) if it is both a viscosity sub-solution and viscosity

super-solution.

The adaptation of this definition to the case when there is an obstacle is the following (see [10] or [8]).

Definition 4.2. We say that a deterministic continuous functions u, defined on [0, T ]× R
k and R-valued, is a

viscosity sub-solution (resp. super-solution) of the IPDE (3.9) if:

(i) ∀x ∈ R
k, ui(T, x) ≤ g(x) (resp. u(T, x) ≥ g(x)) ;

(ii) For any (t, x) ∈ (0, T )× R
k and any function of class C1,2([0, T ]× R

k) such that (t, x) is a global maximum

point of ui − φ (resp. a global minimum point of u− φ) and (u− φ)(t, x) = 0, one has

min
{

u(t, x)− ℓ(t, x);−∂tφ(t, x) − LXφ(t, x) − h(t, x, u(t, x), σ⊤(t, x)Dxφ(t, x), B(φ)(t, x))
}

≤ 0,

(resp.

min
{

u(t, x)− ℓ(t, x);−∂tφ(t, x)− LXφ(t, x) − h(t, x, u(t, x), σ⊤(t, x)Dxφ(t, x), B(φ)(t, x))
}

≥ 0.)

The function u is a viscosity solution of (3.9) if it is both a viscosity sub-solution and viscosity super-solution.

Remark 4.3. (i) If h does not depend on ζ then Definitions 3.6 and 4.2 coincide ;

(ii) It is shown in [10] or [8] that when h is non-decreasing w.r.t. ζ and γ is moreover non-negative then the

function u defined in(3.14) is the unique continuous viscosity solution of (3.9) in the sub-class of Πg of continuous

functions.
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