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Abstract

The main aim of artificial-intelligence (Al) is
to provide machines with intelligence. Machine
learning is now widely used to extract such intel-
ligence from data. Collecting and modeling mul-
timodal interactive data is thus a major issue for
fostering Al for HRI. We first discuss the egg-and-
chicken problem of collecting ground-truth HRI
data without actually disposing of robots with ma-
ture social skills. Particular issues raised by the cur-
rent multimodal end-to-end mapping frameworks
are also commented. We then analyze the bene-
fits and challenges raised by using immersive tele-
operation for endowing humanoid robots with such
skills. We finally argue for establishing stronger
gateways between HRI and Augmented/Virtual Re-
ality research domains.

1 Introduction

Endowing humanoid robots with appropriate multimodal
socio-communicative and task-specific behaviors for con-
vincing Human-Robot interaction (HRI) is a challenging is-
sue. The classical approach consists in scaling behaviors col-
lected during Human-Human interaction (HHI). This scheme
faces two important issues: (a) the impoverished or aug-
mented sensorimotor abilities of robots that require to map
between different scores and reconsider spatio-temporal pat-
terns; (b) the drastic change of observed human behaviors in
front of avatars as compared with humans. Adapting HHI
models to HRI condition is not straightforward since social
rewards are also difficult to objectify.

This paper has four main sections. We first discuss the
probemlm of collecting relevant HRI data in section 2. We
then sketch in section 3 the benefits and challenges of us-
ing immersive teleoperation for teaching multimodal socio-
communicative behaviors to humanoid robots. Section 4 in-
troduces the Machine Learning (ML) techniques used to build
behavioral models for autonomous HRI using these collected
data. We finally discuss challenging issues raised by this data-
driven framework.
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2 Collecting interactive multimodal data

Several pathways have been explored so far to collect rele-
vant interaction data, as needed by the HRI model-building
algorithms.

2.1 Interactive human-human data

Most interactive multimodal HRI behavioral models are built
from rules picked up in the literature — found in bibles such
as Kendon [2004] for gesturing or Kita [2003] for pointing —
or multimodal data collected during dyadic HHI [Bilakhia et
al., 2015] or group interviews [Oertel ef al., 2014].

The collected HHI signals of the source participant are then
either directly scaled to perceptuo-motor abilities of the target
robot or first converted to stamped perceptuo-motor events
(such as “say X to Y at time T”, “look at Y at time T”, etc;
see the SAIBA framework below) which then trigger robot-
specific motor primitives/programs (eg. repositories of ges-
tures [Krenn and Pirker, 2004] or gesture controllers [Nguyen
et al., 2017b]). If re-targeting of HHI data to virtual agents
is mastered, this operation is much more difficult for robots
whose kinematics and dynamical behavior are much more
constrained.

2.2 HRI multimodal data from external views
Numerous datasets have been collected to observe hu-
man behaviors when conversing with autonomous virtual
agents [McKeown et al., 2012] or robots [Castellano et al.,
2010]. If these datasets are very informative about users’ ex-
pectations and deceptions, they do not actually provide data
scientists with signals that can be directly exploited by en-
dogenous sensorimotor capabilities of robots.

2.3 Multimodal data from the robot’s point of view
Few datasets have been collected from the robot’s point of
view (POV) since this presupposes that the experiments at
least involve a robot that passively experience”s the interac-
tion. As an example, Azagra et al [Azagra et al., 2017] dataset
contains recordings of several users teaching different object
classes to the robot Baxter. The robot remains still here.

2.4 Perception in action

Breaking out the egg-and-chicken problem of collecting
ground-truth HRI data without actually disposing of robots
with mature social skills is either solved by remotely con-
trolling the robots by human pilots (so called Wizard-of-Oz



or teleoperation) or by sketchy autonomous behavioral mod-
els. So the Vernissage corpus [Jayagopi er al., 2013] com-
prises multiple auditory, visual, and robotic system informa-
tion channels from the Nao robot while interacting with two
persons as an art guide in a German art museum. The robot
behavior (verbal output as well as gaze and nodding) was re-
motely controlled by a Wizard-of-Oz.

We expect here that the pilot provides the robot with op-
timal behaviors given the sensory information provided to
him/her via the robot’s sensors. But scaling human percep-
tion — or scene analysis performed by static sensors observing
HHI - to active robots is not straightforward neither.

Several experiments have shown that multimodal signal
processing is impoverished when performed by a moving
platform, because of egonoise, constant change of perspec-
tive ...Novoa et al. [2017] have shown that Word Error Rate
(WER) — performed by a PR2 robot that moves its body and
head while listening to sentences uttered by a fixed source —
raises from 5.4% to 39.5% when displacement velocity is set
to 0.6m/s and angular head rotation to 0.56rad/s. For vi-
sion, few RGB-D datasets available today simulate robot mo-
tion through an environment [Ammirato et al., 2017]. Sepa-
rating impact of body motion (in particular when supporting
sensors) from motions of objects and agents in the scene still
remains a challenging problem. The majority of recent re-
search employs motion information (via motor, propriocep-
tive or exteroceptive) to improve tracking and identification
results [Rezazadegan et al., 2017].

Note that current work makes use of passively collected
egomotion data [Agrawal et al., 2015]. Tt remains to be seen if
better multimodal representations are learned if the agent can
actively decide on how to explore its environment (i.e. active
learning [Bajcsy et al., 2018] or interactive perception [Bohg
etal.,2017]).

3 Immersive teleoperation of robots

Development learning [Lee er al,, 2007] and learning by
demonstration [Argall et al., 2009] get around this re-
targeting problem by directly providing the robot with senso-
rimotor experiences. If these learning frameworks have been
intensively explored for tasks involving contacts with the en-
vironment — such as walking, grasping, cooking .. .— the field
of HRI is more recent.

3.1 From Wizard-of-Oz experiments to immersive
teleoperation

Most Wizard-of-Oz experiments in HRI [Riek, 2012] con-
sist in asking one or several accomplices observing the HRI
scene as third parties — often via semi-transparent mirrors —
to trigger pre-defined verbal (assisting speech recognition or
sentence generation) or non-verbal behaviors (such as per-
forming head nods, pointing or gazing). The task of accom-
plices is mainly to guide decision and to decide When to act.
When wizards do actually monitor actuators and sensors di-
rectly via their own body motions, they are preferably called
pilots [Goodrich er al., 2013]. When they perceive the robot’s
environment via robot’s senses, this teleoperation is immer-
sive.

One advantage of immersive teleoperation (also termed
beaming [Normand et al., 2012]) is to provide robots — whose
social, emotional, linguistic as well as sensory motor capabil-
ities are impoverished compared to human ones — with a cog-
nitive control that supposedly takes the best use of available
robotic features: a human brain embodied in a robot. This ad-
dresses two main issues already sketched in the introduction,
that motivate the increasing interest in the training of social
HRI by human demonstrations:

Scaling The pilot performs a smart sensory motor mapping
rightly scaled to the robot morphology and dynamical
abilities.

Human factors Human behaviors are monitored in a sim-
ulated HRI. Multimodal sensorimotor data collected by
the robot during these passive experiences are very close
to those that will be experienced during autonomous be-
haviors if Al is able to reproduce high-level cognitive
behaviors.

These issues are mitigated both by technical and human fac-
tors: (a) the teleoperation platform should provide the pi-
lot with high-quality sense of self-location, ownership and
agency, with minimal cognitive overload — see in particular
our effort for enabling faithful gaze control [Cambuzat et al.,
2018; Bailly et al., 2018] and our teleoperation plaform in
fig. 1; (b) the pilot experience should also be augmented by
the “superhuman” capabilities that are conversely expected
from robots today — in particular in terms of episodic, au-
tobiographic and encyclopedic memory. The robot may be
here considered as a cyberphysical gate between virtual real-
ity, IoT and HRL.

3.2 HRI and virtual reality
The area of Virtual, Augmented and Mixed Reality (VAMR)
interactions between humans and robots — considering not
only robots as a way to augment reality but also ways to per-
ceive and act on cyberphysical spaces through an extended
body — opens avenues for research and technology in the
field of Al and HRI, by enabling humans and robots to share
worlds, bodies and cognitions as well as*“gameifying” manu-
facturing positions. Symptomatic of this trend are the recent
workshops organized as satellite of key events of both com-
munities:

Robotics and VAM the first International Workshop on Vir-
tual, Augmented, and Mixed Reality for Human-Robot
Interactions (VAM-HRI) was organized before HRI
2018 and the “Human in-the-loop robotic manipulation:
on the influence of the human role” workshop at IROS
2017 that explored kinesthetic teaching and teleopera-
tion.

VAM and Robotics The workshops “BCNAE: Body Con-
sciousness in Natural and Artificial Environments” and
“HAPTICS: Wearable and portable haptics for VR and
AR” at IEEE VR 2018 explore the use of robotic sys-
tems in VAMR applications. ICRA 2018 will also host
a workshop on “Robotics in Virtual Reality”

4 Modeling interactive multimodal behaviors

Generation of interactive multimodal behaviors of conver-
sational agents often enriches a spoken dialog system that



Figure 1: Beaming the head, eyes, lips and hands of Nina, the GIPSA-Lab iCub robot. Left, we retarget the head, eyes, lips and hand
movements of the pilot to directly control the corresponding segments of Nina; The pilot receives audiovisual feedback from Nina’s eye-
embedded cameras and ear-microphones in the head-mounted display. Right: the remote HRI scene, where Nina instructs subjects to move

objects. (© Cyril FRESILLON / GIPSA-lab / CNRS Phototheque

first manages verbal content and augments it with multimodal
tags. One typical example is the SAIBA framework [Kopp et
al., 2006]: the Function Markup Language (FML) describes
the agent’s communicative functions that are further trans-
formed into utterances tagged with micro-coordinated non-
verbal behaviors described using the Behavioral Markup Lan-
guage (BML). The action-perception loop was then closed
by introducing a Perception Markup Language (PML) that
converts input multisensory streams into stamped coverbal
events [Scherer et al., 2012].

The advent of deep learning models that are capable of
mapping multisensory input to semantic content (audiovisual
speech, multimodal gesture vs. activity recognition, paralin-
guistic challenges aiming at estimating affects, physical or
mental states of subjects) has changed the horizon. More re-
cently, generative models have also been developed that con-
versely generate images, sounds and text from semantic con-
tent.

But Al end-to-end models able to directly map multisen-
sory input streams — that should be aware of output actions
and attentive to expected reactions — to motor streams are still
scarce. If several works have demonstrated the efficiency of
graphical models and deep learning in capturing causal re-
lations between some multimodal signals in rather specific
tasks (cf. backchannel opportunities [Ruede et al., 2017],
head movements [Ding er al., 2014], gaze [Nguyen et al.,
2017b] ...) multimodal machine learning [Baltrusaitis et al.,
2018] still faces the problem of learning joint and coordinated
representations that can be permeable to the task, the environ-
mental conditions and adapt to the desired or observed style of
interaction (see recent attempts for speech generation [Henter
et al.,2017; Wang et al., 2018]).

5 Discussion

The use of Al for learning multimodal behavioral models for
HRI still raises unsolved issues.

Interactive data vs. models Training an Al model that map
multimodal perception to action with ground truth in-
teractive data is a delicate challenge: since the model
draw part of its input cues from reactions to actions that
have not yet been performed, this odd open-loop training
process may lead to unsuccessful expectations or unex-
pected reactions when used in a veridical close-loop test
situation.

Domain of competence and social relevance If robots are
all equipped with emergency red buttons, social mis-
functioning is much harder to detect and process. First
of all, it’s hard to record adversarial social behaviors: by
definition, humans deliver socially acceptable behaviors
and non observed behaviors can either be false positive
(non observed but acceptable variants) or just negative
samples. One possibility for collecting negative sam-
ples is to ask perceivers to rate by consensus the model’s
behavior [De Kok ef al., 2010]. Incidentally erroneous
social behaviors could be then detected and penalized.

Evaluation Well-designed rewards and loss functions do
not preclude subjective assessment that should go
beyond self-assessments, behavioral measurements,
psycho-physiological measures or task performance
metrics [Sim and Loo, 2015]. We should be able to pro-
vide HRI engineers and designers with diagnostic tools
that can identify What and When social behaviors or co-
adaptation went wrong. Localized HRI events — lack
of responsiveness, improper social signals ... — can in
fact strongly degrade subjective evaluation of behaviors
which globally improve. New evaluation methodologies
should be proposed, in particular that give access to on-
line processing of HRI by involved subjects or third par-
ties (e.g. see [Nguyen et al., 2017al).
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