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Biorthogonal families are a classical tool in analysis. In particular, they play a crucial role in the so-called moment method, which was developed by Fattorini-Russell [START_REF] Fattorini | Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension[END_REF][START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] to study controllability for parabolic equations.

Given any sequence of nonnegative real numbers, (λ n ) n≥1 , we recall that a sequence (σ m ) m≥1 is biorthogonal to the sequence (e λnt ) n≥1 in L 2 (0, T ) if

∀m, n ≥ 1, T 0 σ m (t)e λnt dt = 1 if m = n 0 if m = n .
The goal of this paper is to provide explicit and precise upper and lower bounds for the biorthogonal family (σ m ) m≥1 under the following gap conditions:

• a 'global gap condition':

(1. 1) ∀n ≥ 1, 0 < γ min ≤ λ n+1 -λ n ≤ γ max ,

• and an 'asymptotic gap condition':

(1. 2) ∀n ≥ N * , γ * min ≤ λ n+1 -λ n ≤ γ * max ,
where γ * max -γ * min < γ max -γ min . Before explaining why we are interested in such a question, let us describe some of the main results of the literature on this subject.

The context.

Among the most important applications of biorthogonal families to control theory are those to the null controllability and sensitivity of control costs to parameters. Major contributions in such directions are the following:

• Fattorini-Russell [START_REF] Fattorini | Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension[END_REF][START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF], Hansen [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF], and Ammar Khodja-Benabdallah-González Burgos-de Teresa [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF] studied the existence of biorthogonal sequences and their application to controllability for various equations; • for nondegenerate parabolic equations and dispersive equations, Seidman [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF], Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], Seidman-Avdonin-Ivanov [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], Miller [START_REF] Miller | Geometric bounds on the growth rate of null controllability cost for the heat equation in small time[END_REF], Tenenbaum-Tucsnak [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrodinger and heat equations[END_REF], and Lissy [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] studied the dependence of the null controllability cost C T with respect to the time T (as T → 0, the so-called 'fast control problem') and with respect to the domain, obtaining extremely sharp estimates of the constants c(Ω) and C(Ω) that appear in e c(Ω)/T ≤ C T ≤ e C(Ω)/T ;

• Coron-Guerrero [START_REF] Coron | Singular optimal control: A linear 1-D parabolic-hyperbolic example[END_REF], Glass [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit[END_REF], Lissy [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] investigated the vanishing viscosity problem:

y t + M y x -εy xx = 0, x ∈ (0, L), y(0, t) = f (t),
obtaining sharp estimates of the null controllability cost with respect to the time T , the transport coefficient M , the size of the domain L, and the diffusion coefficient ε; • in [START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF][START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF], we studied the dependence of the controllability cost with respect to the degeneracy parameter α for the degenerate parabolic equation u t -(x α u x ) x = 0, x ∈ (0, );

• and recently Gueye-Lissy [START_REF] Gueye | Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation[END_REF] studied a 1-D parabolic-hyperbolic degenerate equation.

There is a common feature in these works: they depend on some parameter p, and this parameter forces the eigenvalues to satisfy (1. 1) (sometimes after normalization) with gap bounds γ min (p) and γ max (p) such that γ min (p) → 0 and/or γ max (p) → ∞.

This fact makes it necessary to have general and precise estimates with respect to the main parameters that appear in the problem.

In [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF], we proved the following general result: given T > 0 and a family (λ n ) n≥1 of nonnegative real numbers that satisfy the 'global gap condition' (1. 1), then:

• every family (σ m ) m≥1 , biorthogonal to (e λnt ) n≥1 in L 2 (0, T ), satisfies the lower estimate

(1. 3) σ m 2 L 2 (0,T ) ≥ b m e -2λmT e 1 2T (γmax) 2 ,
with an explicit value of b m = b m (T, γ max , m) (rational in T ); • there exists a family (σ m ) m≥1 , biorthogonal to (e λnt ) n≥1 in L 2 (0, T ), that satisfies the upper estimate This generates several comments:

• concerning the results: √ λ n are not uniformly bounded from below by a positive constant); * and, on the contrary, (1. 5) forces the sequence ( √ λn n ) n to converge (to √ r), while one can construct sequences satisfying (1. 1) for which ( √ λn n ) n does not converge, considering, e.g., the recurrence formula λ n+1 = √ λ n +ε n with ε n ∈ {1, 2}, and choosing ε n to be constant on sufficiently large intervals, in such a way that 1 and 2 are limits of subsequences of ( √ λn n ) n .)

1.3. Motivations and main results of this paper.

Even though the aforementioned results give a fairly good picture of the properties of the family (σ m ) m , some delicate issues remain to be analyzed and will be addressed in this paper. For instance, one would like to understand the dependence of the family (σ m ) m with respect to relevant parameters that come into play. Typical examples of such problems are the following ones.

• For the 1D degenerate parabolic equation

u t -(x α u x ) x = 0, x ∈ (0, ),
the eigenvalues λ α,n of the associated elliptic operator (with suitable boundary conditions) can be expressed using the zeros of Bessel functions ( [START_REF] Gueye | Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations[END_REF]) and depend on the degeneracy parameter α ∈ (0, 2). One can then prove (see [START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF][START_REF] Cannarsa | The cost of controlling strongly degenerate parabolic equations[END_REF]) that the global gap condition (1. 1) is satisfied only with

γ max (α) ≥ c(2 -α) 2/3 ,
with c > 0, while the asymptotic gap condition (1. 2) is satisfied with

γ * max (α) ≤ c * (2 -α),
where c * > 0, after the rank

N * (α) = 1 2 -α ; in this case γ max (α) γ * max (α) -→ +∞ as α → 2 -;
hence it is natural to think that the better asymptotic gap (1. 2) could be used to improve the estimate (1. 3) of the associated biorthogonal sequences, but the fact that

N * (α) -→ +∞ as α → 2 -
is certainly to be taken into account.

• In 2D problems such as the Grushin equation (see [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF][START_REF] Beauchard | 2D Grushin-type equations: minimal time and null controllable data[END_REF]), where the solution is decomposed into Fourier modes, one has to give uniform bounds for a certain sequence of elliptic problems, the eigenvalues of which satisfy (1. 1) and (1. 2) with some γ min (m), γ * min (m) and

N * (m) such that γ min (m) γ * min (m) -→ 0 as m → ∞ and N * (m) -→ +∞ as m → ∞;
once again, it is natural to think that the better asymptotic gap (1. 2) could be used to improve the estimate (1. 4) of the associated biorthogonal sequence, but the fact that N * (m) → +∞ as m → ∞ is certainly to be taken into account.

The above discussion motivates the general question whether estimates (1. 3) and (1. 4) can be improved when (1. 1) is combined with the asymptotic condition (1. 2). This is exactly what we prove in this paper: roughly speaking, (1. 3) and (1. 4) hold true replacing γ min by γ * min and γ max by γ * max . Moreover, the fact that the 'good' gap condition (1. 2) holds true only after the N * first eigenvalues has a cost, and we obtain a precise estimate for that cost. Our main results (Theorem 2.1 and 2.2) are the following: under (1. 2), we prove that:

• every family (σ m ) m≥1 , biorthogonal to (e λnt ) n≥1 in L 2 (0, T ), satisfies the lower estimate

(1. 6) σ m 2 L 2 (0,T ) ≥ b * m e -2λmT e 2 T (γ * max ) 2 , where the 'cost' b * m = b * m (T, γ max , γ * max , N * , m
) is a rational function of T that we determine explicitly, and • there exists a biorthogonal family that satisfies in (1. 6) and (1. 7) is quite natural and has already been pointed out by Seidman-Avdonin-Ivanov [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], Tenenbaum-Tucsnak [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrodinger and heat equations[END_REF], and Lissy [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] (see also Haraux [START_REF] Haraux | Séries lacunaires et contrôle semi-interne des vibrations dune plaque rectangulaire[END_REF] and Komornik [START_REF] Komornik | Fourier Series in Control Theory[END_REF] for a closely related context). On the other hand, the precise estimate of the behavior of b * m and B * m with respect to parameters, that we develop in this paper, is completely new and will be crucial for the sensitivity analysis of control costs to be performed in [START_REF] Cannarsa | The cost of controlling strongly degenerate parabolic equations[END_REF].

Our proofs are based on complex analysis techniques and hilbertian methods developed by Seidman-Avdonin-Ivanov [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF] and Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]. We have also used an idea from Tenenbaum-Tucsnak [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrodinger and heat equations[END_REF] and Lissy [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF], based on the introduction of an extra parameter depending on T and the gap conditions.

Finally, as mentioned above, the gap conditions (1. 1)-(1. 2) are practical to obtain such estimates from above and below, but one could investigate more general conditions, of the form

(1. 8) α n n ≤ λ n+1 -λ n ≤ β n n,
with lim inf n α n > 0 and lim sup β n < ∞. This would include the case of assumptions (1. 1) and (1. 5) and could allow to study more general problems.

1.4. Plan of the paper.

The paper is organized as follows:

• in section 2, we state our results;

• section 3 is devoted to the proof of Theorem 2.1 (construction of a biorthogonal family and derivation of upper bounds); • section 4 is devoted to the proof of Theorem 2.2 (lower bounds for biorthogonal families).

Setting of the problem and main results

2.1. Existence of a suitable biorthogonal family and upper bounds.

We will prove the following result, that in some sense precises results of Fattorini and Russell [START_REF] Fattorini | Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension[END_REF][START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] (in short time) and are in the spirit of results of Tenenbaum-Tucsnak [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrodinger and heat equations[END_REF], Lissy [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] (with a slightly weakened assumption on the eigenvalues).

Theorem 2.1. Assume that ∀n ≥ 1, λ n ≥ 0, and that there is some 0 < γ min < γ * min such that

(2. 1) ∀n ≥ 1, λ n+1 -λ n ≥ γ min , and 
(2. 2) ∀n ≥ N * , λ n+1 -λ n ≥ γ * min . Denote (2. 3) M * := (1 - γ min γ * min )(N * -1).
Then there exists a family (σ + m ) m≥1 which is biorthogonal to the family (e λnt ) n≥1 in L 2 (0, T ):

(2. 4) ∀m, n ≥ 1, T 0 σ + m (t)e λnt dt = δ mn .
Moreover, it satisfies: there is some universal constant C independent of T , γ min , γ * min , N * and m such that, for all m ≥ 1, we have

(2. 5) σ + m 2 L 2 (0,T ) ≤ e -2λmT e C T (γ * min ) 2 e C √ λm γ * min B * (T, γ min , γ * min , N * , m), where (2. 6) B * (T, γ min , γ * min , N * , m) =      C u (8M * )! (λm(γ * min ) 2 T 2 ) 4M * + 1 e CuM * e Cu λ N * γ min √ λm ( 1 T 3/2 + 1 (γ * min ) 2 T 2 ) if T ≤ 1 (γ * min ) 2 C u ( (γ * min ) 8M * (8M * )! λ 4M * m ) + 1 e CuM * e Cu λ N * γ min √ λm ((γ * min ) 2 + (γ * min ) 3 ) if T ≥ 1 (γ * min ) 2 .
Remark 2.1. Theorem 2.1 completes and improves several earlier results, in particular Theorem 1.5 of Fattorini-Russell [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] and [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] expliciting the dependence of the L 2 bound with respect to γ min , γ * min and in short time. It is useful in several problems, in which γ min → 0 with respect to some parameter, which occurs is several cases, see, e.g. [START_REF] Fattorini | Boundary control of temperature distributions in a parallelepipedon[END_REF], [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]. We will use the construction that was used by Seidman, Avdonin and Ivanov in [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], which has the advantage to be completely explicit (which is not the case for the construction of [START_REF] Fattorini | Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension[END_REF][START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF][START_REF] Fattorini | Boundary control of temperature distributions in a parallelepipedon[END_REF][START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF][START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], since there is a contradiction argument), combined with some ideas coming from the construction of Tenenbaum-Tucsnak [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrodinger and heat equations[END_REF] and Lissy [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF], adding some parameter, in order to obtain precise results.

General lower bounds.

We generalize a result of Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] to prove the following Theorem 2.2. Assume that

∀n ≥ 1, λ n ≥ 0,
and that there are

0 < γ min ≤ γ * max ≤ γ max such that (2. 7) ∀n ≥ 1, γ min ≤ λ n+1 -λ n ≤ γ max , and 
(2. 8) ∀n ≥ N * , λ n+1 -λ n ≤ γ * max .
Then any family (σ + m ) m≥1 which is biorthogonal to the family (e λnt ) n≥1 in L 2 (0, T ) (hence that satisfies (2. 4)) satisfies:

(2. 9) σ + m 2 L 2 (0,T ) ≥ e -2λmT e 2 T (γ * max ) 2 b * (T, γ max , γ * max , N * , λ 1 , m) 2
, where b * is rational in T (and explictly given in the key Lemma 4.4).

Remark 2.2. Theorem 2.2 completes a result of Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] and is useful in several problems, in which γ max → ∞ with respect to some parameter, which occurs is several cases, see, e.g. [START_REF] Fattorini | Boundary control of temperature distributions in a parallelepipedon[END_REF], and [START_REF] Cannarsa | The cost of controlling strongly degenerate parabolic equations[END_REF]. It is to be noted that the behavior with respect to m can perhaps be improved, comparing with Theorem 1.1 of Hansen [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF]. It would be interesting to investigate this. It begins with the following remarks: if the family (σ + m ) m≥1 is biorthogonal to the family (e λnt ) n≥1 , then

∀m, n ≥ 1, T 0 σ + m (T -t)e λn(T -t) dt = δ mn , hence ∀m, n ≥ 1, T 0 σ + m (T -t)e λmT e -λnt dt = δ mn ,
hence the family (s m ) m≥0 defined by s m (t) := σ + m (T -t)e λmT is biorthogonal to the family (e -λnt ) n≥1 in L 2 (0, T ). Now extend s m by 0 outside (0, T ), and consider its Fourier transform

∀z ∈ C, F(s m )(z) := R s m (t)e -izt dt.
For all m ≥ 1, F(s m ) is the Fourier transform of a compactly supported function, hence it is an entire function over C, and it satisfies

∀m, n ≥ 1, F(s m )(-iλ n ) = δ mn ,
and it is of exponential type:

|F(s m )(z)| ≤ T 0 |s m (t)| dt e T |z| ;
and also

F(s m )(z) = T /2 -T /2 s m (τ + T 2 )e -iz(τ + T 2 ) dτ, hence F(s m )(-z)e -iz T 2 = T /2 -T /2 s m (τ + T 2 )e izτ dτ, and 
|F(s m )(-z)e -iz T 2 | ≤ T /2 -T /2 |s m (τ + T 2 )| dτ e T 2 |z| .
Now we recall the Paley-Wiener theorem ( [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF]): if f : C → C is an entire function of exponential type, such that there exist nonnegative constants C, A such that

∀z ∈ C, |f (z)| ≤ Ce A|z| , and if f ∈ L 2 (R), then there exists φ ∈ L 2 (-A, A) such that f (z) = A -A φ(τ )e izτ dτ.
One of the objects of [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF] is to prove the existence of a sequence (f m ) m of entire functions satisfying (3. 1)

     ∀m, n ≥ 1, f m (-iλ n ) = δ mn , ∀z ∈ C, |f m (-z)e -iz T 2 | ≤ C m e T 2 |z| , ∀m ≥ 1, f m ∈ L 2 (R)
(see Theorem 2 and Lemma 3 in [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF]) under some general assumptions on the sequence (λ n ) n . If we can apply such a result in our context (hence with our sequence (λ n ) n ), then the two last properties together with the Paley-Wiener theorem will imply that there exists some

φ m ∈ L 2 (-T 2 , T 2 ) such that f m (-z)e -iz T 2 = T /2 -T /2 φ m (τ )e izτ dτ, hence f m (z) = T 0 φ m (t - T 2 )e -izt dt,
and then

T 0 φ m (t - T 2 )e -λnt dt = f m (-iλ n ) = δ mn , hence (φ m (t -T 2 
)) m will be biorthogonal to the family (e -λnt ) n , and (σ + m (t)) m defined by

σ + m (t) = φ m ( T 2 -t)e -λmT
will be biorthogonal to the family (e λnt ) n in L 2 (0, T ), as desired. Moreover

σ + m 2 L 2 (0,T ) = e -2λmT T /2 -T /2 φ m (τ ) 2 dτ ≤ Ce -2λmT f m 2 L 2 (R)
using the Parseval theorem. Now, it remains to construct such entire functions f m . The idea is to consider the natural infinite product that satisfies the first condition of (3. 1), f m (-iλ n ) = δ mn , and to multiply it by a so-called 'mollifier', in such a way that the other two conditions of (3. 1) will be also satisfied. Hence one has to estimate the growth of the natural infinite product, and then to choose a choose a suitable mollifier. This is what is performed in [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF]. For our problem, our task will be to add the dependency into the parameters γ min , γ * min and T , and to understand specifically the behaviour of the natural infinite product, the mollifier and at the end of σ + m L 2 (0,T ) with respect to γ min and T . We will modify a little the construction of [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], in order to obtain optimal results in our context, see Lemma 3.4, and specifically the definition (3. 19) of the mollifier, where the additionnal parameter N will be chosen of the size

1 T (γ * min ) 2 , see (3. 30). 3.2. The counting function. Consider ∀ρ > 0, N n (ρ) := card {k, 0 < |λ n -λ k | ≤ ρ}.
We prove the following:

Lemma 3.1. a) Assume that the gap assumption (2. 1) is satisfied; then

(3. 2) ∀n ≥ 0, ∀ρ > 0, N n (ρ) ≤ 2 √ ρ γ min .
b) Assume that the gap assumptions (2. 1)-(2. 2) are satisfied; then • when n = N * :

(3. 3) ∀ρ > 0, N N * (ρ) ≤ √ ρ γmin + √ ρ γ * min if ρ ≤ λ N * N * -1 + √ ρ γ * min if ρ ≥ λ N * ,
• when n > N * : 

(3. 4) ∀n > N * , ∀ρ > 0, N n (ρ) ≤        2 √ ρ γ * min if ρ ≤ λ n -λ N * √ ρ γmin + √ ρ γ * min if λ n -λ N * ≤ ρ ≤ λ n n -1 + √ ρ γ * min if ρ ≥ λ n , • when n < N * -when λ n ≤ λ N * -λ n , then (3. 5) ∀ρ > 0, N n (ρ) ≤        2 √ ρ γmin if ρ ≤ λ n n -1 + √ ρ γmin if λ n ≤ ρ ≤ λ N * -λ n N * -1 + √ ρ γ * min if ρ ≥ λ N * -λ n , -when λ n ≥ λ N * -λ n , then (3. 6) ∀ρ > 0, N n (ρ) ≤        2 √ ρ γmin if ρ ≤ λ N * -λ n N * -n + √ ρ γmin + √ ρ γ * min if λ N * -λ n ≤ ρ ≤ λ n N * -1 + √ ρ γ * min if ρ ≥ λ n . Remark 3.1.
λ k -λ n = λ k 2 -λ n 2 = ( λ k -λ n )( λ k + λ n ),
and the gap assumption (2. 1) insures that

λ k -λ n ≥ (k -n)γ min , λ k + λ n ≥ (k -n)γ min + 2 λ n , hence λ k -λ n ≥ (k -n) 2 γ 2 min , and 
k > n and λ k -λ n ≤ ρ =⇒ k -n ≤ √ ρ γ min .
Similarly,

k < n and λ n -λ k ≤ ρ =⇒ n -k ≤ √ ρ γ min .
Hence

N n (ρ) ≤ 2 √ ρ γ min .
This proves (3. 2). Now we prove (3. 3)-(3. 6): let us introduce

N + n (ρ) := card {k > n, λ k -λ n ≤ ρ}, N - n (ρ) := card {k < n, λ n -λ k ≤ ρ}.
We distinguish the three cases.

• When n = N * : from the previous study, we see that

N + N * (ρ) ≤ √ ρ γ * min , and 
N - N * (ρ) ≤ √ ρ γmin if ρ ≤ λ N * N * -1 if ρ ≥ λ N * ;
this gives that

N N * (ρ) ≤ √ ρ γmin + √ ρ γ * min if ρ ≤ λ N * N * -1 + √ ρ γ * min if ρ ≥ λ N * ,
which gives (3. 3). • When n > N * : now we have

N + n (ρ) ≤ √ ρ γ * min , and 
N - n (ρ) ≤      √ ρ γ * min if ρ ≤ λ n -λ N * √ ρ γmin if λ n -λ N * ≤ ρ ≤ λ n n -1 if ρ ≥ λ n , which gives (3. 4). • When n < N * : now we have N - n (ρ) ≤ √ ρ γmin if ρ ≤ λ n n -1 if ρ ≥ λ n ,
and

N + n (ρ) ≤ √ ρ γmin if ρ ≤ λ N * -λ n N * -n + √ ρ γ * min if ρ ≥ λ N * -λ n , hence when λ n ≤ λ N * -λ n we have N n (ρ) ≤        2 √ ρ γmin if ρ ≤ λ n n -1 + √ ρ γmin if λ n ≤ ρ ≤ λ N * -λ n N * -1 + √ ρ γ * min if ρ ≥ λ N * -λ n ,
which gives (3. 5), and similar estimates when λ n ≥ λ N * -λ n , which give (3. 6).

Before going further, let us give another estimate of the counting function, which reveals to be more practical and more natural, since it gives a better understanding of the role of the different parameters: Lemma 3.2. Assume that the gap assumptions (2. 1)-(2. 2) are satisfied; then

• when n = N * :

(3. 7) ∀ρ > 0, N N * (ρ) ≤ √ ρ γmin + √ ρ γ * min if ρ ≤ λ N * (1 -γmin γ * min )(N * -1) + 2 √ ρ γ * min if ρ ≥ λ N * , • when n > N * : (3. 8) ∀ρ > 0, N n (ρ) ≤        2 √ ρ γ * min if ρ ≤ λ n -λ N * √ ρ γmin + √ ρ γ * min if λ n -λ N * ≤ ρ ≤ λ n (1 -γmin γ * min )(N * -1) + 2 √ ρ γ * min if ρ ≥ λ n , • when n < N * : (3. 9) ∀ρ > 0, N n (ρ) ≤ 2 √ ρ γmin if ρ ≤ max{λ n , λ N * -λ n } (1 -γmin γ * min )(N * -1) + (1 + √ 2) √ ρ γ * min if ρ ≥ max{λ n , λ N * -λ n } ,
and also

(3. 10) ∀ρ > 0, N n (ρ) ≤ 2 √ ρ γmin if ρ ≤ λ N * (1 -γmin γ * min )(N * -1) + 2 √ ρ γ * min if ρ ≥ λ N * . Remark 3.2. Lemma 3.2 enlightens the role of the quantity (1 -γmin γ * min )(N * -1) (denoted M * in (2.
3)); when γ min = γ * min or if N * = 1, this quantity is equal to zero, and we logically find estimates similar to the ones of Lemma 3.1 (i.e. the '1 gap condition'); in the more interesting case where γ min < γ * min and N * > 1, this quantity measures the increase of the counting function with respect to the '1 gap condition'.

Let us note also that we expect that (3. 9) holds true with 2 instead of 1 + √ 2, however we could not prove it in full generality.

Proof of Lemma 3.2.

• When n = N * , it is sufficient to note that

λ N * ≥ γ min (N * -1),
hence, when ρ ≥ λ N * , we have

N * -1 = (1 - γ min γ * min )(N * -1) + γ min γ * min (N * -1) ≤ (1 - γ min γ * min )(N * -1) + √ λ N * γ * min ≤ (1 - γ min γ * min )(N * -1) + √ ρ γ * min ;
this and (3. 3) imply (3. 7). • When n > N * : when ρ ≥ λ n , we have

λ n ≥ λ N * + (n -N * )γ * min ≥ (N * -1)γ min + (n -N * )γ * min , hence n -1 ≤ √ λ n γ * min + (1 - γ min γ * min )(N * -1) ≤ √ ρ γ * min + (1 - γ min γ * min )(N * -1);
this estimate and (3. 4) imply (3. 8).

• When n < N * , we obtain (3. 10) proceeding in the same way: when ρ ≤ λ N * , then clearly N n (ρ) is less than the number of terms that would be at both sides, for which the gap of their square root would be γ min , hence

N n (ρ) ≤ 2 √ ρ γ min ;
when ρ ≥ λ N * , then clearly one has all the N * -1 first terms, and the others, for which the gap of their square root is γ * min , hence

N n (ρ) ≤ N * -1 + √ ρ γ * min ; but then N * -1 = (1 - γ min γ * min )(N * -1) + γ min γ * min (N * -1) ≤ (1 - γ min γ * min )(N * -1) + √ λ N * γ * min ≤ (1 - γ min γ * min )(N * -1) + √ ρ γ * min ,
which gives (3. 10); • finally we prove (3. 9): in the same way, if ρ ≤ max{λ n , λ N * -λ n } one has immediately

N n (ρ) ≤ 2 √ ρ γ min ;
when ρ ≥ max{λ n , λ N * -λ n }, then we already know from (3. 5) and (3. 6) that

N n (ρ) ≤ N * -1 + √ ρ γ * min , hence N n (ρ) ≤ (1 - γ min γ * min )(N * -1) + γ min γ * min (N * -1) + √ ρ γ * min ; since λ N * ≥ γ min (N * -1) and ρ ≥ max{λ n , λ N * -λ n } =⇒ ρ ≥ 1 2 λ n + (λ N * -λ n ) = 1 2 λ N * ,
we deduce that

γ min (N * -1) ≤ λ N * ≤ 2ρ, hence N n (ρ) ≤ (1 - γ min γ * min )(N * -1) + (1 + √ 2) √ ρ γ * min ,
which is (3. 9). This concludes the proof of Lemma 3.2.

A Weierstrass product.

Motivated by [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], we consider

(3. 11) F m (z) := ∞ k=1,k =m 1 - iz -λ m λ k -λ m 2 .
Then the growth in k of λ k ensures that this infinite product converges uniformly over all the compact sets, hence F m is well-defined and entire over C. Moreover

F m (-iλ n ) = ∞ k=1,k =m 1 - λ n -λ m λ k -λ m 2 = 0 if m = n, 1 if m = n, , hence (3. 12) ∀m, n ≥ 1, F m (-iλ n ) = δ mn .
We are going to estimate the growth of F m . We prove the following 

B m =          e ( 8 γ min + Cu γ * min ) √ λm+ 8 γ min √ λ N * -λm if m < N * e ( 4 γ min + 4+Cu γ * min ) √ λ N * if m = N * e ( 4 γ min + 8+Cu γ * min ) √ λm-4 γ min √ λm-λ N * if m > N * and (3. 18) q m (|z|) =            1 + 2 |z| 2 +λ 2 m max(λm,λ N * -λm) 2 M * if m < N * 1 + 2 |z| 2 +(λ N * ) 2 (λ N * ) 2 M * if m = N * 1 + 2 |z| 2 +λ 2 m λ 2 m M * if m > N *
, and this easily implies (3. 15) and (3. 16).

Proof of Lemma 3.3. Note that

F m (z -iλ m ) = ∞ k=1,k =m 1 + z 2 (λ k -λ m ) 2 ,
hence (following [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF])

ln |F m (z -iλ m )| = ∞ k=1,k =m ln 1 + z 2 (λ k -λ m ) 2 ≤ ∞ k=1,k =m ln 1 + |z| 2 (λ k -λ m ) 2 = ∞ 0 ln 1 + |z| 2 ρ 2 dN m (ρ) = 2 ∞ 0 N m (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ
Then we distinguish several cases:

• Under only (2. 1) we deduce from (3. 2) that

2 ∞ 0 N m (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ ≤ 4 γ min ∞ 0 1 √ ρ |z| 2 |z| 2 + ρ 2 dρ = 4 γ min ∞ 0 1 √ s 1 1 + s 2 ds |z|.
Then changing z -iλ m into z,

ln |F m (z)| ≤ 4 γ min ∞ 0 1 √ s 1 1 + s 2 ds ( |z| + λ m ),
which gives (3. 13).

• Under (2. 1)-(2. 2) and when m = N * , we derive from (3. 7) that

2 ∞ 0 N N * (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ = 2 λ N * 0 N N * (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ + 2 ∞ λ N * N N * (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ ≤ 2 λ N * 0 √ ρ( 1 γ min + 1 γ * min ) |z| 2 ρ(|z| 2 + ρ 2 ) dρ + 2 ∞ λ N * (M * + 2 √ ρ γ * min ) |z| 2 ρ(|z| 2 + ρ 2 ) dρ ≤ 2( 1 γ min + 1 γ * min ) |z| λ N * /|z| 0 1 √ s(1 + s 2 ) ds + 2M * ∞ λ N * /|z| 1 s(1 + s 2 ) ds + 4 |z| γ * min ∞ λ N * /|z| 1 √ s(1 + s 2 ) ds ≤ 2( 1 γ min + 1 γ * min ) |z| 2 √ λ N * |z| +2M * [ln s √ 1 + s 2 ] ∞ λ N * /|z| + 4 |z| γ * min ∞ 0 1 √ s(1 + s 2 ) ds ≤ 4 λ N * ( 1 γ min + 1 γ * min ) + M * ln(1 + |z| 2 (λ N * ) 2 ) + c u |z| γ * min . Then changing z -iλ N * into z, ln |F N * (z)| ≤ 4 λ N * ( 1 γ min + 1 γ * min ) + M * ln(1 + 2 |z| 2 + λ 2 N * (λ N * ) 2 ) + c u |z| + √ λ N * γ * min ,
which gives (3. 14) with the B m and q m given in (3. 17) and (3. 18).

• Under (2. 1)-(2. 2) and when m > N * , applying the same method, we derive from (3. 8) that

2 ∞ 0 N m (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ ≤ 4( 1 γ min + 2 γ * min ) λ m - 4 γ min λ m -λ N * + M * ln(1 + |z| 2 λ 2 m ) + c u |z| γ * min .
Then changing z -iλ m into z, we obtain (3. 14) with the related B m and q m given in (3. 17) and (3. 18).

• Under (2. 1)-(2. 2) and when m < N * , applying the same method, we derive from (3. 9) that

2 ∞ 0 N m (ρ) ρ |z| 2 |z| 2 + ρ 2 dρ ≤ 8 γ min ( λ m + λ N * -λ m ) + M * ln(1 + |z| 2 max{λ m , λ N * -λ m } 2 ) + c u |z| γ * min .
Then changing z -iλ m into z, we obtain (3. 14) with the related B m and q m given in (3. 17) and (3. 18).

A suitable mollifier.

Motivated by [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], we made in [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] the following construction: consider

T > 0, N ≥ 1, a k := C N ,T k 2 with C N ,T := T 2 ∞ k=N 1 k 2 , in order that ∞ k=N a k = T 2 ,
and finally

(3. 19) P N ,T (z) := e iz T 2 ∞ k=N cos(a k z).
Then we have the following 

     P N ,T (0) = 1, ∀z ∈ C such that z ≥ 0, |P N ,T (z)| ≤ 1, ∀z ∈ C, |e -iz T 2 P N ,T (z)| ≤ e |z| T 2 .
(2) The behaviour of P N ,T over R: there exist θ 0 > 0, θ 1 > 0, both independent of N and T such that P N ,T satisfies

(3. 21)      C N ,T |x| θ0 1/2 + 1 ≥ N =⇒ ln |P N ,T (x)| ≤ -θ1 2 3 C N ,T |x| θ0 1/2 , C N ,T |x| θ0 1/2 + 1 ≤ N =⇒ ln |P N ,T (x)| ≤ -θ1 (N ) 3 C N ,T |x| θ0 2 . 
(3) The behaviour of P N ,T over iR + : there is some constant θ 2 > 0, independent of N and T , such that P N ,T satisfies

(3. 22) ∀x ∈ R + , P N ,T (ix) ≥ e -θ2 √ C N ,T x .
The Proof of Lemma 3.4 follows by elementary analysis techniques. In the following we are going to use the mollifier P N ,T to construct the biorthogonal family. We will make the following choices:

• for T :

(3. 24) T := min{T, 1 (γ * min ) 2 }; • for N : we choose it such that (3. 25) N ≥ 2 + θ 3 (γ * min ) 2 T with a suitable θ 3 (independent of T > 0 and of m ≥ 0, and given in (3. 29)). Then we will prove the following Lemma 3.5. When T and N satisfy (3. 24) and (3. 25), the functions f m,N ,T are entire and satisfy the following properties:

• for all m, n ≥ 1, we have

(3. 26) f m,N ,T (-iλ n ) = δ mn ;
• for all m ≥ 1, for all ε > 0, there exists C m,N ,T ,ε > 0 such that

(3. 27) ∀z ∈ C, |f m,N ,T (-z)e -iz T 2 | ≤ C m,N ,T ,ε e ( T 2 +ε)|z| ; • for all m ≥ 1, f m,N ,T ∈ L 2 (R).
Then we will be in position to apply the Paley-Wiener theorem and to construct the desired biorthogonal sequence. Proof of Lemma 3.5. First, the function f m,N ,T is well-defined since P N ,T > 0 on iR + , and is entire since F m and P N ,T are entire. Next, using (3. 12), we have (3. 26). Next, concerning the exponential type: using (3. but for all ε > 0 we have 

C u |z| γ * min = C u ε|z| γ * min √ ε ≤ C 2 u 2(γ * min ) 2 ε + ε 2 
|f m,N ,T (x)| ≤ 1 P N ,T (iλ m ) B m q m (|x|)e Cu γ * min √ |x| e - θ 1 8 C N ,T |x| θ 0 1/2 , hence f m,N ,T ∈ L 2 (R) if C u γ * min - θ 1 8 C N ,T θ 0 1/2 < 0,
which is true choosing T and N satisfying (3. 24) and (3. 25): indeed,

C N ,T = T 2 ∞ k=N 1 k 2 , and 1 N = ∞ N 1 y 2 dy ≤ ∞ k=N 1 k 2 ≤ ∞ N -1 1 y 2 dy = 1 N -1 , hence (3. 28) (N -1)T 2 ≤ C N ,T ≤ N T 2 .
Hence, if

(3. 29) (N -1)T > θ 3 (γ * min ) 2 with θ 3 := 2 7 θ 0 C 2 u θ 2 1 ,
we obtain that f m,N ,T ∈ L 2 (R). And one easily verifies that T , N satisfying (3. 24) and (3. 25) satisfy also (3. 29). This completes the proof of Lemma 3.5.

The resulting biorthogonal sequence.

With our choices, the function x → f m,N ,T (-x)e -ixT /2 is in L 2 (R), and we can consider its Fourier transform φ m,N ,T :

φ m,N ,T (ξ) := 1 2π R f m,N ,T (-x)e -ix T 2 e -iξx dx.
It is well-defined since f m,N ,T ∈ L 2 (R), and the Paley-Wiener theorem ([39] p. 100) shows that φ m,N ,T is compactly supported in [-T 2 -ε, T 2 + ε] (thanks to (3. 27)). Since this is true for all ε > 0, φ m,N ,T is compactly supported in [-T 2 , T 2 ]. To obtain good results, we will choose N satisfying the stronger property:

(3. 30) 2 + θ 3 (γ * min ) 2 T ≤ N ≤ 4 + θ 3 (γ * min ) 2 T .
Then we have the following Moreover, it satisfies: there is some universal constant C u independent of T , γ min , γ * min , N * and m such that, for all m ≥ 1, we have This gives (3. 32). Concerning (3. 33), we note that the Parseval equality gives

(3. 33) σ + m,N ,T 2 
(3. 34) R |f m,N ,T (x)| 2 dx = R |f m,N ,T (-x)e -ix T 2 | 2 dx = 2π R |φ m,N ,T (ξ)| 2 dξ = 2π T /2 -T /2 |φ m,N ,T (ξ)| 2 dξ. Hence σ + m,N ,T 2 
L 2 (0,T ) = e -2λmT T /2 -T /2 |φ m,N ,T (ξ)| 2 dξ = 1 2π e -2λmT R |f m,N ,T (x)| 2 dx.
We need to estimate precisely the last integral. Denote

X N ,T := θ 0 (N -1) 2 C N ,T . 
Using (3. 13), (3. 21) and (3. 22), we have

R |f m,N ,T (x)| 2 dx = |x|≤X N ,T |f m,N ,T (x)| 2 dx+ |x|≥X N ,T |f m,N ,T (x)| 2 dx ≤ 2e 2θ2 √ C N ,T λm B 2 m X N ,T 0 q m (x) 2 e 2Cu γ * min √ x e - 2θ 1 
(N ) 3 ( C N ,T x θ 0 ) 2 dx + ∞ X N ,T q m (x) 2 e 2Cu γ * min √ x e -2θ 1 2 3 ( C N ,T x θ 0 ) 1/2 dx =: I (<) m + I (>) m .
First we estimate I (<) m ; we denote θ i various constants independent of all the other parameters; we have

X N ,T 0 q m (x) 2 e 2Cu γ * min √ x e - 2θ 1 (N ) 3 ( C N ,T x θ 0 ) 2 dx ≤ q m (X N ,T ) 2 e 2Cu γ * min √ X N ,T ∞ 0 e - 2θ 1 
(N ) 3 ( C N ,T x θ 0 ) 2 dx ≤ C q m (X N ,T ) 2 e 2Cu γ * min √ X N ,T (N ) 3/2 C N ,T ≤ C q m (X N ,T ) 2 e 2Cu γ * min √ X N ,T 1 T + 1 (T ) 3/2 γ * min .
Using (3. 24), (3. 28) and (3. 30), we have

X N ,T ≤ θ 4 ( 1 T + 1 (γ * min ) 2 (T ) 2 ), X N ,T γ * min ≤ θ 5 (1 + 1 (γ * min ) 2 T
), and

C N ,T ≤ θ 5 γ * min ; hence I (<) m ≤ c u e θ6 √ λm γ * min B 2 m q m (θ 4 ( 1 T + 1 (γ * min ) 2 (T ) 2 )) 2 e θ 5 (γ * min ) 2 T 1 T + 1 (T ) 3/2 γ * min .
To conclude, we will use the following basic remark: 2 , we obtain that:

y ∈ [0, 1] =⇒ (1 + y) n ≤ 2 n , and y ≥ 1 =⇒ (1 + y) n = y n (1 + 1 y ) n ≤ 2 n y n , hence y ≥ 0 =⇒ (1 + y) n ≤ 2 n (1 + y n ), and a, b ≥ 0 =⇒ (a + b) n ≤ 2 n (a n + b n ). Since (from (3. 24)) 1 T ≤ 1 (γ * min ) 2 (T )
q m (θ 4 ( 1 T + 1 (γ * min ) 2 (T ) 2 )) 2 ≤ 3 + 2 λ 2 m ( 2θ 4 (γ * min ) 2 (T ) 2 ) 2 2M * ≤ 2 2M * 3 2M * + ( 2 λ 2 m ( 2θ 4 (γ * min ) 2 (T ) 2 ) 2 ) 2M * ≤ C 2M * u 1 + ( 1 λ m (γ * min ) 2 (T ) 2 ) 4M * , then ∀m ≥ N * , I (<) m ≤ c u (T ) 3/2 γ * min e θ7 √ λm γ * min e θ 5 (γ * min ) 2 T e θ7 λ N * γ min √ λm C 2M * u 1 + ( 1 λ m (γ * min ) 2 (T ) 2 ) 4M * . Next we estimate I (>) m . Denote L := 2θ 1 2 3 ( C N ,T θ 0 ) 1/2 - 2C u γ * min .
One can easily check that

1 L ≤ C u T γ * min . Then I (>) m = 2e 2θ2 √ C N ,T λm B 2 m ∞ X N ,T q m (x) 2 e 2Cu γ * min √ x e -2θ 1 2 3 ( C N ,T x θ 0 ) 1/2 dx = 2e 2θ2 √ C N ,T λm B 2 m ∞ X N ,T q m (x) 2 e -L √ x dx ≤ 2e θ6 √ λm γ * min e θ7 λ N * γ min √ λm ∞ 0 q m (x) 2 e -L √ x dx = 2e θ6 √ λm γ * min e θ7 λ N * γ min √ λm 2 L 2 ∞ 0 q m ( t 2 L 2 ) 2 e -t dt.
Recalling that

∞ 0 t k e -t dt = k!,
we obtain

I (>) m L 2 4 e -θ6 √ λm γ * min e -θ7 λ N * γ min √ λm ≤ 2 2M * ∞ 0 (3 2M * + 2 (λ m ) 2 L 4 2M * t 8M * )e -t dt = 2 2M * 3 2M * + 2 2M * (8M * )! L 8M * (λ m ) 4M * ≤ C M * u 1 + ( 1 λ m (γ * min ) 2 (T ) 2 ) 4M * (8M * )! .
Finally, we see that there exists some C u independent of m, γ min , γ * min , N * and T such that 

σ + m,N ,T 2 L 2 (0,T ) ≤ C u e -2λmT e Cu √ λm γ * min e Cu λ N * γ min √ λm e Cu (γ * min ) 2 T ( 1 (T ) 3/2 + 1 (γ * min ) 2 (T ) 2 ) e CuM * 1 + ( 1 λ m (γ * min ) 2 (T ) 2 ) 4M * (8M * )! ,
ε λn : s ∈ (0, T ) → e -λns , n ≥ 1. It follows from (2. 7) that ∞ n=1 1 λ n < ∞,
and then it is well-known ( [START_REF] Schwartz | Étude des sommes d'exponentielles[END_REF][START_REF] Redheffer | Elementary remarks on completeness[END_REF]) that E(Λ, T ) is a proper subspace of L 2 (0, T ). Moreover, given m ≥ 1, denote Λ m := (λ k ) k =m , and E(Λ m , T ) the smallest closed subspace of L 2 (0, T ) containing the functions ε λ k , with k ≥ 1 and k = m (it does not include ε λm ). Then consider p m the orthogonal projection of ε λm on E(Λ m , T ), and d T,m the distance between ε λm and E(Λ m , T ): we have

(4. 1) d 2 T,m = inf p∈E(Λm,T ) ε λm -p 2 L 2 (0,T ) = T 0 (e -λms -p m (s)) 2 ds.
Then ε λm -p m is orthogonal to E(Λ m , T ) , which implies that ∀n = m, Hence consider

(4. 2) σ - m (s) := e -λms -p m (s) d 2 T,m : the sequence of functions (σ - m ) m≥1 is a biorthogonal family for the set (ε λn ) n≥1 = (e -λnt ) n≥1 in L 2 (0, T ).
Moreover it is optimal in the following sense: if (σ - m ) m≥1 is another biorthogonal family for the set (ε λn

) n≥1 in L 2 (0, T ), then for all m ≥ 1, σ- m -σ - m is orthogonal to all ε λn , hence to E(Λ, T ), hence to σ - m since σ - m ∈ E(Λ, T ). Hence σ- m 2 L 2 (0,T ) = σ - m 2 L 2 (0,T ) + σ- m -σ - m 2 L 2 (0,T ) ≥ σ - m 2 L 2 (0,T ) . Therefore (4. 3) σ- m L 2 (0,T ) ≥ σ - m L 2 (0,T ) = 1 d T,m
.

Hence 1 d T ,m is a lower bound of every biorthogonal sequence (σ - m ) m≥1 ; and a bound from above for d T,m gives a bound from below for every biorthogonal sequence.

At last, we note that if the sequence of functions (σ + m ) m≥1 is a biorthogonal family for the set (e λnt ) n≥1 in L 2 (0, T ), then Hence e -λmT d T ,m is a lower bound of every biorthogonal sequence (σ + m ) m≥1 . In the following (Lemma 4.4), we provide a bound from above for d T,m , that will give a bound from below for every biorthogonal sequence (σ + m ) m≥1 .

4.2.

A general result for sums of exponentials.

Clearly,

d T,m ≤ e -λms -p(s) L 2 (0,T )
for all p ∈ E(Λ m , T ). The idea used in Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] is to chose a particular element p ∈ E(Λ m , T ) in order to provide an upper bound of d T,m . The first thing to note is the following: consider M ≥ m and

q(s) := M +1 i=1 A i e -λis with coefficients A 1 , • • • , A M +1 . Then q ∈ E(Λ m , T
) if and only if A m = 0, and when A m = 0, then

1 A m q(s) = e -λms + m-1 i=1 A i A m e -λis + M +1 i=m+1 A i A m e -λis , hence (4. 5) 1 A m q(s) L 2 (0,T ) ≥ d T,m .
We will choose the coefficients

A 1 , • • • , A M +1 so that q(0) = q (0) = q (0) = • • • = q (M -1) (0) = 0, q (M ) (0) = 1.
The following lemma is essentially extracted from Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]:

Lemma 4.1. Consider M ≥ 0, and 0 < λ 1 < • • • < λ M +1 . a) There exist coefficients A 1 , • • • , A M +1 so that the function q defined by q(s) := M +1 i=1 A i e -λis satisfies                      q(0) = 0 q (0) = 0 q (0) = 0 . . . q (M -1) (0) = 0 q (M ) (0) = 1.
The coefficients are given by the following formulas:

(4. 6) ∀k ∈ {1, • • • , M + 1}, A k = 1 M +1 i=1,i =k (λ i -λ k ) . 
b) With this choice of coefficients, we have

(4. 7) ∀s > 0, 0 < q(s) ≤ s M M ! e -λ1s .
The only difference with Güichal [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] is the estimate (4. 7) which is more precise than the one obtained in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], Lemma 4:

∀s > 0, 0 < q(s) < s M M ! .
In the following, we prove (4. 7), and in a sake of completeness, we give the main arguments for part a) of Lemma 4.1.

Proof of Lemma 4.1. a) We write the linear system

                   0 = q(0) = M +1 i=1 A i 0 = q (0) = M +1 i=1 -λ i A i 0 = q (0) = M +1 i=1 (-λ i ) 2 A i • • • 0 = q (M -1) (0) = M +1 i=1 (-λ i ) (M -1) A i 1 = q (M ) (0) = M +1 i=1 (-λ i ) M A i .
This can be written

(4. 8)        1 1 • • • • • • 1 -λ 1 -λ 2 • • • • • • -λ M +1 (-λ 1 ) 2 (-λ 2 ) 2 • • • • • • (-λ M +1 ) 2 . . . . . . . . . . . . . . . (-λ 1 ) M (-λ 2 ) M • • • • • • (-λ M +1 ) M               A 1 A 2 A 3 . . . A M +1        =        0 0 0 . . . 1       
.

The (M + 1) × (M + 1) matrix A that appears in the left hand side of (4. 8) is invertible: indeed, its determinant is of Vandermonde type, and

det A = k<l (-λ l ) -(-λ k ) = k<l λ k -λ l = 0.
Hence the system (4. 8) is invertible, and the Cramer's formula gives

A k = det B det A ,
where B is the (M + 1) × (M + 1) matrix obtained from A putting the right-hand side member of (4. 8) at the place of the k th -column of A. But then, we can develop det B with respect to the k th -column and we find again a Vandermonde determinant. Then using the formula of Vandermonde determinant, one gets (4. 6). b) We prove (4. 7) by induction. When M = 0, (4. 7) is true. Assume that it is true for some M , and let us prove that it is true for M + 1: take

q(s) := M +2 i=1 A i e -λis ,
where the coefficients A 1 , • • • , A M +2 , are chosen so that

q(0) = q (0) = q (0) = • • • = q (M ) (0) = 0, q (M +1) (0) = 1.
Then the Taylor developments of q and q say that q(s) = s M +1 (M + 1)! + O(s M +2 ) and q (s) = s M M ! + O(s M +1 ) as s → 0. Consider q(s) = e -2λ M +2 s d ds (q(s)e λ M +2 s ). Then q(s) = e -2λ M +2 s d ds

M +2 i=1 A i e (λ M +2 -λi)s = e -2λ M +2 s M +2 i=1 A i (λ M +2 -λ i )e (λ M +2 -λi)s = M +2 i=1 A i (λ M +2 -λ i )e -(λ M +2 +λi)s .
But the last term in the series is clearly equal to 0, hence q is a sum of M + 1 exponentials. Moreover,

q(s) = q (s)e -λ M +2 s + λ M +2 q(s)e -λ M +2 s = ( s M M ! + O(s M +1 ))e -λ M +2 s + λ M +2 ( s M +1 (M + 1)! + O(s M +2 ))e -λ M +2 s = s M M ! + O(s M +1 ) as s → 0.
Hence q(0) = q (0) = q (0) = • • • = q(M-1) (0) = 0, q(M) (0) = 1, and we can apply the induction assumption to q: then 0 < q(s) < s M M ! e -(λ M +2 +λ1)s .

We deduce first that s → q(s)e λ M +2 s is increasing. Since its value in 0 is 0, then q is positive on (0, +∞). Next, we obtain that

d ds (q(s)e λ M +2 s ) ≤ s M M ! e (2λ M +2 -λ M +2 -λ1)s = s M M ! e (λ M +2 -λ1)s ≤ d ds s M +1 (M + 1)! e (λ M +2 -λ1)s ,
hence by integration,

q(s)e λ M +2 s ≤ s M +1 (M + 1)! e (λ M +2 -λ1)s , hence q(s) ≤ s M +1 (M + 1)! e -λ1s ,
which completes the induction argument and the proof of Lemma 4.1.

4.3.

A precise estimate of the remaining part of the exponential function.

It turns out that we will need an estimate for the remaining part of the exponential function

∞ n=N x n n!
in function of x and N . We prove the following general and precise result: Lemma 4.2. We have the following estimates:

(4. 9) ∀N ≥ 1, ∀x ≥ 0, 1 N ! x 1 + x N e x ≤ ∞ n=N x n n! ≤ C 1 N x 1 + x N e x ,
where

C 1 = max x∈R+ (1 -e -x )(1 + x)
x .

Proof of Lemma 4.2. Denote

f N (x) := ∞ n=N x n n! .
Let us prove by induction that

∀N ≥ 0, ∀x ≥ 0, f N (x) ≥ 1 N ! x 1 + x N e x .
First, of course f 0 (x) = e x , and then

f 0 (x) ≥ 1 0! x 1 + x 0 e x .
Next, assume that

∀x ≥ 0, f N (x) ≥ 1 N ! x 1 + x N e x .
We note that f N +1 (x) = f N (x), and d dx

1 (N + 1)! ( x 1 + x ) N +1 e x = 1 (N + 1)! ( x 1 + x ) N e x N + 1 (1 + x) 2 + x 1 + x .
The study of the variations of the function x → N +1 (1+x

) 2 + x 1+x gives ∀x ≥ 0, 1 - 1 4(N + 1) ≤ N + 1 (1 + x) 2 + x 1 + x ≤ N + 1, hence d dx 1 (N + 1)! ( x 1 + x ) N +1 e x ≤ N + 1 (N + 1)! ( x 1 + x ) N e x = 1 N ! ( x 1 + x ) N e x . Then f N +1 (x) = f N (x) ≥ d dx 1 (N + 1)! ( x 1 + x ) N +1 e x ,
and since the values at 0 are 0, we obtain that

∀x ≥ 0, f N +1 (x) ≥ 1 (N + 1)! ( x 1 + x ) N +1 e x .
This proves the first part of (4. 9). For the second part (which is not necessary for us here), we note that

∀x ≥ 0, f 1 (x) ≤ C 1 x 1 + x 1 e x . Assume that ∀x ≥ 0, f N (x) ≤ C 1 N x 1 + x N e x . Then d dx ( x 1 + x ) N +1 e x = ( x 1 + x ) N e x N + 1 (1 + x) 2 + x 1 + x ≥ (1- 1 4(N + 1) )( x 1 + x ) N e x .
Hence

f N +1 (x) = f N (x) ≤ C 1 N x 1 + x N e x ≤ C 1 N 1 - 1 4(N +1) d dx ( x 1 + x ) N +1 e x .
To conclude, note that

∀N ≥ 1, N 1 - 1 4(N +1) ≤ N + 1 : indeed, (N + 1)(1 - 1 4(N + 1) ) = N + 1 - 1 4 = N + 3 4 ≥ N.
Hence, we obtain that

∀x ≥ 0, f N +1 (x) ≤ C 1 (N + 1) x 1 + x N +1 e x ,
which concludes the induction, and the proof of (4. 9). 4.4. Consequence: a bound from above for the distance d T,m .

As a consequence of the upper estimate (4. 5) for the distance and of Lemma 4.1, we obtain the following inequality: for all m ≥ 1, for all M ≥ m, we have 

(4. 10) d T,m ≤ M +1 i=1,i =m |λ i -λ m | T 0 s 2M M ! 2 e -
* := [ 2 √ λ 1 γ max ] + m + 2 and C(T, γ max , λ 1 , m) = 6 √ 1 + 2T λ 1 π 2 √ 2T (k * -1)! (m + k * + 3)! (m -1)! (T γ 2 max ) k * +2 (1 + T γ 2 max ) m+k * +3 . Then (4. 11) ∀m ≥ 1, 1 d T,m ≥ C(T, γ max , λ 1 , m) e 1 T γ 2 max . Proof of Lemma 4.3. Of course T 0 s 2M M ! 2 e -2λ1s ds ≤ T 2M +1 M ! 2 (2M + 1)
, an, on the other hand,

T 0 s 2M M ! 2 e -2λ1s ds ≤ T 2M M ! 2 T 0 e -2λ1s ds ≤ T 2M M ! 2 1 -e -2λ1T 2λ 1 . Hence T 0 s 2M M ! 2 e -2λ1s ds ≤ T 2M M ! 2 inf{ T 2M + 1 , 1 -e -2λ1T 2λ 1 }. But it is easy to check that ∀a, b > 0, inf{a, 1 b } ≤ 2a 1 + ab .
Indeed, inf{a, 1 b } = a if ab ≤ 1, and in this case 1 + ab ≤ 2, hence a(1 + ab) ≤ 2a. On the other hand, when ab ≥ 1, inf{a, 1 b } = 1 b , and 1 + ab ≤ 2ab. We deduce that (4. 12)

T 0 s 2M M ! 2 e -2λ1s ds 1/2 ≤ T M M ! √ 2T √ 2M + 1 + 2T λ 1 .
Now it remains to estimate the product

M +1 i=1,i =m |λ i -λ m | = M +1 i=1,i =m | λ i -λ m | M +1 i=1,i =m ( λ i + λ m ) .
We derive from (2. 7) first that

| λ i -λ m | ≤ γ max |i -m|,
and next that

λ i + λ m ≤ 2 λ 1 + γ max (i + m). Hence • first M +1 i=1,i =m ( λ i + λ m ) ≤ M +1 i=1,i =m (2 λ 1 + γ max (i + m)) ≤ γ M max (M + 1 + [ 2 √ λ1 γmax ] + m + 1)! ([ 2 √ λ1 γmax ] + m + 1)! = c (+) γ M max (M + k * )! with c (+) = 1 ([ 2 √ λ1 γmax ] + m + 1)! and k * := [ 2 √ λ 1 γ max ] + m + 2; • next M +1 i=1,i =m | λ i -λ m | ≤ M +1 i=1,i =m γ max |i -m| = γ M max (m -1)!(M -(m -1))! = c (-) γ M max (M -(m -1))! with c (-) = (m -1)!.
Combining this with (4. 12), we derive from (4. 10)

d T,m ≤ c (+) c (-) √ 2T √ 2M + 1 + 2T λ 1 (T γ 2 max ) M (M + k * )! (M -m + 1)! M ! . Denote c * := c (+) c (-) √ 2T √ 1 + 2T λ 1 .
Then, to conclude, we note that

1 d T,m = 6 π 2 ∞ M =m+1 1 (M -m) 2 1 d T,m ≥ 6 π 2 c * ∞ M =m+1 1 (M -m) 2 M ! (M + k * )! (M -m + 1)! ( 1 T γ 2 max ) M ≥ 6 π 2 c * ∞ M =m+1 1 (M + k * + 2)! ( 1 T γ 2 max ) M = 6 π 2 c * (T γ 2 max ) k * +2 ∞ n=m+k * +3 1 n! ( 1 T γ 2 max ) n .
And using Lemma 4.2, we obtain that (4. 11). This gives the expected exponential behaviour in 1/(T γ 2 max ). In the following we take care of the asymptotic gap γ * max . 

4. 13) 1 d T,m ≥ b * (T, γ max , γ * max , N * , λ 1 , m) e 1 T (γ * max ) 2
where b * is given by

• when m ≤ N * , we have (4. 14) b * (T, γ max , γ * max , N * , λ 1 , m) = C * √ 1 + T λ 1 √ T (T (γ * max ) 2 ) K * +K * +2 (1 + (T (γ * max ) 2 )) N * +K * +K * +3
, where

C * = c u (γ * max ) 2(N * -1) C (+) C (-) 1 (N * + K * + K * + 3)! ,
and C (+) , C (-) , K * and K * are given respectively in (4. 17), (4. 20), (4. 18) and (4. 21); • when m > N * , we have This concludes the proof of Lemma 4.4 when m > N * .

(4. 15) b * (T, γ max , γ * max , N * , λ 1 , m) = C * √ 1 + T λ 1 √ T (T (γ * max ) 2 ) K * +2 (1 + T (γ * max ) 2 ) m+K * +3 , where C * = c u C(+) C(-) 1 (m + K * + 3
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 333421 and completes the proof of Lemma 3.6 and of Theorem 2.1. Proof of Theorem 2.A lower bound for any biorthogonal family. Denote E(Λ, T ) the smallest closed subspace of L 2 (0, T ) containing the functions

T 0 (

 0 e -λms -p m (s))e -λns ds = 0, and T 0 (e -λms -p m (s))e -λms ds = T 0 (e -λms -p m (s))(e -λms -p m (s)) ds = d 2 T,m .

  -s)e λmT e -λns ds = δ mn , hence (σ + m (T -s)e λmT ) m is biorthogonal for the set (e -λnt ) n≥1 in L 2 (0, T ). This implies that (4. 4) σ+ m L 2 (0,T ) ≥ e -λmT d T,m .

(
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 2122121 )! where C(+) , C(-) and K * are given respectively in (4. 23), (4. 25) and (4. 18).Proof ofLemma 4.4. The starting point is of course (4. 10) and (4. 12). Concerning the estimate of the product, we proceed in the same way as previously, distinguishing several cases. a) First we investigate what can be said when m ≤ N * < M + 1: in this case,• first we see that∀i ≥ N * + 1, λ i + λ m = λ i -λ N * + λ N * + λ m ≤ γ * max (i -N * ) + 2 λ 1 + (m + N * )γ max ; hence (4. 16) M +1 i=1,i =m ( λ i + λ m ) = N * i=1,i =m ( λ i + λ m ) λ 1 +(m+N * )γ max +γ * max (i-N * )) ≤ C (+) (γ * max ) M (M + 1 -N * + [ 2 √ λ 1 + (N * + m)γ max γ * max ] + 1)! = C (+) (γ * max ) M (M + K * )! with (4. 17) C (+) = ( γ max γ * max ) N * -1 (N * + m + [ (i -N * ) + γ max (N * -m) ≤ C (-) (γ * max ) M (M -N * + 2 + [ γ max γ * max (N * -m)])! = C (-) (γ * max ) M (M + K * )-m)] -N * + 2;We deduce from (4. 10), (4. 12), (4. 16) and (4. 24) thatd T,m ≤ C (+) C (-) M + K * )! (M + K * )! M ! (T (γ * max ) 2 ) M .DenoteC * := C (+) C (-) √ 2T √ 1 + 2T λ 1 . Hence d T,m ≤ C * (M + K * )! (M + K * )! M ! (T (γ * max ) 2 ) M .Then, as we did before,K * )! (M + K * )! = 1 (M -N * ) 2 1 (M + K * )! (M + 1) • • • (M + K * ) ≥ 1 (M + K * + K * + 2)! . K * + K * + 2)! ( 1 T (γ * max ) 2 ) M = 6 π 2 C * (T (γ * max ) 2 ) K * +K * +2 ∞ n=N * +K * +K * +3 ( + K * + K * + 3)! X K * +K * +2 (1 + X) N * +K * +K * +3 e 1/X .with X = T (γ * max ) This concludes the proof of Lemma 4.4 when m ≤ N * . b) In the same way, if m > N * , we have • first M +1 i=1,i =m( λ i + λ m ) = N * i=1 ( λ i + λ m ) M +1 i=N * +1,i =m ( λ i + λ m ) +γ max (i+m)) M +1 i=N * +1,i =m (2 λ 1 +(m+N * )γ max +γ * max (i-N * )) ≤ (γ max ) N * (N * + m + [ λ1+(N * +m)γmax γ * max ] + 1)!(m -N * + [ 2 √ λ1+(N * +m)γmax γ max |i -m| M +1 i=N * +1,i =m γ * max |i -m| = (γ max ) N * (γ * max ) M -N * (m-1)! (M + 1 -m)! = C(-) (γ * max ) M (M + 1 -N * (m -1)!;• then we can conclude:d T,m ≤ C * (M + K * )! (M + 1 -m)! M ! T M (γ * max ) (T (γ * max ) 2 ) .

  2λ1s ds

	1/2

.

It remains to estimate the terms that appear in the right hand side. This is the object of the next sections, and it is based on the gap conditions (2. 7) and (2. 8).

4.4.a. Estimate under the uniform gap condition (2. 7).

We prove the following: Lemma 4.3. Assume that (λ n ) n satisfies (2. 7). Denote k

  4.4.b. Estimate under the uniform gap condition (2. 7) and the asymptotic gap condition (2. 8). Now, taking into account the 'asymptotic gap' given by (2. 8), we will be able to improve the previous estimate, roughly speaking replacing γ 2 max by (γ * max ) 2 in the exponential factor. Lemma 4.4. Assume that (λ n ) n satisfies (2. 7)-(2. 8). Then
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