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THE COST OF CONTROLLING STRONGLY DEGENERATE

PARABOLIC EQUATIONS

P. CANNARSA, P. MARTINEZ, AND J. VANCOSTENOBLE

Abstract. We consider the typical one-dimensional strongly degenerate par-
abolic operator Pu = ut − (xαux)x with 0 < x < ` and α ∈ (0, 2), controlled

either by a boundary control acting at x = `, or by a locally distributed con-
trol. Our main goal is to study the dependence of the so-called controllability

cost needed to drive an initial condition to rest with respect to the degener-

acy parameter α. We prove that the control cost blows up with an explicit

exponential rate, as eC/((2−α)
2T ), when α→ 2− and/or T → 0+.

Our analysis builds on earlier results and methods (based on functional
analysis and complex analysis techniques) developed by several authors such

as Fattorini-Russel, Seidman, Güichal, Tenenbaum-Tucsnak and Lissy for the

classical heat equation. In particular, we use the moment method and related
constructions of suitable biorthogonal families, as well as new fine properties

of the Bessel functions Jν of large order ν (obtained by ordinary differential

equations techniques).

1. Introduction

1.1. Presentation of the problem and of the main results.
The aim of this paper is to study the null controllability cost for the typical 1D

degenerate parabolic operator

(1. 1) Pu = ut − (xαux)x (x ∈ (0, 1), t > 0)

under the action of a boundary control H:

(1. 2)


ut − (xαux)x = 0, x ∈ (0, 1), t > 0,

(xαux)(0, t) = 0, t > 0,

u(1, t) = H(t), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

and under the action of a locally distributed control h:

(1. 3)


ut − (xαux)x = h(x, t)χ[a,b](x) x ∈ (0, 1), t > 0,

(xαux)(0, t) = 0, t > 0,

u(1, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, 1).

In [11], we established the following property:
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given α ≥ 1, T > 0, 0 < a < b < 1, then, for any u0 ∈ L2(0, 1),
problem (1. 3) admits a control h ∈ L2((a, b) × (0, T )) that drives
the solution to 0 in time T > 0 if and only if α < 2.

In the same way,

given α ≥ 1, T > 0, then, for any u0 ∈ L2(0, 1), problem (1. 2)
admits a control H ∈ L2(0, T ) that drives the solution to 0 in time
T > 0 if and only if α < 2.

The aim of this paper is to understand the behavior of the cost of control as:

• α→ 2− (since α = 2 is the threshold for null controllability) ,
• and/or T → 0+, an issue related to the so-called ’fast control problem’.

It is well-known that the cost of control blows up when T → 0+ (at least for
nondegenerate parabolic equations, as we will recall in the following), and it is
expected to blows up when α → 2−. In this work we will prove precise upper and
lower bounds for this blow-up: denoting by u(h) the solution of (1. 3) for any given
h ∈ L2((a, b)× (0, T )), we prove that the null controllability costs, defined as

Cctr−bd(α, T ) := sup
‖u0‖L2(0,1)=1

inf{‖H‖H1(0,T ), u
(H)(T ) = 0},

and
Cctr−loc(α, T ) := sup

‖u0‖L2(0,1)=1

inf{‖h‖L2((0,1)×((0,T )), u
(h)(T ) = 0},

blow up

• as α→ 2−,
• and/or as T → 0+,

at a precise speed: there exist positive constants C,C ′ such that

e
− 1
C

1

(2−α)4/3
(ln 1

2−α+ln 1
T )
e

C
T (2−α)2 ≤ Cctr−bd(α, T ) ≤ e

C′
T (2−α)2 ,

and, in a similar way,

e
− 1
C

1

(2−α)4/3
(ln 1

2−α+ln 1
T )
e

C
T (2−α)2 ≤ Cctr−loc(α, T ) ≤ e

C′
T (2−α)2 .

(See precise statements in Theorems 2.1, 2.2, 2.3 and 2.4.)

1.2. Relation to literature.
This question of the cost of null controllability when some parameter comes into

play has been studied for several equations and in several situations:

• the ’fast control problem’, that is, the cost of null controllability with re-
spect to time T as T → 0+, has been investigated for the heat operator

(1. 4) Pu = ut −∆u

(with a boundary or localized control) and the Schrödinger equation by sev-
eral authors, see, in particular, the works by Seidman et al [58, 59], Güichal
[32], Miller [47, 48, 49, 50], Tenenbaum and Tucsnak [61, 62], and the more
recent papers by Lissy [42] (for dispersive equations) and Benabdallah et
al [5] (for parabolic systems);

• the ’vanishing viscosity limit’, that is the cost of null controllability of a
heat operator with the addition of a transport term when the diffusion
coefficient goes to zero:

(1. 5) Pεu = ut − εuxx +Mux

(again with a boundary or localized control) has been investigated by Coron
and Guerrero [17], Guerrero and Lebeau [30], Glass [28], Glass and Guerrero
[29], and Lissy [43];
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• the 1D degenerate parabolic equation, controlled by a boundary control
acting at the degeneracy point (and α → 1−, 1 being the threshold value
of well-posedness in this case, see [13]).

1.3. Description of the method and connection with the literature.
For the proof of our results we follow the classical strategy which consists in:

• the spectral analysis of the associated stationary operator (see Proposition
2.4) in order to determine the eigenvalues and eigenfunctions of our problem
by typical ODE techniques,
• the use of the moment method, that was developed in the seminal papers

by Fattorini and Russell [23, 24], to give, at least formally, a sequence of
relations satisfied by the desired control,
• the construction and the properties of suitable biorthogonal families which

are the main tool (at this point we will use two extensions of the results of
Seidman-Avdonin-Ivanov [59] and Güichal [32], that we proved in [13] and
[14]),
• the construction of suitable controls, mainly based on the behavior of the

eigenfunctions of the spectral problem in the control region.

Hence a starting point is the study of the spectral problem. In the context of
degenerate parabolic equations, it is classical that the eigenfunctions of the problem
are expressed in terms of Bessel functions of order να = α−1

2−α , and the eigenvalues

in terms of the zeros of these Bessel functions, see Kamke [35]. This was a crucial
observation in the work by Gueye [31], where the null controllability of the degen-
erate heat equation for α ∈ [0, 1) was addressed for the first time when the control
acts at the degeneracy point, and in [13] where we obtained optimal bounds for the
cost of control for such a problem. For strongly degenerate parabolic equations, an
additional source of difficulty is that the order of the useful Bessel functions blows
up as α→ 2−. To cope with such difficulties several classical results from Watson
[64] and Qu-Wong [55] will be needed.

It turns out that there is a common phenomenon in the classical fast control
problem ((1. 4) when T → 0+), the vanishing viscosity problem ((1. 5) when ε→
0+), and the null controllability of the degenerate parabolic equation (1. 1) when
the degeneracy parameter approaches its critical value: the eigenvalues concentrate
when parameters go to their critical values. Such a concentration phenomenon can
be observed:

• for the vanishing viscosity problem, in [17];
• for degenerate parabolic equations, once the eigenvalues have been com-

puted, in Lemma 5.1;
• for the classical heat equation and the fast control problem, once time has

been renormalized to a fixed value, see Remark 5.1.

This common feature is the key point in understanding the behavior of the control in
every context. Indeed, the construction of suitable biorthogonal families is strongly
related to gap properties: the gap λn+1 − λn → 0 when the degeneracy parameter
goes to its critical limit, and the speed at which it goes to zero govern the upper
and lower estimates for the associated biorthogonal families (since the norm of such
biorthogonal families involve large products of the inverse of such differences), hence
for the null controllability cost.

In the context of degenerate parabolic equations, in order to obtain optimal
bounds,

• we refine classical results providing sharp gap estimates for the zeros of
Bessel functions of large order, see Lemma 5.2,
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• we will combine these gap estimates with some recent results [13, 14] that
complete classical results of Fattorini-Russel [24], obtaining explicit and
precise (upper and lower) estimates for biorthogonal families, even in short
time, under some gap conditions, namely:{

∀n ≥ 1, γmin ≤
√
λn+1 −

√
λn ≤ γmax

∀n ≥ N∗, γ∗min ≤
√
λn+1 −

√
λn ≤ γ∗max

these gap conditions are a little more general than the asymptotic develop-
ment of the eigenvalues used in Tenenbaum-Tucsnak [61] and Lissy [42, 43]:

λn = rn2 +O(n),

but, which is more important, they allow us to obtain precise estimates
for the biorthogonal family when some parameter comes into play, as it
happens here or in 2D problems (see, e.g., [4, 25]); (the proof of the general
results obtained in [13, 14] concerning biorthogonal families is based on
some complex and hilbertian analysis techniques developped by Seidman-
Avdonin-Ivanov [59], Güichal [32] and the adjonction of some well-chosen
parameter, inspired from Tenenbaum-Tucsnak [61]);
• we complete the analysis of the asymptotic behavior of Bessel functions

of large order, see Proposition 2.5; this issue is related to the so-called
’transition zone’ (see Watson [64] and Krasikov [37]) and recent results
of Privat-Trélat-Zuazua [53] p. 957, even though we prove Proposition 2.5
directly by estimating the norm of the solution of a second-order differential
equation depending on a large parameter.

1.4. Plan of the paper.
The plan of the paper is the following.

• In section 2, we state our main results concerning the null controllability
costs (Theorems 2.1-2.4) and the spectral properties of the problem (see
Propositions 2.4 and 2.5).
• In section 3, we recall the main properties of Bessel functions, and prove

Propositions 2.4 and 2.2.
• In section 4, we establish useful identities by the moment method.
• In section 5, we prove Theorem 2.1; the proof is based on a recent result [14]

based on hilbertian techniques developed by Güichal [32], the concentration
of the eigenvalues (Lemma 5.1) and a precised form of a classical property
concerning the gap of the zeros of the Bessel function of large parameter
(Lemma 5.2).
• In section 6 we prove Theorem 2.2; the proof is based on the construction

of some suitable biorthogonal family, based on [13] and inspired by the
construction of Seidman et al [59].
• In section 7, we prove Theorem 2.4, which is a direct consequence of the

biorthogonal family constructed in section 6, assuming Proposition 2.5.
• In section 8, we prove Theorem 2.3; the proof is based on energy methods

and uses Theorem 2.1.
• In section 9, we study the eigenfunctions in the control region, proving

Proposition 2.5; the proof is based on ODE techniques.

2. The cost of null controllability: main results

2.1. The controllability problems.
We study the cost of null controllability of a degenerate parabolic equation, using

either a boundary control acting at the non degeneracy point or a locally distributed
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control. More precisely, we fix ` > 0, α ≥ 1, T > 0, and for any u0 ∈ L2(0, `), we
wish to find a control H such that the solution of

(2. 1)


ut − (xαux)x = 0, x ∈ (0, `), t > 0,

(xαux)(0, t) = 0, t > 0,

u(`, t) = H(t), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

also satisfies u(·, T ) = 0.
Similarly, given 0 < a < b < ` and for any u0 ∈ L2(0, `), we wish to find a control

h such that the solution of

(2. 2)


ut − (xαux)x = h(x, t)χ[a,b](x) x ∈ (0, `), t > 0,

(xαux)(0, t) = 0, t > 0,

u(`, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, `),

also satisfies u(·, T ) = 0.
In space dimension 1, these two problems are very close. From [11], we know that
such controls exist if and only if α ∈ [1, 2).

2.2. Functional setting and well-posedness.

2.2.a. Functional setting and well-posedness for a locally distributed control.
For 1 ≤ α < 2, we consider the following spaces :

H1
α(0, `) := {u ∈ L2(0, `) | u locally absolutely continuous in (0, `], xα/2ux ∈ L2(0, `)},

H1
α,0(0, `) := {u ∈ H1

α(0, `) | u(`) = 0},
and

H2
α(0, `) := {u ∈ H1

α(0, `) | xαux ∈ H1(0, `)}
Then, the operator A : D(A) ⊂ L2(0, `)→ L2(0, `) will be defined by
∀u ∈ D(A), Au := (xαux)x,

D(A) := {u ∈ H1
α,0(0, `) | xαux ∈ H1(0, `)} = H2

α(0, `) ∩H1
α,0(0, `),

= {u ∈ L2(0, `) | u locally absolutely continuous in (0, `],

xαu ∈ H1
0 (0, `), xαux ∈ H1(0, `) and (xαux)(0) = 0}.

Notice that, if u ∈ D(A), then u satisfies the Neumann boundary condition (xαux)(0) =
0 at x = 0 and the Dirichlet boundary condition u(`) = 0 at x = `.

Then the following results hold, (see, e.g., [7] and [10]).

Proposition 2.1. A : D(A) ⊂ L2(0, `)→ L2(0, `) is a self-adjoint negative opera-
tor with dense domain.

Hence, A is the infinitesimal generator of an analytic semigroup of contractions
etA on L2(0, `). Given a source term h in L2((0, `)× (0, T )) and an initial condition
v0 ∈ L2(0, `), consider the problem

(2. 3)


vt − (xαvx)x = h(x, t),

(xαvx)(0, t) = 0,

v(`, t) = 0,

v(x, 0) = v0(x).
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The function v ∈ C0([0, T ];L2(0, `)) ∩ L2(0, T ;H1
α,0(0, `)) given by the variation of

constant formula

v(·, t) = etAv0 +

∫ t

0

e(t−s)Ah(·, s) ds

is called the mild solution of (2. 3). We say that a function

v ∈ C0([0, T ];H1
α,0(0, `)) ∩H1(0, T ;L2(0, `)) ∩ L2(0, T ;D(A))

is a strict solution of (2. 3) if v satisfies vt − (xαvx)x = h(x, t) almost everywhere
in (0, `) × (0, T ), and the initial and boundary conditions for all t ∈ [0, T ] and all
x ∈ [0, `].

Proposition 2.2. If v0 ∈ H1
α,0(0, `), then the mild solution of (2. 3) is the unique

strict solution of (2. 3).

The proof of Proposition 2.2 follows from classical results, see subsection 3.4.

2.2.b. Functional setting and well-posedness for a boundary control.
To define the solution of the boundary value problem (2. 1), we transform it into

a problem with homogeneous boundary conditions and a source term (depending
on the control h): formally, if u is a solution of (2. 1), then the function v defined
by

(2. 4) v(x, t) = u(x, t)− x2−α

`2−α
H(t)

satisfies the auxiliary problem

(2. 5)


vt − (xαvx)x = −x

2−α

`2−αH
′(t) + 2−α

`2−αH(t),

(xαvx)(0, t) = 0,

v(`, t) = 0,

v(x, 0) = u0(x)− x2−α

`2−αH(0).

Reciprocally, given H ∈ H1(0, T ), consider the solution v of

(2. 6)


vt − (xαvx)x = −x

2−α

`2−αH
′(t) + 2−α

`2−αH(t),

(xαvx)(0, t) = 0,

v(`, t) = 0,

v(x, 0) = v0(x).

Then the function u defined by

(2. 7) u(x, t) = v(x, t) +
x2−α

`2−α
H(t)

satisfies

(2. 8)


ut − (xαux)x = 0,

(xαux)(0, t) = 0,

u(`, t) = H(t),

u(x, 0) = v0(x) + x2−α

`2−αH(0).

This motivates the following definition of what is the solution of the boundary value
problem (2. 1):

Definition 2.1. a) We say that u ∈ C([0, T ];L2(0, `)) ∩ L2(0, T ;H1
α(0, `)) is the

mild solution of (2. 1) if v defined by (2. 4) is the mild solution of (2. 5).
b) We say that

u ∈ C([0, T ];H1
α(0, `)) ∩H1(0, T ;L2(0, `)) ∩ L2(0, T ;H2

α(0, `))

is the strict solution of (2. 1) if v defined by (2. 4) is the strict solution of (2. 5).
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Then we immediately obtain

Proposition 2.3. a) Given u0 ∈ L2(0, `), H ∈ H1(0, T ), problem (2. 1) admits a
unique mild solution.

b) Given u0 ∈ H1
α,0(0, `), H ∈ H1(0, T ) such that u0(`) = H(0), problem (2. 1)

admits a unique strict solution.

The proof of Proposition 2.3 follows immediately, noting that

H̃(x, t) :=
x2−α

`2−α
H(t)

satisfies

H̃ ∈ C([0, T ];H1
α(0, `)) ∩H1(0, T ;L2(0, `)) ∩ L2(0, T ;H2

α(0, `)).

2.3. Null controllability results for the boundary control.
Consider

(2. 9) Cctr−bd(α, T, `) := sup
‖u0‖L2(0,`)=1

inf{‖H‖H1(0,T ), u
(H)(T ) = 0},

where u(H) is the solution of problem (2. 1). Then we prove the following estimates:

2.3.a. Lower bound of the null controllability cost.

Theorem 2.1. There exists a constant Cu > 0 independent of α ∈ [1, 2), of ` > 0
and of T > 0 such that

(2. 10)

Cctr−bd(α, T, `) ≥ Cu
`2−α√

(2− α)T`
e−π

2 T

`2−α e
Cu

`2−α
T (2−α)2 e

− 1
Cu

( 1

(2−α)4/3
+ `1−α/2

2−α )(ln `1−α/2
2−α +ln 1

T )
.

Remark 2.1. This proves that the cost blows up when T → 0+, or α → 2−,
or ` → +∞, and at least exponentially fast. When ` is fixed and T ≤ T0, this
simplifies into

Cctr−bd(α, T, `) ≥ Cue
Cu

T (2−α)2 e
− 1
Cu

1

(2−α)4/3
(ln 1

2−α+ln 1
T )
.

2.3.b. Upper bound of the null controllability cost.

Theorem 2.2. There exists a constant Cu > 0 independent of α ∈ [1, 2), of ` > 0
and of T > 0 such that

(2. 11) Cctr−bd(α, T, `) ≤
Cu√

(2− α)T`
e−

1
Cu

T

`2−α e
Cu

`2−α
T (2−α)2 .

Remark 2.2. This proves that the cost blows up exactly exponentially fast as
T → 0+, or α→ 2−, or `→ +∞. When ` is fixed and T ≤ T0, this simplifies into

Cctr−bd(α, T, `) ≤
Cu√

(2− α)T
e

Cu
T (2−α)2 .

2.4. Null controllability results for the locally distributed control.
Consider

(2. 12) Cctr−loc(α, T, `) := sup
‖u0‖L2(0,`)=1

inf{‖h‖L2((a,b)×((0,T )), u
(h)(T ) = 0},

where u(h) is the solution of problem (2. 2). For this problem, we are mainly
interested in the dependence with respect to the degeneracy (α→ 2−) and to time
(fast controls, when T → 0), see Remarks 2.3 and 2.4. And we prove the following
estimates:
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2.4.a. Lower bound of the null controllability cost.

Theorem 2.3. Given ` > 0, and 0 < a < b < `, there exists a constant C̃ =
C̃(a, b, `) > 0 independent of α ∈ [1, 2) and of T > 0 such that

(2. 13) Cctr−loc(α, T, `) ≥ C̃e
C̃

T (2−α)2 e
− 1
C̃

1

(2−α)4/3
(ln 1

2−α+ln 1
T )− 1

C̃
T − 1.

Remark 2.3. In the proof of Theorem 2.3 we obtain an explicit expression of
C̃(a, b, `). And of course Theorem 2.3 proves that the cost blows up (exponentially
fast) when T → 0+, or α→ 2−: when T → 0 and/or α→ 2−, this simplifies into

Cctr−loc(α, T, `) ≥ C̃e
C̃

T (2−α)2 e
− 1
C̃

1

(2−α)4/3
(ln 1

2−α+ln 1
T )
.

2.4.b. Upper bound of the null controllability cost.

Theorem 2.4. There exists a constant Cu = Cu > 0 independent of α ∈ [1, 2), of
T > 0 and of 0 < a < b < `, and γ∗0 = γ∗0(a, b, `) > 0 such that

(2. 14) Cctr−loc(α, T, `) ≤
Cu
γ∗0
e
Cu

`2−α
T (2−α)2 e−

1
Cu

T

`2−α max{ 1√
T (2− α)

,
1

`1−α/2
}.

Remark 2.4. This proves that the cost blows up exactly exponentially fast as
T → 0+, or α→ 2−, or `→ +∞. When ` is fixed and T ≤ T0, this simplifies into

Cctr−loc(α, T, `) ≤ Cue
Cu

1
T (2−α)2 .

2.5. The eigenvalue problem.
The knowledge of the eigenvalues and associated eigenfunctions of the degenerate

diffusion operator u 7→ −(xαu′)′, i.e. the solutions (λ,Φ) of

(2. 15)


−(xαΦ′(x))′ = λΦ(x) x ∈ (0, `),

(xαΦ′(x))(0) = 0,

Φ(`) = 0.

will be essential for our purposes.

2.5.a. Eigenvalues and eigenfunctions.
It is well-known that Bessel functions play an important role in this problem,

see, e.g., Kamke [35]. For α ∈ [1, 2), let

να :=
α− 1

2− α
, κα :=

2− α
2

.

Given ν ≥ 0, we denote by Jν the Bessel function of first kind and of order ν (see
section 3.2) and denote jν,1 < jν,2 < · · · < jν,n < . . . the sequence of positive zeros
of Jν . Then we have the following:

Proposition 2.4. The eigenvalues λ for problem (2. 15) are given by

(2. 16) ∀n ≥ 1, λα,n = `α−2κ2
αj

2
να,n

and the corresponding normalized (in L2(0, `)) eigenfunctions takes the form

(2. 17) Φα,n(x) =

√
2κα

`κα |J ′να(jνα,n)|
x(1−α)/2Jνα(jνα,n(

x

`
)κα), x ∈ (0, `).

Moreover the family (Φα,n)n≥1 forms an orthonormal basis of L2(0, `).

Remark 2.5. Gueye [31] proved Proposition 2.4 in the case α ∈ [0, 1) and when
` = 1. The case α ∈ [1, 2) and ` 6= 1 is very similar.
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2.5.b. The eigenfunctions in the control region.
We will prove the following property:

Proposition 2.5. Given 0 < a < b < `, there exists γ∗0 = γ∗0 (a, b, `) > 0 such that

(2. 18) ∀α ∈ [1, 2),∀m ≥ 1,

∫ b

a

Φα,m(x)2 dx ≥ γ∗0 (2− α).

It is classical in the nondegenerate case (Lagnese [38]) that

inf
m

∫ b

a

Φ2
α,m > 0;

but, in our purpose of estimating the cost of null controllability, it is necessary to

have a lower bound of
∫ b
a

Φ2
α,m with respect to the degeneracy parameter α when

α→ 2−, and the dependence is given in Proposition 2.5. This does not come easily,
since Φα,m is solution of a second-order differential equation depending on a large
parameter. We will overcome this difficulty with ODE techniques.

3. Proof of Propositions 2.4 and 2.2

In this section, we study the spectral problem (2. 15) and the properties of
the eigenvalues and eigenfunctions, and as a first application we deduce the well-
posedness result stated in Proposition 2.2.

Let us study the spectral problem. First, one can observe that if λ is an eigen-
value, then λ > 0: indeed, multiplying (2. 15) by Φ and integrating by parts,
then

λ

∫ `

0

Φ2 =

∫ `

0

xαΦ2
x,

which implies first λ ≥ 0, and next that Φ = 0 if λ = 0.

3.1. The link with the Bessel’s equation.
There is a change a variables that allows one to transform the eigenvalue problem

(2. 15) into a differential Bessel’s equation (see in particular Kamke [35, section
2.162, equation (Ia), p. 440], and Gueye [31]): assume that Φ is a solution of
(2. 15) associated to the eigenvalue λ; then one easily checks that the function Ψ
defined by

(3. 1) Φ(x) =: x
1−α
2 Ψ

( 2

2− α
√
λx

2−α
2

)
is solution of the following boundary problem:

(3. 2)


y2Ψ′′(y) + yΨ′(y) + (y2 − (α−1

2−α )2)Ψ(y) = 0, y ∈ (0, 2
2−α

√
λ`κα),

(2− α)y
1

2−αΨ′(y)− (α− 1)y
α−1
2−αΨ(y)→ 0 as y → 0,

Ψ
(

2
2−α

√
λ`

2−α
2

)
= 0.

3.2. Bessel’s equation and Bessel’s functions of order ν. For reader con-
venience, we recall here the definitions concerning Bessel’s equation and functions
together with some useful properties of these functions and of their zeros. Through-
out this section, we assume that ν ∈ R+.
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3.2.a. Bessel’s equation and Bessel’s functions of order ν.
The Bessel’s functions of order ν are the solutions of the following differential

equation (see [64, section 3.1, eq. (1), p. 38] or [41, eq (5.1.1), p. 98]):

(3. 3) y2Ψ′′(y) + yΨ′(y) + (y2 − ν2)Ψ(y) = 0, y ∈ (0,+∞).

The above equation is called Bessel’s equation for functions of order ν. Of course
the fundamental theory of ordinary differential equations says that the solutions of
(3. 3) generate a vector space Sν of dimension 2. In the following we recall what
can be chosen as a basis of Sν .

3.2.b. Fundamental solutions of Bessel’s equation when ν /∈ N.
Assume that ν /∈ N. When looking for solutions of (3. 3) of the form of series of

ascending powers of y, one can construct two series that are solutions:∑
m≥0

(−1)m

m! Γ(ν +m+ 1)

(y
2

)ν+2m

and
∑
m≥0

(−1)m

m! Γ(−ν +m+ 1)

(y
2

)−ν+2m

,

where Γ is the Gamma function (see [64, section 3.1, p. 40]). The first of the two
series converges for all values of y and defines the so-called Bessel function of order
ν and of the first kind which is denoted by Jν :

(3. 4) Jν(y) :=

∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(y
2

)2m+ν

=

∞∑
m=0

c+ν,my
2m+ν , y ≥ 0,

(see [64, section 3.1, (8), p. 40] or [41, eq. (5.3.2), p. 102]). The second series
converges for all positive values of y and is evidently J−ν :

(3. 5) J−ν(y) :=

∞∑
m=0

(−1)m

m! Γ(m− ν + 1)

(y
2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν , y > 0.

When ν 6∈ N, the two functions Jν and J−ν are linearly independent and therefore
the pair (Jν , J−ν) forms a fundamental system of solutions of (3. 3), (see [64, section
3.12, eq. (2), p. 43]).

3.2.c. Fundamental solutions of Bessel’s equation when ν = n ∈ N.
Assume that ν = n ∈ N. When looking for solutions of (3. 3) of the form of

series of ascending powers of y, one sees that Jn and J−n are still solutions of (3. 3),
where Jn is still given by (3. 4) and J−n is given by (3. 5); when ν = n ∈ N, J−n
can be written

(3. 6) J−n(y) =
∑
m≥n

(−1)m

m! Γ(m− n+ 1)

(y
2

)−n+2m

.

However now J−n(y) = (−1)nJn(y), hence Jn and J−n are linearly dependent, (see
[64, section 3.12, p. 43] or [41, eq. (5.4.10), p. 105]). The determination of a
fundamental system of solutions in this case requires further investigation. In this
purpose, one introduces the Bessel’s functions of order ν and of the second kind:
among the several definitions of Bessel’s functions of second order, we recall here
the definition by Weber. The Bessel’s functions of order ν and of second kind are
denoted by Yν and defined by (see [64, section 3.54, eq. (1)-(2), p. 64] or [41, eq.
(5.4.5)-(5.4.6), p. 104]):∀ν 6∈ N, Yν(y) :=

Jν(y) cos(νπ)− J−ν(y)

sin(νπ)
,

∀n ∈ N, Yn(y) := limν→n Yν(y).

For any ν ∈ R+, the two functions Jν and Yν always are linearly independent,
see [64, section 3.63, eq. (1), p. 76]. In particular, in the case ν = n ∈ N, the



11

pair (Jn, Yn) forms a fundamental system of solutions of the Bessel’s equation for
functions of order n.

In the case ν = n ∈ N, it will be useful to expand Yn under the form of a series of
ascending powers. This can be done using Hankel’s formula, see [64, section 3.52,
eq. (3), p. 62] or [41, eq. (5.5.3), p. 107]:

(3. 7) ∀n ∈ N?, Yn(y) =
2

π
Jn(y) log

(y
2

)
− 1

π

n−1∑
m=0

(n−m− 1)!

m!

(y
2

)2m−n

− 1

π

+∞∑
m=0

(−1)m

m!(n+m)!

(y
2

)n+2m
[

Γ′(m+ 1)

Γ(m+ 1)
+

Γ′(m+ n+ 1)

Γ(m+ n+ 1)

]
,

where Γ′

Γ is the logarithmic derivative of the Gamma function, and satisfies Γ′(1)
Γ(1) =

−γ (here γ denotes Euler’s constant) and

Γ′(m+ 1)

Γ(m+ 1)
= 1 +

1

2
+ . . .

1

m
− γ for all m ∈ N.

In the case n = 0, the first sum in (3. 7) should be set equal to zero.

3.2.d. Zeros of Bessel functions of order ν of the first kind.
The function Jν has an infinite number of real zeros which are simple with the

possible exception of x = 0 ([64, section 15.21, p. 478-479 applied to Cν = Jν ]
or [41, section 5.13, Theorem 2, p. 127]). We denote by (jν,n)n≥1 the strictly
increasing sequence of the positive zeros of Jν :

0 < jν,1 < jν,2 < · · · < jν,n < . . .

and we recall that

jν,n → +∞ as n→ +∞.
We will also often use the following bounds on the zeros, proved in Lorch and
Muldoon [44]:

(3. 8) ∀ν ≥ 1

2
,∀n ≥ 1, π(n+

ν

4
− 1

8
) ≤ jν,n ≤ π(n+

ν

2
− 1

4
).

Note also that ([44]):

(3. 9) ∀ν ∈ [0,
1

2
],∀n ≥ 1, π(n+

ν

2
− 1

4
) ≤ jν,n ≤ π(n+

ν

4
− 1

8
).

We will also use the following asymptotic development of the first zero jν,1 of Jν
with respect to ν ([64, section 15.81, p. 516]) when ν → +∞:

jν,1 = ν + 1, 855757ν1/3 +O(1),

and a similar develoment for jν,2, extracted from [55] where it is proved that

(3. 10) ν − ak
21/3

ν1/3 < jν,k < ν − ak
21/3

ν1/3 +
3

20
a2
k

21/3

ν1/3
,

which is valid for all ν > 0, all k ≥ 1, and where ak is the k-th negative zero of the
Airy function.

3.3. Proof of Proposition 2.4.
As noted before, λ = 0 is not an admissible eigenvalue for problem (2. 15), hence

λ > 0. So, using (3. 1), we can transform problem (2. 15) into problem (3. 2). In
the following, because of the difference in the construction of a fundamental system
of solutions of (3. 3), we treat the following cases separately: να 6∈ N, να = n ∈ N∗
and να = 0.
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3.3.a. Case να 6∈ N. Let us assume that να 6∈ N. Then we have

Φ = C+Φ+ + C−Φ−

where Φ+ and Φ− are defined by

Φ+(x) := x
1−α
2 Jνα(

2

2− α
√
λx

2−α
2 ), Φ−(x) := x

1−α
2 J−να(

2

2− α
√
λx

2−α
2 ).

Using the series expansion of Jνα and J−να , one obtains

(3. 11) Φ+(x) =

∞∑
m=0

c̃+να,mx
(2−α)m, Φ−(x) =

∞∑
m=0

c̃−να,mx
1−α+(2−α)m,

where the coefficients c̃+να,m and c̃−να,m are defined by

(3. 12) c̃+να,m := c+να,m

( 2

2− α
√
λ
)2m+να

, c̃−να,m := c−να,m

( 2

2− α
√
λ
)2m−να

.

We deduce that

Φ+(x) ∼0 c̃
+
να,0

, xα/2Φ′+(x) ∼0 (2− α)c̃+να,1x
1−α/2,

Φ−(x) ∼0 c̃
−
να,0

x1−α, xα/2Φ′−(x) ∼0 (1− α)c̃−να,0x
−α/2,

hence Φ+ ∈ H1
α(0, `), while Φ− /∈ H1

α(0, `). Therefore, Φ = C+Φ+ + C−Φ− ∈
H1
α(0, `) implies that C− = 0 and Φ = C+Φ+. Moreover, xαΦ′+(x) → 0 as x → 0,

hence the boundary condition in 0 is automatically satisfied. Finally, the boundary
condition Φ(`) = 0 implies that there is some C+ and some m ∈ N, m ≥ 1 such
that

λ = κ2
αj

2
να,m`

α−2 and Φ(x) = C+x
1−α
2 Jνα(jνα,m(

x

`
)κα).

In the same way, any Φ(x) := Cx
1−α
2 Jνα(jνα,m(x` )κα) is solution of (2. 15), and

the family (Φn(x) := x
1−α
2 Jνα(jνα,n(x` )κα))n forms an orthogonal family of L2(0, `),

which is complete since the family is composed by the eigenfunctions of the operator
Tα:

Tα : L2(0, `)→ L2(0, `), f 7→ Tα(f) := uf

where uf ∈ D(A) is the solution of the problem −Auf = f , which is self-adjoint
and compact (Appendix in [1]). Finally, it remains to norm this orthogonal family:∫ `

0

x1−αJ2
να(jνα,n(

x

`
)κα) dx = `2−α

∫ 1

0

y1−αJ2
να(jνα,ny

κα) dy

=
`2−α

κα

∫ 1

0

zJ2
να(jνα,nz) dz =

`2−α

κα

1

2
[Jνα+1(jνα,n)]2 =

`2−α[J ′να(jνα,n)]2

2κα
,

which gives us that the family given by (2. 17) forms an orthonormal basis of
L2(0, `). This ends the proof of Proposition 2.4 when α ∈ [1, 2) is such that να /∈ N.

3.3.b. Case να = nα ∈ N∗. Let us assume that να = nα ∈ N∗. In this case, we have
recalled in subsection 3.2.c that a fundamental system of the differential equation
(3. 3) is given by Jnα and Ynα . This gives us that Φ is a linear combination of Φ+

and Φ+,−, where

(3. 13) Φ+,−(x) := x
1−α
2 Ynα(

2

2− α
√
λx

2−α
2 ).

As we have done above, we now study if Φ+,− ∈ H1
α(0, `). First we need its

decomposition in series: it follows from (3. 7) that
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(3. 14)

Φ+,−(x) =
2

π
Φ+(x) log

(
1

2− α
√
λx

2−α
2

)
+

nα−1∑
m=0

âmx
(1−α)+(2−α)m+

+∞∑
m=0

b̂mx
(2−α)m,

where

âm := − 1

π

(nα −m− 1)!

m!

(√
λ

2κα

)2m−nα

and

b̂m := − 1

π

(−1)m

m!(nα +m)!

(√
λ

2κα

)2m+nα [
Γ′(m+ 1)

Γ(m+ 1)
+

Γ′(m+ nα + 1)

Γ(m+ nα + 1)

]
.

We study the three functions that appear in the formula of Φ+,−. First

Φ+,−,1(x) :=
2

π
Φ+(x) log

(
1

2− α
√
λx

2−α
2

)
satisfies

Φ+,−,1(x) ∼0
2κα
π
c̃+nα,0 log x, xα/2Φ′+,−,1(x) ∼0

2κα
π
c̃+nα,0x

−1+α/2,

hence Φ+,−,1 ∈ H1
α(0, `) since α > 1. Next

Φ+,−,2(x) :=

nα−1∑
m=0

âmx
(1−α)+(2−α)m

satisfies

Φ+,−,2(x) ∼0 â0x
1−α, xα/2Φ′+,−,2(x) ∼0 (1− α)â0x

−α/2,

hence Φ+,−,2 /∈ H1
α(0, `), since â0 6= 0. Finally,

Φ+,−,3(x) :=

+∞∑
m=0

b̂mx
(2−α)m

satisfies

Φ+,−,3(x) ∼0 b̂0, xα/2Φ′+,−,3(x) ∼0 (2− α)b̂1x
1−α/2,

hence Φ+,−,3 ∈ H1
α(0, `). Thus Φ+,− = Φ+,−,1 + Φ+,−,2 + Φ+,−,3 /∈ H1

α(0, `), and
if Φ = C+Φ+ + C+,−Φ+,− ∈ H1

α(0, `) then necessarily C+,− = 0, and Φ = C+Φ+.
Then we are in the same position as in the previous case and the conclusion is the
same.

3.3.c. Case να = 0 (hence α = 1). In this case, the first sum in the decomposition
of Y0 is equal to zero, hence we have Φ+,− = Φ+,−,1 + Φ+,−,3. Moreover,

Φ+,−,1(x) ∼0
2κ1

π
c̃+0,0 lnx, xα/2Φ′+,−,1(x) ∼0

2κ1

π
c̃+0,0x

−1/2,

hence Φ+,−,1 /∈ H1
α(0, `). On the contrary Φ+,−,3 ∈ H1

α(0, `), which implies that,
once again, Φ+,− = Φ+,−,1 +Φ+,−,3 /∈ H1

α(0, `), and the conclusion is the same. �
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3.4. Proof of Proposition 2.2.
Since {Φα,n, n ≥ 1} is an orthonormal basis of L2(0, `), it suffices to observe that

(3. 15) H1
α,0(0, `) = {u ∈ L2(0, `),

∞∑
n=1

λα,n(u,Φα,n)2
L2(0,`) <∞}(= D((−A)1/2)).

Indeed, since A generates an analytic semigroup of negative type on X = L2(0, `),
the conclusion follows from the variation of constant formula

u(t) = etAu0 +

∫ t

0

e(t−s)Ah(·, s) ds

and well-known maximal regularity results which ensure that both maps

t 7→ etAu0 and t 7→
∫ t

0

e(t−s)Ah(·, s) ds

belong to H1(0, T ;X) ∩ L2(0, T ;D(A)) ∩ C0([0, T ];D((−A)1/2)) whenever u0 ∈
D((−A)1/2) and h ∈ L2(0, T ;X) (see, e.g., [6]). Finally, in order to check (3. 15),
it suffices to observe that for any u ∈ D(A), given by

u =
∞∑
n=1

(u,Φα,n)L2(0,`)Φα,n,

we have that∫ `

0

a(x)u2
x dx = −(Au, u)L2(0,`) =

∞∑
n=1

λα,n(u,Φα,n)2
L2(0,`). �

4. Preliminaries: the moment method

We follow the strategy initiated by Fattorini and Russell [23, 24]. The precise
estimates given in Theorems 2.1-2.4 are based on identities given by the moment
method. We separate the boundary case from the locally distributed case.

4.1. The boundary control problem (2. 1).

4.1.a. The moment problem satisfied by a control H ∈ L2(0, T ).
In this part, we analyze the problem with formal computations. First, we expand

the initial condition u0 ∈ L2(0, `): there exists (µ0
α,n)n≥1 ∈ `2(N?) such that

u0(x) =
∑
n≥1

µ0
α,nΦα,n(x).

Next we expand the solution u of (2. 1):

u(x, t) =
∑
n≥1

βα,n(t)Φα,n(x), x ∈ (0, `), t ≥ 0

with ∑
n≥1

βα,n(t)2 < +∞.

Therefore the controllability condition u(·, T ) = 0 becomes

∀n ≥ 1, βα,n(T ) = 0.

On the other hand, we observe that wα,n(x, t) := Φα,n(x)eλα,n(t−T ) is solution
of the adjoint problem:

(4. 1)


(wα,n)t + (xα(wα,n)x)x = 0 x ∈ (0, `), t > 0,

(xα(wα,n)x)(0, t) = 0,

wα,n(`, t) = 0 t > 0.
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Multiplying (2. 1) by wα,n and (4. 1) by u, we obtain

0 =

∫ T

0

∫ `

0

wα,n(ut − (xαux)x) + u((wα,n)t + (xα(wα,n)x)x)

=

∫ `

0

[wα,nu]T0 dx−
∫ T

0

[wα,nx
αux]`0dt+

∫ T

0

[uxα(wα,n)x]`0dt

=

∫ `

0

u(x, T )Φα,n(x)dx−
∫ `

0

u(x, 0)Φα,n(x)e−λα,nT dx+

∫ T

0

u(`, t)(xα(wα,n)x)(`, t)dt

= βα,n(T )− e−λα,nTµ0
α,n +

∫ T

0

H(t)eλα,n(t−T )(xαΦ′α,n)(x = `)dt.

It follows that, if the control H drives the solution to 0 at time T , then

rα,n

∫ T

0

H(t)e−λα,n(T−t)dt = e−λα,nTµ0
α,n,

where we have set

(4. 2) rα,n = (xαΦ′α,n)(x = `).

Hence, the controllability condition u(·, T ) = 0 implies that

(4. 3) ∀n ≥ 1, rα,n

∫ T

0

H(t)eλα,ntdt = µ0
α,n.

4.1.b. The moment problem satisfied by a control H ∈ H1(0, T ).
Moreover, since we want a solution of the moment problem that belongs to

H1(0, T ), it will be more interesting to see what its derivative has to satisfy. Inte-
grating by parts, we have∫ T

0

H(t)eλα,nt dt = [
1

λα,n
H(t)eλα,nt]T0 −

∫ T

0

1

λα,n
H ′(t)eλα,nt dt.

Hence the derivative H ′ has to satisfy

(4. 4) − rα,n
λα,n

∫ T

0

H ′(t)eλα,nt dt = µ0
α,n −

rα,n
λα,n

[
H(T )eλα,nT −H(0)

]
.

We will provide a solution of this problem that satisfies H(0) = 0 = H(T ).

4.1.c. A formal solution to the moment problem, using a biorthogonal family.
Assume that there is a family (σ+

α,m)m≥1 of functions σ+
α,m ∈ L2(0, T ), which is

biorthogonal to the family (eλα,nt)n≥1, which means that:

(4. 5) ∀m,n ≥ 1,

∫ T

0

σ+
α,m(t)eλα,nt dt = δmn =

{
1 if m = n,

0 if m 6= n.

Then, at least formally, the function

H(t) :=

∞∑
m=1

µ0
α,m

rα,m
σ+
α,m(t)

satisfies the moment problem (4. 3). To enter into our functional setting, we would
need to verify that this gives a function belonging to H1(0, T ), then at least to
L2(0, T ). For this, we will need suitable bounds on ‖σ+

α,m‖L2(0,T ), first with respect
to m (to ensure the convergence of the series that defines H), then with respect to
α, to measure the null controllability cost.
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Since our functional setting demands the control to belong to H1(0, T ), we are
going to repeat the same arguments, but with the moment problem (4. 4): set

λα,0 := 0,

and assume that we are able to construct a family (σ+
α,m)m≥0 of functions σ+

α,m ∈
L2(0, T ), which is biorthogonal to the family (eλα,nt)n≥0, which means that:

(4. 6) ∀m,n ≥ 0,

∫ T

0

σ+
α,m(t)eλα,nt dt = δmn =

{
1 if m = n,

0 if m 6= n.

Then consider

K(t) := −
∞∑
m=1

λα,mµ
0
α,m

rα,m
σ+
α,m(t), and H(t) :=

∫ t

0

K(τ) dτ.

Then at least formally K solves the following moment problem

∀n ≥ 1, − rα,n
λα,n

∫ T

0

K(t)eλα,nt dt = µ0
α,n;

moreover, if K ∈ L2(0, T ), then H ∈ H1(0, T ), clearly H ′ = K, and H(0) = 0, and
moreover H(T ) = 0 thanks to the additional property that the family (σ+

α,m)m≥1 is

orthogonal to eλα,0t = 1; hence H will be in H1(0, T ) and will satisfy the moment
problem (4. 4). It remains to check that all this makes sense, in particular that K ∈
L2(0, T ). Clearly, we will need suitable L2 bounds on the biorthogonal sequence
(σ+
α,m)m≥1, that will come from the study of the eigenvalues λα,n, and from the

behavior of the real sequence (r2
α,m)m.

4.2. The locally distributed control problem (2. 2).

4.2.a. The moment problem satisfied by a control h ∈ L2((a, b)× (0, T )).
First we expand the initial condition u0 ∈ L2(0, `): there exists (µ0

α,n)n≥1 ∈
`2(N?) such that

u0(x) =
∑
n≥1

µ0
α,nΦα,n(x), x ∈ (0, `).

Next we expand the solution u of (2. 2):

u(x, t) =
∑
n≥1

βα,n(t)Φα,n(x), x ∈ (0, `), t ∈ (0, T ), with
∑
n≥1

βα,n(t)2 < +∞.

Once again multiplying (2. 2) by wα,n(x, t) := Φα,n(x)eλα,n(t−T ), which is solution
of the adjoint problem (4. 1), one gets:∫ T

0

∫ `

0

h(x, t)χ[a,b](x)wα,n(x, t) dx dt =

∫ T

0

∫ `

0

wα,n(x, t)(ut − (xαux)x)

=

∫ `

0

[wα,nu]T0 −
∫ T

0

∫ `

0

(wα,n)tu−
∫ T

0

[wα,n(xαux)]`0 +

∫ T

0

∫ `

0

(wα,n)xx
αux

=

∫ `

0

Φα,nu(T )− e−λα,nT
∫ `

0

Φα,nu0 −
∫ T

0

[wα,n(xαux)]`0

+

∫ T

0

[xα(wα,n)xu]`0 −
∫ T

0

∫ `

0

(
(wα,n)t + (xα(wα,n)x)x

)
u

=

∫ `

0

Φα,nu(T )− e−λα,nT
∫ `

0

Φα,nu0.
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Hence, if h drives the solution u to 0 in time T , we obtain the following moment
problem:

(4. 7) ∀n ≥ 1,

∫ T

0

∫ `

0

h(x, t)χ[a,b](x)Φα,n(x)eλα,ntdxdt = −µ0
α,n.

4.2.b. A formal solution to the moment problem, using a biorthogonal family.
Assume for a moment that there exists a family (σ+

α,m)m≥1 in L2(0, T ) that
satisfies (4. 5). Then let us define

(4. 8) h(x, t) :=
∑
m≥1

−µ0
α,mσ

+
α,m(t)

Φα,m(x)∫ b
a

Φ2
α,m

.

Let us prove that, formally, h is solution of the moment problem (4. 7):∫ T

0

∫ `

0

h(x, t)χ[a,b](x)Φα,n(x)eλα,ntdxdt

=

∫ b

a

∫ T

0

∑
m≥1

−µ0
α,mσ

+
α,m(t)

Φα,m(x)∫ b
a

Φ2
α,m

Φα,n(x)eλα,ntdtdx

=

∫ b

a

∑
m≥1

−µ0
α,m

Φα,m(x)Φα,n(x)∫ b
a

Φ2
α,m

(∫ T

0

σ+
α,m(t)eλα,ntdt

)
dx

=
∑
m≥1

−µ0
α,mδmn

∫ b
a

Φα,m(x)Φα,n(x)dx∫ b
a

Φ2
α,m

= −µ0
α,n.

Hence, formally, h defined by (4. 8) solves the moment problem. It remains to
check that all this makes sense, in particular that h ∈ L2((0, `) × (0, T )). Clearly,
we will need suitable L2 bounds on the biorthogonal sequence (σ+

α,m)m≥1, that will
come from the study of the eigenvalues λα,n, and from the behavior of the real

sequence (
∫ b
a

Φ2
α,m)m (given in Proposition 2.5).

5. Proof of Theorem 2.1

In this section, we are going to work on the moment problem (4. 3) given by the
moment method to obtain the desired lower bound on the null controllability cost
for (2. 1). The proof will use in particular ideas of Güichal [32].

5.1. The contribution of the eigenfunctions to the blow-up of the null
controllability cost.

Assume that H ∈ H1(0, T ) drives the solution u of (2. 1) to 0 in time T . Then
H satisfies (4. 3). Let us compute the coefficient that appears:

(5. 1) |rα,n| = |(xαΦ′α,n)(x = `)| = `α
√

2κα
`κα |J ′να(jνα,n)|

`(1−α)/2jνα,n
κα
`
|J ′να(jνα,n)|

= `α−κα+(1−α)/2−1
√

2κα
3/2jνα,n =

√
2 `(2α−3)/2 κ3/2

α jνα,n

=
√

2 `(α−1)/2√κα
√
λα,n.

This implies that the null controllability cost blows up, at least at a rational rate:
indeed, we deduce from (4. 3) that

∀n ≥ 1, ‖H‖L2(0,T ) ‖eλα,nt‖L2(0,T ) ≥
|µ0
α,n|
|rα,n|

,
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hence

∀n ≥ 1, ‖H‖L2(0,T ) ≥
|µ0
α,n|√

2 `(α−1)/2
√
κα
√
λα,n

√
2λα,n

e2λα,nT − 1
.

Fix u0 = Φα,1. Then any control that drives Φα,1 to 0 in time T satisfies

‖H‖L2(0,T ) ≥
1

`(α−1)/2
√
κα
√
e2λα,1T − 1

.

This implies a first bound from below for the null controllability cost:

Cctr−bd ≥
1

`(α−1)/2
√
κα
√
e2λα,1T − 1

.

In particular, just looking the behavior with respect to α ∈ [1, 2), we see that there
exists CT,` independent of α ∈ [1, 2) such that

Cctr−bd ≥
CT,`√
2− α

.

This gives a first estimate of blow-up (that we will improve in the following).

5.2. A connection between null controllability and the existence of biorthog-
onal sequences.

We notice the following fact: fix m ≥ 1 and consider the initial condition u0 =
Φα,m; let Hα,m be a control that drives the solution of (2. 1) to 0 in time T ; then
the sequence (rα,mHα,m)m≥1 is biorthogonal to (eλα,nt)n≥1 in L2(0, T ). Indeed,
Hα,m satisfies (4. 3):

∀n ≥ 1, rα,n

∫ T

0

Hα,m(t)eλα,nt dt = µ0
α,n = δmn,

hence

∀n ≥ 1,

∫ T

0

(
rα,mHα,m(t)

)
eλα,nt dt = rα,m

δmn
rα,n

=

{
1 if m = n,

0 if m 6= n,

hence

∀m,n ≥ 1,

∫ T

0

(
rα,mHα,m(t)

)
eλα,nt dt = δmn,

which means that the sequence (rα,mHα,m)m≥1 is biorthogonal to (eλα,nt)n≥1 in
L2(0, T ).

In the literature, there exists several bounds from below for the biorthogonal
families, we refer in particular to Güichal [32] and Hansen [33]. In the following we
will use two extensions of the one of Güichal [32], obtained in [13] and in [14].

5.3. The concentration of the eigenvalues.
The following observation is fundamental in the understanding of the blow-up

of the null controllability cost:

Lemma 5.1. The eigenvalues concentrate when α→ 2−:

∀n ≥ 1, λα,n+1 − λα,n → 0 as α→ 2−.

Before proving Lemma 5.1, let us explain why this property if clearly important
in the understanding of the blow-up of the null controllability cost: as noted before,
if null controllability holds, and if Hα,m is a control that drives the solution of
(2. 1) with u0 = Φα,m to 0 in time T , then (rα,mHα,m)m≥1 is biorthogonal to
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(eλα,nt)n≥1 in L2(0, T ); now, if additionnally some eigenvalues concentrate, for
example λα,2 − λα,1 → 0 as α→ 2−, then rα,1Hα,1 will have to satisfy∫ T

0

(
rα,1Hα,1(t)

)
eλα,1t dt = 1, and

∫ T

0

(
rα,1Hα,1(t)

)
eλα,2t dt = 0,

hence ∫ T

0

(
rα,1Hα,1(t)

)
(eλα,1t − eλα,2t) dt = 1;

but this will only be possible if ‖rα,1Hα,1‖ is sufficiently large, since ‖eλα,1t −
eλα,2t‖L2(0,T ) will be small. We will come back on this later.
Proof of Lemma 5.1. We note that

λα,n+1 − λα,n = κ2
α(j2

να,n+1 − j2
να,n) = κ2

α(jνα,n+1 − jνα,n)(jνα,n+1 + jνα,n).

It is classical ([36] p. 135) that

• if ν ∈ [0, 1
2 ], the sequence (jν,n+1 − jν,n)n is nondecreasing and converges

to π,
• if ν ≥ 1

2 , the sequence (jν,n+1− jν,n)n is nonincreasing and converges to π.

Then, when να ≥ 1
2 (i.e. when α ∈ [ 4

3 , 2)), the sequence (jνα,n+1 − jνα,n)n is
nonincreasing, hence

λα,n+1 − λα,n ≤ κ2
α(jνα,2 − jνα,1)(jνα,n+1 + jνα,n),

and using (3. 8),

λα,n+1 − λα,n ≤ κ2
α(jνα,2 − jνα,1)

(
π(n+ 1 +

να
2
− 1

4
) + π(n+

να
2
− 1

4
)
)
.

Using (3. 10), we obtain

jνα,2 − jνα,1 ≤
(
να −

a2

21/3
ν1/3
α +

3

20
a2

2

21/3

ν
1/3
α

)
−
(
να −

a1

21/3
ν1/3
α

)
=
a1 − a2

21/3
ν1/3
α +

3

20
a2

2

21/3

ν
1/3
α

.

Hence there is some C independent of α ∈ [ 4
3 , 2) such that

(5. 2) jνα,2 − jνα,1 ≤ Cν1/3
α ,

and

λα,n+1 − λα,n ≤ Cν1/3
α κ2

α(n+ να) ≤ C(κ2/3
α + κ5/3

α n). �

Remark 5.1. A similar concentration phenomenon can be pointed out in the fast
control problem for the classical heat equation

(5. 3)


ut − uxx = h(x, t)χ[a,b](x) x ∈ (0, 1), 0 < t < T,

u(0, t) = 0 = u(1, t), 0 < t < T,

u(x, 0) = u0(x), x ∈ (0, 1),

u(x, T ) = 0, x ∈ (0, 1).

Indeed, as is well-known, the eigenvalues of the stationary operator associated with
(5. 3) are λn = π2n2 for all n > 0. On the other hand, if we are interested in
studying the behaviour of the above system for controls yielding u(·, T ) = 0 as
T → 0+, then it might be useful to normalize the time, hence to look at the
normalized solution

v(x, τ) = u(x, τT ).
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This function v is solution of the problem
vτ − Tvxx = Th(x, τT )χ[a,b](x) x ∈ (0, 1), 0 < τ < 1,

v(0, τ) = 0 = v(1, τ), 0 < τ < 1,

v(x, 0) = u0(x), x ∈ (0, 1),

v(x, 1) = 0, x ∈ (0, 1).

Clearly, the eigenvalues of the stationary operator associated with this last problem
are given by the sequence {Tπ2n2}n≥1, which concentrates as T → 0+.

5.4. An additionnal property of the eigenvalues.
As we recalled, it is classical ([36] p. 135) that

• if ν ∈ [0, 1
2 ], the sequence (jν,n+1 − jν,n)n is nondecreasing and converges

to π,
• if ν ≥ 1

2 , the sequence (jν,n+1− jν,n)n is nonincreasing and converges to π.

Hence there exists a rank Nν such that

i ≥ Nν =⇒ jν,i+1 − jν,i ≤ 2π.

However, the asymptotic development (3. 10) tells us that

(5. 4) jν,2 − jν,1 ∼ν→∞
a1 − a2

21/3
ν1/3.

Hence this rank Nν probably satisfies Nν → +∞ as ν → ∞. In the following,
we estimate this Nν (using the classical theory of Sturm concerning second order
differential equations); we will need this estimate later.

Lemma 5.2. Given ν ≥ 1
2 , then

(5. 5) ∀n > ν, jν,n+1 − jν,n ≤ 2π.

Proof of Lemma 5.2. We follow and use the proofs of section 7.3 in [36]: first we
note that

yν(x) :=
√
xJν(x)

satisfies the second-order differential equation

y′′ν (x) + hν(x)yν(x) = 0,

with

hν(x) = 1−
ν2 − 1

4

x2
.

Of course, yν and Jν have the same positive zeros. We are going to use the following
classical property of Sturm type (see Proposition 7.6 in [36]): assume that

• f, g : [a, b]→ R are continuous and satisfy

∀x ∈ [a, b], f(x) < g(x),

• u, v are functions of class C2 satisfying

∀x ∈ [a, b], u′′ + fu = 0, v′′ + gv = 0,

• a, b are two consecutive zeros of u,

then v has at least one zero in (a, b).
We recall that, in a classical way ([36]), this implies that Jν has an infinite

number of positive zeros: indeed:

∀x > ν, hν(x) >
1

4ν2
,
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hence choosing

k ≥ 1, a := 2kνπ, b := 2(k + 1)νπ,

f(x) :=
1

4ν2
, u(x) := sin

x

2ν
,

g(x) := hν(x), v(x) := yν(x),

we can apply the Sturm property, and we derive that yν (hence Jν) has at least
one zero on (2kνπ, 2(k + 1)νπ). From (3. 8) we also have

∀k > ν, jν,k > π(ν +
1

4
(ν − 1

2
)) =: γν ,

and then we can apply the Sturm property with

k > ν, a := jν,k, b := jν,k +
π√
hν(γν)

,

f(x) := hν(γν), u(x) := sin
(√

hν(γν)(x− jν,k)
)
,

g(x) := hν(x), v(x) := yν(x),

and we deduce that yν has at least one zero inside (jν,k, jν,k + π√
hν(γν)

), hence

jν,k+1 < jν,k +
π√
hν(γν)

.

Hence

∀k > ν, jν,k+1 − jν,k <
π√
hν(γν)

=
π√

1− ν2− 1
4

γ2
ν

.

It can be easily checked that

∀ν ≥ 1

2
,

π√
1− ν2− 1

4

γ2
ν

≤ 2π :

indeed, if ν ≥ 1
2 , then(

1−
ν2 − 1

4

γ2
ν

)
− 1

4
=

3

4
−
ν2 − 1

4

γ2
ν

=
3γ2
ν − 4(ν2 − 1

4 )

4γ2
ν

,

and

3γ2
ν − 4(ν2 − 1

4
) = 3

(
π(ν +

1

4
(ν − 1

2
))
)2

− 4(ν2 − 1

4
)

and the discriminant of this quantity is negative, hence the quantity remains posi-
tive. This implies (5. 5). �

5.5. A lower bound of the norm of any sequence biorthogonal to (eλα,nt)n
when να ∈ [0, 1

2 ].

If να ∈ [0, 1
2 ], the gap (jνα,n+1 − jνα,n)n is nondecreasing and converges to π,

hence

∀n ≥ 1, jνα,n+1 − jνα,n ≤ π,
hence

∀n ≥ 1,
√
λα,n+1 −

√
λα,n = `

α
2−1κα(jνα,n+1 − jνα,n) ≤ `α2−1καπ,

hence

∀n ≥ 1,
√
λα,n+1 −

√
λα,n ≤ γmax with γmax = `

α
2−1καπ.

Let us apply the following extension of Güichal [32]:
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Theorem 5.1. (Theorem 2.5 in [13]) Assume that

∀n ≥ 0, λn ≥ 0,

and that there is some 0 < γmin ≤ γmax such that

(5. 6) ∀n ≥ 0, γmin ≤
√
λn+1 −

√
λn ≤ γmax.

Then there exists cu > 0 independent of T , and m such that: any family (σ+
m)m≥0

which is biorthogonal to the family (eλnt)n≥0 in L2(0, T ) satisfies:

(5. 7) ‖σ+
m‖2L2(0,T ) ≥ e

−2λmT e
1

2γ2maxT b(T, γmax,m),

with

(5. 8) b(T, γmax,m) =
c2u

C(m, γmax, λ0)2 T
(

1

2γ2
maxT

)2m 1

(4γ2
maxT + 1)2

.

and

(5. 9) C(m, γmax, λ0) = m! 2m+[
2
√
λ0

γmax
]+1 (m+ [

2
√
λ0

γmax
] + 1).

Using Theorem 5.1 with γmax = `
α
2−1καπ, one obtains that any family (σ+

m)m≥1

which is biorthogonal to the family (eλα,nt)n≥1 in L2(0, T ) satisfies a lower bound

with the classical dominant exponential factor of the type eC/T :

‖σ+
m‖2L2(0,T ) ≥ e

−2λα,mT e
Cu

`2−α
Tκ2α

1

T

(`2−α
Tκ2

α

)2m( `2−α

Tκ2
α

1 + `2−α

Tκ2
α

)2C2m
u

m!2
2−2 `

1−α/2
κα

1

(m+ 1)2 +
λα,1`

1−α
2

κ2
απ

2

.

This will immediately give an exponential blow-up of the cost as T → 0+, as
explained in subsection 5.7, but the interesting behavior is when α → 2−, and we
study it in the following.

5.6. A lower bound of the norm of any sequence biorthogonal to (eλα,nt)n
when να ≥ 1

2 .
This is the interesting case, where α→ 2−. In this case, the gap (jνα,n+1−jνα,n)n

is nonincreasing and converges to π, hence

∀n ≥ 1, π ≤ jνα,n+1 − jνα,n ≤ jνα,2 − jνα,1,
hence

∀n ≥ 1,
√
λα,n+1 −

√
λα,n ≤ γmax with γmax = `

α
2−1κα(jνα,2 − jνα,1);

but this time, we already noted that jνα,2−jνα,1 behaves as ν
1/3
α (see (5. 4)), hence

γmax = cα`
α
2−1κ2/3

α ,

with some uniformly bounded cα.
On the other hand, we proved in Lemma 5.2 that

∀n ≥ να + 1, jνα,n+1 − jνα,n ≤ 2π,

hence

∀n ≥ N∗,
√
λα,n+1−

√
λα,n ≤ γ∗max, with N∗ = [να]+1, and γ∗max = 2π`

α
2−1κα.

Note that
γmax
γ∗max

=
cα

2πκ
1/3
α

→∞ as α→ 2−.

In that context, when there is a ’bad’ global gap γmax, and a ’good’ (much smaller)
asymptotic gap γ∗max, it is interesting to use the following extension of Theorem
5.1:
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Theorem 5.2. (Theorem 2.2 in [14]) Assume that

∀n ≥ 1, λn ≥ 0,

and that there are 0 < γmin ≤ γ∗max ≤ γmax such that

(5. 10) ∀n ≥ 1, γmin ≤
√
λn+1 −

√
λn ≤ γmax,

and

(5. 11) ∀n ≥ N∗,
√
λn+1 −

√
λn ≤ γ∗max.

Then any family (σ+
m)m≥1 which is biorthogonal to the family (eλnt)n≥1 in L2(0, T )

satisfies:

(5. 12) ‖σ+
m‖2L2(0,T ) ≥ e

−2λmT e
2

T (γ∗max)
2 b∗(T, γmax, γ

∗
max, N∗, λ1,m)2,

where b∗ is rational in T (and explictly given in Lemma 4.4 of [14]).

Applying Theorem 5.2, we obtain that any family (σ+
m)m≥1 which is biorthogonal

to the family (eλα,nt)n≥1 in L2(0, T ) satisfies

‖σ+
m‖2L2(0,T ) ≥ e

−2λα,mT e
2

4π2κ2αT`
α−2 b∗(T, γmax, γ

∗
max, N∗, λα,1,m)2

with an explicit value of b∗ (see Lemma 4.4 in [14]): when m ≤ N∗, we have
(5. 13)

b∗(T, γmax, γ
∗
max, N∗, λ1,m) = C∗

√
1 + Tλ1√

T

(T (γ∗max)2)K∗+K
′
∗+2

(1 + (T (γ∗max)2))N∗+K∗+K
′
∗+3

,

where

K∗ = [
2
√
λ1 + (N∗ +m)γmax

γ∗max
]−N∗ + 2,

K ′∗ = [
γmax
γ∗max

(N∗ −m)]−N∗ + 2,

C∗ =
1

(N∗ +K∗ +K ′∗ + 3)!

cu(γ∗max)2(N∗−1)

C(+)C(−)
,

where

C(+) = (
γmax
γ∗max

)N∗−1
(N∗ +m+ [ 2

√
λ1

γmax
] + 1)!

(m+ [ 2
√
λ1

γmax
] + 1)! ([ 2

√
λ1+(N∗+m)γmax

γ∗max
] + 1)! (2m+ [ 2

√
λ1

γmax
] + 1)

,

and

C(−) = (
γmax
γ∗max

)N∗−1 (m− 1)! (N∗ −m)!

(1 + [γmaxγ∗max
(N∗ −m)])!

.

These expressions seem be a little frightening, but we are looking for the behavior
as α→ 2−, and this is not difficult to study: one immediately sees that

K∗ +K ′∗ = cν4/3
α + c′`1−α/2να + c′′ν1/3

α m,

(γ∗max)2(N∗−1) = e−cνα ln να−c′να ln `,

1

(N∗ +K∗ +K ′∗ + 3)!
≥ e−C(ν4/3

α +`1−α/2να+ν1/3
α m)(ln να+(1−α2 ) ln `+lnm),

and finally
1

C(+)C(−)
≥ e−c(να+m)(ln να+lnm) 1

(m− 1)!
,

hence we obtain that

C∗ ≥ e−C(ν4/3
α +`1−α/2να+ν1/3

α m)(ln να+(1−α2 ) ln `+lnm) 1

(m− 1)!
.
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This gives that

b∗ ≥ e−C(ν4/3
α +`1−α/2να+ν1/3

α m)(ln να+(1−α2 ) ln `+lnm+ln 1
T ) 1

(m− 1)!

√
1 + T√
T

,

hence

‖σ+
m‖2L2(0,T ) ≥ b(T, α,m)2,

with

(5. 14) b(T, α,m) := e−λα,mT e
Cu

`2−α
Tκ2α

1

(m− 1)!

√
1 + T√
T

e−C(ν4/3
α +`1−α/2να+ν1/3

α m)(ln να+(1−α2 ) ln `+lnm+ln 1
T ).

This will give the expected blow-up of the cost, as α→ 2− and/or as T → 0+.

5.7. The exponential blow-up of the cost.
In the previous subsection, we obtained a bound from below for any biorthogonal

sequence. But we already noted that if u0 = φα,m, and if Hα,m is any control that
drives u0 to rest in time T , then (rα,mHα,m)m≥1 is biorthogonal to (eλα,nt)n≥1 in
L2(0, T ). Hence

‖rα,mHα,m‖L2(0,T ) ≥ b(T, α,m),

where b(T, α,m) is given in (5. 14). By definition of the cost, we obtain that

∀m ≥ 1, Cctr−bd ≥
1

|rα,m|
b(T, α,m),

which gives the expected exponential blow-up of the cost: choosing m = 1, and
using the fact that |rα,1| =

√
2καλα,1`

(α−1)/2 and that λα,1 = καjνα,1`
(α−2)/2 ≥

π
4κανα`

(α−2)/2, we obtain that there exists some Cu independent of all the other
parameters such that

Cctr−bd ≥ Cu
`2−α√
καT`

e−λα,1T e
Cu

`2−α
Tκ2α e−C(ν4/3

α +`1−α/2να)(ln να+ln `1−α/2+ln 1
T )

≥ Cu
`2−α√
καT`

e−π
2 T

`2−α e
Cu

`2−α
Tκ2α e−C(ν4/3

α +`1−α/2να)(ln να+ln `1−α/2+ln 1
T ),

and this is (2.1) and concludes the proof of Theorem 2.1. �

6. Proof of Theorem 2.2

We will use the following result (Theorem 2.4 in [13]):

Theorem 6.1. (Existence of a suitable biorthogonal family and upper bounds) As-
sume that

∀n ≥ 0, λn ≥ 0,

and that there is some γmin > 0 such that

(6. 1) ∀n ≥ 0,
√
λn+1 −

√
λn ≥ γmin.

Then there exists a family (σ+
m)m≥0 which is biorthogonal to the family (eλnt)n≥0

in L2(0, T ):

(6. 2) ∀m,n ≥ 0,

∫ T

0

σ+
m(t)eλnt dt = δmn.

Moreover, it satisfies: there is some universal constant Cu independent of T , γmin

and m such that, for all m ≥ 0, we have

(6. 3) ‖σ+
m‖2L2(0,T ) ≤ Cue

−2λmT e
Cu

√
λm

γminB(T, γmin),
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with

(6. 4) B(T, γmin) =


(

1
T + 1

T 2γ2
min

)
e

Cu
γ2
min

T if T ≤ 1
γ2
min

,

Cuγ
2
min if T ≥ 1

γ2
min

.

Note that (6. 3) and (6. 4) imply that there is some universal constant Cu in-
dependent of T , γmin and m such that, for all m ≥ 0, we have

(6. 5) ‖σ+
m‖2L2(0,T ) ≤ Cue

−2λmT e
Cu

√
λm

γmin e
Cu

γ2
min

T B∗(T, γmin),

with

(6. 6) B∗(T, γmin) =
Cu
T

max{Tγ2
min,

1

Tγ2
min

}.

Now, as we have already noted, the eigenvalues of the problem satisfy

∀n ≥ 1,
√
λα,n+1−

√
λα,n = `

α
2−1κα(jνα,n+1−jνα,n) ≥

{
`
α
2−1κα(jνα,2 − jνα,1) if να ∈ [0, 1

2 ],

`
α
2−1καπ if να ≥ 1

2

.

Define artificially

λα,0 := 0.

Then √
λα,1 −

√
λα,0 = `

α
2−1καjνα,1.

Then consider

cα :=

{
min{jνα,2 − jνα,1, jνα,1} if να ∈ [0, 1

2 ],

min{π, jνα,1} if να ≥ 1
2

,

and

c := inf
α∈[0,2)

cα.

It is clear from (3. 8)-(3. 9) that c > 0, and by construction we have

∀n ≥ 0,
√
λα,n+1 −

√
λα,n ≥ γmin with γmin := `

α
2−1καc.

Then, applying Theorem 6.1 with γmin = `
α
2−1καc, we obtain that there exists

a family (σ+
α,m)m≥0 biorthogonal to (eλα,nt)n≥0 in L2(0, T ), and such that

‖σ+
α,m‖2L2(0,T ) ≤ Cue

−2λα,mT e
Cu

√
λα,m
γmin B(T, γmin)

= Cue
−2λα,mT eCujνα,mB(T, γmin).

Then define

(6. 7) K(t) := −
∞∑
m=1

λα,mµ
0
α,m

rα,m
σ+
α,m(t), and H(t) :=

∫ t

0

K(τ) dτ,

and let us check that H is an admissible control that drives the solution of (2. 1)
to 0 in time T :

• first we check that K ∈ L2(0, T ): using (5. 1) and (6. 3), we have

∞∑
m=1

|λα,mµ0
α,m|

|rα,m|
‖σ+

α,m‖L2(0,T ) ≤
( ∞∑
m=1

|µ0
α,m|2

)1/2( ∞∑
m=1

|λα,m|2

|rα,m|2
‖σ+

α,m‖2L2(0,T )

)1/2

which is finite (we will come back on this in the following); this implies that
H ∈ H1(0, T ), and of course H(0) = 0, and also H(T ) = 0 using (6. 2)
with n = 0;



26 P. CANNARSA, P. MARTINEZ, AND J. VANCOSTENOBLE

• next, we check that H satisfies the moment problem (4. 4):

∀n ≥ 1, − rα,n
λα,n

∫ T

0

H ′(t)eλα,nt dt+
rα,n
λα,n

[
H(T )eλα,nT −H(0)

]
= − rα,n

λα,n

∫ T

0

K(t)eλα,nt dt = µ0
α,n;

• finally we check that the solution of (2. 1) satisfies u(T ) = 0: multiplying
the first equation of (2. 1) by wα,n(x, t) := Φα,n(x)eλα,n(t−T ) and integrat-
ing by parts, we obtain that

∀n ≥ 1,

∫ `

0

u(x, T )Φα,n(x) dx = 0,

hence u(T ) = 0.

Hence H is an admissible control, and therefore

Cctr−bd ≤
‖H‖H1(0,T )

‖u0‖L2(0,`)
≤ C
‖K‖L2(0,T )

‖u0‖L2(0,`)
,

hence

Cctr−bd ≤ C
( ∞∑
m=1

|λα,m|2

|rα,m|2
‖σ+

α,m‖2L2(0,T )

)1/2

.

Since r2
α,m = 2κα`

α−1λα,m, we have

|λα,m|2

|rα,m|2
=
καj

2
να,m

2`
,

hence

Cctr−bd ≤
C√
`

√
κα

( ∞∑
m=1

j2
να,m‖σ

+
α,m‖2L2(0,T )

)1/2

≤ C√
`

√
κα

( ∞∑
m=1

j2
να,me

−2λα,mT e
Cu

√
λα,m
γmin B(T, γmin)

)1/2

=
C√
`

√
κα
√
B(T, γmin)

( ∞∑
m=1

j2
να,me

−2λα,mT e
Cu

√
λα,m
γmin

)1/2

But

Cu

√
λα,m

γmin
≤ λα,mT +

C2
u

Tγ2
min

,

hence

(6. 8) Cctr−bd ≤
C√
`

√
κα
√
B(T, γmin)e

C2
u

2Tγ2
min

( ∞∑
m=1

j2
να,me

−λα,mT
)1/2

=
C√
`

√
κα
√
B(T, γmin)e

C2
u

2c2
`2−α
Tκ2α

( ∞∑
m=1

j2
να,me

−j2να,m
κ2αT

`2−α

)1/2

It remains to estimate the last sum. We distinguish the cases να ≤ 1
2 and να ≥ 1

2 .

Take Y > 0. When να ≤ 1
2 , using (3. 9) we see that

j2
να,me

−j2να,mY ≤ π2(m+
να − 1

2

4
)2e−Y π

2(m+
να− 1

2
2 )2 .

When m ≥ 1, we have

(m+
να − 1

2

2
)2 ≥ (m− 1

4
)2 ≥ 1

2
m2 +

1

16
,
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hence

j2
να,me

−j2να,mY ≤ π2m2e−Y π
2m2/2e−Y π

2/16.

The function V : x 7→ π2x2e−Y π
2x2/2 attains its maximum at xY :=

√
2

π2Y , is

increasing on [0, xY ], decreasing on [xY ,+∞), and its maximum is 2
eY . If xY ≤ 1,

then

∞∑
m=1

π2m2e−Y π
2m2/2 =

∞∑
m=1

V (m) = V (1) +

∞∑
m=1

V (m+ 1)

≤ V (1) +

∞∑
m=1

∫ m+1

m

V (x) dx = V (1) +

∫ ∞
1

V (x) dx.

If xY ≥ 1, then

∞∑
m=1

π2m2e−Y π
2m2/2 =

∞∑
m=0

V (m)

=

[xY ]−1∑
m=0

V (m) + V ([xY ]) + V ([xY ] + 1) +

∞∑
[xY ]+2

V (m)

≤
[xY ]−1∑
m=0

∫ m+1

m

V (x) dx+ V ([xY ]) + V ([xY ] + 1) +

∞∑
[xY ]+2

∫ m

m−1

V (x) dx

≤ V ([xY ]) + V ([xY ] + 1) +

∫ ∞
0

V (x) dx ≤ 4

eY
+

∫ ∞
0

V (x) dx.

Hence in any case,

(6. 9)

∞∑
m=1

π2m2e−Y π
2m2/2 ≤ 4

eY
+

∫ ∞
0

π2x2e−Y π
2x2/2 dx

=
4

eY
+

23/2

πY 3/2

∫ ∞
0

s2e−s
2

ds,

and
∞∑
m=1

j2
να,me

−j2να,mY ≤
( 4

eY
+

23/2

πY 3/2

∫ ∞
0

s2e−s
2

ds
)
e−Y π

2/16.

hence there exists some Cu such that, when να ≤ 1
2 ,

(6. 10) ∀Y > 0,

∞∑
m=1

j2
να,me

−j2να,mY ≤ 1

CuY 3/2
e−CuY .

When να ≥ 1
2 , we proceed in the same way, using (3. 8): we see that

j2
να,me

−j2να,mY ≤ π2(m+
να − 1

2

2
)2e−Y π

2(m+
να− 1

2
4 )2 .

But

(m+
να − 1

2

4
)2 ≥ 1

2
m2 + (

να − 1
2

4
)2,
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hence

j2
να,me

−j2να,mY ≤ π2(m+
να − 1

2

2
)2e−Y π

2m2/2e−Y π
2(
να− 1

2
4 )2

≤ 2π2
(
m2 + (

να − 1
2

2
)2
)
e−Y π

2m2/2e−Y π
2(
να− 1

2
4 )2

≤ 2
(

1 + (
να − 1

2

2
)2
)
e−Y π

2(
να− 1

2
4 )2π2m2e−Y π

2m2/2.

Hence, using (6. 9), we obtain

∞∑
m=1

j2
να,me

−j2να,mY ≤ 2
(

1+(
να − 1

2

2
)2
)
e−Y π

2(
να− 1

2
4 )2

( 4

eY
+

23/2

πY 3/2

∫ ∞
0

s2e−s
2

ds
)
,

hence there exists some Cu such that, when να ≥ 1
2 ,

(6. 11) ∀Y > 0,

∞∑
m=1

j2
να,me

−j2να,mY ≤ ν2
α

CuY 3/2
e−Cuν

2
αY .

And then, there is some Cu independent of α ∈ [1, 2) of T > 0 and of ` > 0 such
that

(6. 12)

∞∑
m=1

j2
να,me

−j2να,m

(
κ2αT

`2−α

)
≤ 1

Cuκ2
α

(
κ2
αT

`2−α

)3/2
e
−Cu
κ2α

(
κ2αT

`2−α

)
.

That allows us to complete the estimate from above of the null controllability cost:
we deduce from (6. 8), (6. 12), (6. 4) that

Cctr−bd ≤ C ′u
1√
καT`

e
C′u

`2−α
κ2αT e−

Cu
2

T

`2−α ,

which is (2. 11). This completes the proof of Theorem 2.2. �

7. Proof of Theorem 2.4

In section 4.2, we constructed, at least formally, a control that drives the initial
condition u0 to 0 in time T . This control is given by (4. 8), and depends of a suitable
biorthogonal family σ+

α,m satisfying (4. 5), and of the norm of the eigenfunctions
in the control region. Theorem 6.1 (in fact (6. 5) and (6. 6)) gives the existence
and bounds for a biorthogonal family (σ+

α,m)m≥1 satisfying (4. 5). Proposition 2.5
gives an estimate of the norm of the eigenfunctions in the control region (and will
be proved in section 9). Here we use these results to prove Theorem 2.4: using
Theorem 6.1 and Proposition 2.5, we have

‖σ+
α,m‖2L2(0,T )

1(∫ b
a

Φ2
α,m

)2 ≤ CuB
∗(T, γmin)e

Cu
`2−α
κ2αT e−λα,mT

1(
γ∗0(2− α)

)2

≤ CuB
∗(T, γmin)

|γ∗0 |2(2− α)2
e
Cu

`2−α
κ2αT e−κ

2
αj

2
να,1

T

`2−α .

Hence, there is some Cu independent of T > 0, ` > 0, α ∈ [1, 2), m ≥ 1 such that

‖σ+
α,m‖2L2(0,T )

1(∫ b
a

Φ2
α,m

)2 ≤
CuB

∗(T, γmin)

|γ∗0 |2(2− α)2
e
Cu

`2−α
κ2αT e−

1
Cu

T

`2−α .
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Of course, if (µ0
α,m)m ∈ `2(N), then the series∑

m≥1

|µ0
α,m|2‖σ+

α,m‖2L2(0,T )

1(∫ b
a

Φ2
α,m

)2

is convergent. Hence the control given by the formula (4. 8) is in L2((0, `)×(0, T )),
and

‖h‖2L2((0,`)×(0,T )) =
∑
m≥1

|µ0
α,m|2‖σ+

α,m‖2L2(0,T )

1(∫ b
a

Φ2
α,m

)2

≤ CuB
∗(T, γmin)

|γ∗0 |2(2− α)2
e
Cu

`2−α
κ2αT e−

1
Cu

T

`2−α
∑
m≥1

|µ0
α,m|2.

Hence

C2
ctr−loc ≤

CuB
∗(T, γmin)

|γ∗0 |2(2− α)2
e
Cu

`2−α
κ2αT e−

1
Cu

T

`2−α .

This gives (2. 14) (with another constant Cu). In particular, note that the depen-
dence in the control region appears only in γ∗0 . �

8. Proof of Theorem 2.3

Given u0 ∈ L2(0, `), assume that h ∈ L2((a, b) × (0, T )) is a control that drives
the solution of (2. 2) to 0 in time T . Denote

H(t) := u(a, t).

Then the function u satisfies

(8. 1)


ut − (xαux)x = 0 x ∈ (0, a), t > 0,

(xαux)(0, t) = 0, t > 0,

u(a, t) = H(t) t > 0,

u(x, 0) = u0(x), x ∈ (0, a)

and
u(x, T ) = 0, x ∈ (0, a),

hence H is a boundary control that drives the solution of (8. 1) to 0 in time T . Let
us choose m ≥ 1 and

u0(x) :=

{ √
2κα

aκα |J′να (jνα,m)|x
(1−α)/2Jνα(jνα,m(xa )κα), x ∈ (0, a),

0, x ∈ (a, `),

in such a way that the initial condition of (8. 1) is exactly an eigenfunction of the
associated Sturm-Liouville problem. Then we know from subsection 5.7 that

(8. 2) |rα,m|‖u(a, ·)‖L2(0,T ) = ‖rα,mHm‖L2(0,T ) ≥ b(T, α,m),

where b is defined in (5. 14), but where a replaces ` in the expressions of rα,m and
b(T, α,m).

On the other hand, energy methods tell us that the control h and the initial
condition dominate the solution of (2. 2): indeed, first we have

∀y ≥ a, −u(y, t) =

∫ `

y

ux(x, t) dx,

hence

u(y, t)2 =
(∫ `

y

ux(x, t) dx
)2

≤
(∫ `

y

xαu2
x(x, t) dx

)(∫ `

y

x−α dx
)
,
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hence

∀y ∈ [a, `), u(y, t)2 ≤ C(α, a, `)

∫ `

0

xαu2
x(x, t) dx

with

C(α, a, `) =

{
1

(α−1)aα−1 if α ∈ (1, 2),

ln `
a if α = 1

.

Then, multiplying the first equation of (2. 2) by u, we have∫ T

0

∫ `

0

uhχ(a,b) =

∫ T

0

∫ `

0

u(ut − (xαux)x) = −1

2

∫ `

0

u2
0 +

∫ T

0

∫ `

0

xαu2
x,

hence∫ T

0

∫ `

0

xαu2
x =

1

2

∫ `

0

u2
0 +

∫ T

0

∫ b

a

uh

≤ 1

2

∫ `

0

u2
0 +

∫ T

0

∫ b

a

(
C(α, a, `)

∫ `

0

xαu2
x(x, t) dx

)1/2

|h|

≤ 1

2

∫ `

0

u2
0 +

1

2

∫ T

0

∫ `

0

xαu2
x(x, t) dx dt+

(b− a)C(α, a, `)

2

∫ T

0

∫ b

a

h(x, t)2 dx dt.

We obtain that∫ T

0

∫ `

0

xαu2
x ≤

∫ `

0

u2
0 + (b− a)C(α, a, `)

∫ T

0

∫ b

a

h(x, t)2 dx dt,

hence∫ T

0

u(a, t)2 dt ≤ C(α, a, `)

∫ T

0

∫ `

0

xαu2
x

≤ C(α, a, `)

∫ `

0

u2
0 + (b− a)C(α, a, `)2

∫ T

0

∫ b

a

h(x, t)2 dx dt.

The initial condition u0 that we have chosen has an L2-norm equal to 1, hence∫ T

0

∫ b

a

h(x, t)2 dx dt ≥ 1

(b− a)C(α, a, `)2

∫ T

0

u(a, t)2 dt− 1

(b− a)C(α, a, `)
,

and the lower bound (8. 2) of ‖u(a, ·)‖L2(0,T ) implies that∫ T

0

∫ b

a

h(x, t)2 dx dt ≥ 1

(b− a)C(α, a, `)2

b(T, α,m)2

r2
α,m

− 1

(b− a)C(α, a, `)
.

As we did in subsection 5.7, choosing m = 1, this implies that∫ T

0

∫ b

a

h(x, t)2 dx dt

≥ 1

(b− a)C(α, a, `)2

[
Cu

a2(2−α)

καTa
e−2π2 T

a2−α e
2Cu

a2−α
T (2−α)2

e
− 2
Cu

( 1

(2−α)4/3
+ a1−α/2

2−α )(ln a1−α/2
2−α +ln 1

T )
]
− 1

(b− a)C(α, a, `)
.

Then the null controllability cost for (2. 2) blows up at least exponentially fast
when α→ 2−, as stated in Theorem 2.3. One can note that the bound from below
is very poor when ` is large. But this is due to the method: indeed, we concentrate
the initial condition on the zone at the left of the control region. �
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9. The eigenfunctions in the control region (Proposition 2.5)

The goal of this section is to prove Proposition 2.5, that was be useful to prove
Theorem 2.4.

9.1. The reduction to an ordinary differential equation question.
Using Proposition 2.4, we note that∫ b

a

Φα,m(x)2 dx =

∫ b

a

2κα
`2κα |J ′να(jνα,m)|2

x1−αJνα(jνα,m(
x

`
)κα)2 dx

=
2κα

`2κα |J ′να(jνα,m)|2

∫ jνα,m( b` )κα

jνα,m( a` )κα

(
`(

y

jνα,m
)1/κα

)1−α
Jνα(y)2 `

j
1/κα
να,m

1

κα
y

1
κα
−1 dy

=
2κα`

2−α

κα`2καj
1−α
κα

+ 1
κα

να,m |J ′να(jνα,m)|2

∫ jνα,m( b` )κα

jνα,m( a` )κα
y

1−α
κα

+ 1
κα
−1Jνα(y)2 dy

=
2

j2
να,m|J ′να(jνα,m)|2

∫ jνα,m( b` )κα

jνα,m( a` )κα
yJνα(y)2 dy,

where we used the change of variables

y = jνα,m(
x

`
)κα , x = `(

y

jνα,m
)1/κα , dx =

`

j
1/κα
να,m

1

κα
y

1
κα
−1 dy.

Now introduce the function

Kνα,m(y) :=
√
y

Jνα(y)

J ′να(jνα,m)
.

With the help of Kνα,m, we have

(9. 1)

∫ b

a

Φα,m(x)2 dx =
2

j2
να,m

∫ jνα,m( b` )κα

jνα,m( a` )κα
Kνα,m(y)2 dy.

Moreover, it is well known that Kνα,m is solution of the second order ordinary
differential equation

K ′′να,m + hνα(y)Kνα,m = 0,

where

hνα(y) = 1−
ν2
α − 1

4

y2
.

(We already recalled this in the proof of Lemma 5.2.) Hence in fact Kνα,m solves
the Cauchy problem

(9. 2)


K ′′να,m + hνα(y)Kνα,m = 0,

Kνα,m(jνα,m) = 0,

K ′να,m(jνα,m) =
√
jνα,m,

and we want to estimate it on the zone [jνα,m(a` )κα , jνα,m( b` )
κα ]. Let us normalize

the localization of the Cauchy conditions and the localization of the integration
interval, using a suitable change of variables: consider

(9. 3) Lνα,m(z) =
−1√
jνα,m

Kνα,m(jνα,m − zjνα,m).

Then Lνα,m solves the Cauchy problem

(9. 4)


L′′να,m + kνα,m(z)Lνα,m = 0, with kνα,m(z) = j2

να,m −
ν2
α− 1

4

(1−z)2 ,

Lνα,m(0) = 0,

L′να,m(0) = jνα,m,
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and

(9. 5)

∫ b

a

Φα,m(x)2 dx = 2

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz.

Once again, the term we are interested in is the norm of the solution of a Cauchy
problem, but now with Cauchy conditions at the point 0, and we have to estimate
its norm on some fixed interval (that does not contain 0). To do this, we are going
to study the Cauchy problem (9. 4).

9.2. The study of the Cauchy problem: a uniform bound on Lνα,m.
We begin by the following observation: when α→ 2−, then

1− (
b

`
)κα = 1− e( 1

2 ln b
` )(2−α) = −(

1

2
ln
b

`
)(2− α) +O((2− α)2),

hence

1− (
b

`
)κα ∼ κα ln

`

b
as α→ 2−,

and in the same way

1− (
a

`
)κα ∼ κα ln

`

a
as α→ 2−;

hence the integration interval shrinks to 0, and its length satisfies(
1− (

a

`
)κα
)
−
(

1− (
b

`
)κα
)
∼ κα ln

b

a
as α→ 2−.

In particular, there exists some 0 < γ∗(a, b, `) ≤ γ∗(a, b, `) and γ(a, b, `) > 0 such
that, for all α ∈ [1, 2),

γ∗(a, b, `)κα ≤ 1− (
b

`
)κα < 1− (

a

`
)κα ≤ γ∗(a, b, `)κα,(9. 6)

(1− (
a

`
)κα)− (1− (

b

`
)κα) ≥ γ(a, b, `)κα.(9. 7)

Let us prove the following uniform bound:

Lemma 9.1. There exists Cu independent of α ∈ [1, 2) and of m ≥ 1 such that

(9. 8) ∀α ∈ [1, 2[,∀m ≥ 1,∀z ∈ [0, 1− (
a

`
)κα ], |Lνα,m(z)| ≤ Cu.

Proof of Lemma 9.1. To obtain an integral equation satisfied by Lνα,m, we write
the Cauchy problem (9. 4) under the form

(9. 9)


L′′να,m + j2

να,mLνα,m =
ν2
α− 1

4

(1−z)2Lνα,m,

Lνα,m(0) = 0,

L′να,m(0) = jνα,m.

Since the solution of the Cauchy problem
Y ′′ + ω2Y = g(z),

Y (0) = 0,

Y ′(0) = ω

is

Y (z) = sin(ωz) +
1

ω

∫ z

0

g(s) sin(ω(z − s)) ds,

we deduce that Lνα,m satisfies

(9. 10) Lνα,m(z) = sin(jνα,mz) +
1

jνα,m

∫ z

0

ν2
α − 1

4

(1− s)2
Lνα,m(s) sin(jνα,m(z − s)) ds.
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Hence

|Lνα,m(z)| ≤ 1 +
1

jνα,m

∫ z

0

|ν2
α − 1

4 |
(1− s)2

|Lνα,m(s)| ds,

and the classical Gronwall inequality gives that

|Lνα,m(z)| ≤ e
|ν2α−

1
4
|

jνα,m

∫ z
0

1
(1−s)2

ds
= e

|ν2α−
1
4
|

jνα,m
z

1−z .

But then, since we know from (3. 10) that jνα,m ≥ να, we have

∀α ∈ [1, 2[,∀m ≥ 1,∀z ∈ [0, 1− (
a

`
)κα ], |Lνα,m(z)| ≤ e

|ν2α−
1
4
|

να

1−( a
`
)κα

( a
`
)κα .

Using (9. 6), we see that this is uniformly bounded with respect to α, hence we
obtain (9. 8). �

9.3. The L2 norm of Lνα,m for fixed values of να.
The integral expression (9. 10) and the uniform bound (9. 8) allow us to prove

the following

Lemma 9.2. There exists γ = γ(a, b, `) such that

(9. 11) ∀α ∈ [1, 2),∀m ≥ 1,

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ 1

2
γκα −

γ

jνα,m
.

Proof of Lemma 9.2. From (9. 10) we have

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz =

∫ 1−( a` )κα

1−( b` )κα
sin2(jνα,mz) dz

+

∫ 1−( a` )κα

1−( b` )κα

( 1

jνα,m

∫ z

0

ν2
α − 1

4

(1− s)2
Lνα,m(s) sin(jνα,m(z − s)) ds

)2

dz

+

∫ 1−( a` )κα

1−( b` )κα
2 sin(jνα,mz)

( 1

jνα,m

∫ z

0

ν2
α − 1

4

(1− s)2
Lνα,m(s) sin(jνα,m(z − s)) ds

)
dz.

Of course∫ 1−( a` )κα

1−( b` )κα

( 1

jνα,m

∫ z

0

ν2
α − 1

4

(1− s)2
Lνα,m(s) sin(jνα,m(z − s)) ds

)2

dz ≥ 0,

and

∫ 1−( a` )κα

1−( b` )κα
sin2(jνα,mz) dz =

∫ 1−( a` )κα

1−( b` )κα

1− cos(2jνα,mz)

2
dz

=
1

2

(
(1− (

a

`
)κα)− (1− (

b

`
)κα)

)
− 1

2
[
sin 2jνα,mz

2jνα,m
]
1−( a` )κα

1−( b` )κα

≥ 1

2
γκα −

1

2jνα,m
.
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And using (9. 8) and (9. 6), we have

∣∣∣∫ 1−( a` )κα

1−( b` )κα
2 sin(jνα,mz)

( 1

jνα,m

∫ z

0

ν2
α − 1

4

(1− s)2
Lνα,m(s) sin(jνα,m(z − s)) ds

)
dz
∣∣∣

≤ 2

jνα,m

∫ 1−( a` )κα

1−( b` )κα

(∫ z

0

|ν2
α − 1

4 |
(1− s)2

Cu ds
)
dz = 2Cu

|ν2
α − 1

4 |
jνα,m

∫ 1−( a` )κα

1−( b` )κα

z

1− z
dz

≤ 2Cu
(a` )κα

|ν2
α − 1

4 |
jνα,m

[
z2

2
]
1−( a` )κα

1−( b` )κα

=
Cu

(a` )κα
|ν2
α − 1

4 |
jνα,m

(
(1− (

a

`
)κα)− (1− (

b

`
)κα)

)(
(1− (

a

`
)κα) + (1− (

b

`
)κα)

)
≤ Cu

(a` )κα
|ν2
α − 1

4 |
jνα,m

2γ∗(γ∗ − γ∗)κ2
α.

Hence∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ 1

2
γκα −

1

2jνα,m
− Cu

(a` )κα
|ν2
α − 1

4 |
jνα,m

2γ∗(γ∗ − γ∗)κ2
α.

Hence there exists γ = γ(a, b, `) such that∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ 1

2
γκα −

γ

jνα,m
.

This implies (9. 11) . �

9.4. A first consequence for the eigenfunctions on the control region.
The consequence of (9. 11) is immediate: combining (9. 5) and (9. 11), we ob-

tain

(9. 12)

∫ b

a

Φα,m(x)2 dx ≥ γκα −
2γ

jνα,m
,

hence we find again what is well-known at least in the nondegenerate case ([38]):

lim
m→∞

∫ b

a

Φα,m(x)2 dx > 0,

hence the sequence of positive terms (
∫ b
a

Φ2
α,m)m≥1 is bounded from below by a

positive constant. But this constant may depend on α. At least, we obtain the
following uniform result: given α∗ ∈ [1, 2), there exists m∗ ≥ 1 such that

∀α ∈ [1, α∗],∀m ≥ m∗,
∫ b

a

Φα,m(x)2 dx ≥ 1

2
γκα∗ .

Hence, since Φα,m depends continuously on the parameter α, we obtain that, given

α∗ ∈ [1, 2), the sequences (
∫ b
a

Φ2
α,m)m≥1 are bounded from below by a positive

constant, uniformly with respect to α ∈ [1, α∗]:

(9. 13) ∀α∗ ∈ [1, 2),∃γ∗ > 0,∀α ∈ [1, α∗],∀m ≥ 1,

∫ b

a

Φα,m(x)2 dx ≥ γ∗κα∗ .

This is not sufficient to conclude, since we want a lower estimate valid for all
α ∈ [1, 2), but this is a first step, and we will use this partial result later.
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9.5. Another integral equation for Lνα,m when να is large.
Now, we would like to obtain bounds from below when να is large. In this case,

we have to integrate L2
να,m in an interval close to 0. So, since we are interested in

looking what happens near 0, it is more interesting to write

kνα,m(z) = j2
να,m −

ν2
α − 1

4

(1− z)2
= j2

να,m − (ν2
α −

1

4
)
(

1 +
1

(1− z)2
− 1
)

=
(
j2
να,m − ν

2
α +

1

4

)
− (ν2

α −
1

4
)

2z − z2

(1− z)2
.

Then we can write the Cauchy problem (9. 4) under the form

(9. 14)


L′′να,m +

(
j2
να,m − ν

2
α + 1

4

)
Lνα,m = (ν2

α − 1
4 ) 2z−z2

(1−z)2Lνα,m,

Lνα,m(0) = 0,

L′να,m(0) = jνα,m.

Since the solution of the Cauchy problem
Y ′′ + ω2Y = g(z),

Y (0) = 0,

Y ′(0) = ρ

is

Y (z) =
ρ

ω
sinωz +

1

ω

∫ z

0

g(s) sinω(z − s) ds,

we obtain a new integral equation satisfied by Lνα,m: denote

ωνα,m :=

√
j2
να,m − ν2

α +
1

4
;

then we have

Lνα,m(z) =
jνα,m
ωνα,m

sin(ωνα,mz)

+
1

ωνα,m

∫ z

0

(ν2
α −

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z − s)) ds.

Hence

(9. 15)

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz =

∫ 1−( a` )κα

1−( b` )κα

( jνα,m
ωνα,m

sin(ωνα,mz)

+
1

ωνα,m

∫ z

0

(ν2
α −

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z − s)) ds

)2

dz

=
j2
να,m

ω2
να,m

∫ 1−( a` )κα

1−( b` )κα
sin2(ωνα,mz) dz

+
1

ω2
να,m

∫ 1−( a` )κα

1−( b` )κα

(∫ z

0

(ν2
α −

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z − s)) ds

)2

dz

+2
jνα,m
ω2
να,m

∫ 1−( a` )κα

1−( b` )κα
sin(ωνα,mz)

(∫ z

0

(ν2
α−

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z−s)) ds

)
dz.

We are going to study the behavior of the first and third term of the right hand
side of (9. 15), the second one being nonnegative.

9.6. The L2 norm of Lνα,m for large values of να.
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9.6.a. The first term of (9. 15).
We study

(9. 16)

∫ 1−( a` )κα

1−( b` )κα
sin2 ωνα,mz dz.

It appears that we need to distinguish the cases ωνα,mκα small and ωνα,mκα not
small: indeed,∫ 1−( a` )κα

1−( b` )κα
sin2(ωνα,mz) dz =

1

ωνα,m

∫ ωνα,m[1−( a` )κα ]

ωνα,m[1−( b` )κα ]

sin2 x dx,

and we derive from the elementary convexity inequalities:

(9. 17) ∀µ ≥ 0,∀u ∈ [0, 1], (1− e−µ)u ≤ 1− e−µu ≤ µu,
that

• first, using (9. 17) with u = κα and µ = ln `
a , we have

(9. 18) [1− (
a

`
)κα ] = [1− e−κα ln `

a ] ≤ ln
`

a
κα,

• next, using (9. 17) with u = κα and µ = ln `
b , we have

(9. 19) [1− (
b

`
)κα ] = [1− e−κα ln `

b ] ≥ (1− e− ln `
b )κα = (1− b

`
)κα,

and (9. 18)-(9. 19) give that

(1− b

`
)ωνα,mκα ≤ ωνα,m[1− (

b

`
)κα ] ≤ ωνα,m[1− (

a

`
)κα ] ≤ (ln

`

a
)ωνα,mκα.

Hence the bounds of the integral appearing in (9. 16) are both small or both non
small, depending on the value of ωνα,mκα.

We prove the following

Lemma 9.3. There exists η0 = η0(a, b, `) > 0, and γ0 = γ0(a, b, `) > 0 both
independent of α ∈ [1, 2) and of m ≥ 1 such that

• if ωνα,mκα ≤ η0, then

(9. 20)

∫ 1−( a` )κα

1−( b` )κα
sin2(ωνα,mz) dz ≥ γ0 ω

2
να,m κ

3
α.

• if ωνα,mκα ≥ η0, then

(9. 21)

∫ 1−( a` )κα

1−( b` )κα
sin2(ωνα,mz) dz ≥ γ0κα.

Remark 9.1. A similar property of the function sinus appears in Haraux [34]
(Lemma 1.3.2) and [52] (Theorem 1). In our case, we have to bound from below
the integrals of z 7→ sin2(ωνα,mz) with respect to the size of the integration zone
(and this size is small, of the order κα), and the coefficients ωνα,m that appear are
non integer and possibly small.

Proof of Lemma 9.3. It comes from the following observations:

• First,

(9. 22) 0 < A < B ≤ π

2
=⇒

∫ B

A

sin2 x dx ≥ 4

π2
A2(B −A).

Indeed, if 0 < A < B ≤ π
2 , then

∀x ∈ [A,B], sinx ≥ 2

π
x,
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hence ∫ B

A

sin2 x dx ≥ 4

π2
A2(B −A).

• On the other hand, consider η1, A and B such that

0 < η1 ≤ A < B, and B −A ≥ 2η1.

Then, first the function

s 7→
∫ s+η1

s

sin2 x dx

is continuous, 2π-periodic, and positive, hence is bounded from below by a
positive constant, denoted γ1. Next, there exists one and only one integer
k such that

kη1 ≤ B −A < (k + 1)η1,

then∫ B

A

sin2 x dx ≥
∫ A+kη1

A

sin2 x dx =

k−1∑
j=0

∫ A+(j+1)η1

A+jη1

sin2 x dx

≥
k−1∑
j=0

γ1 = kγ1 ≥ γ1(
B −A
η1

− 1) = γ1(
B −A

2η1
+
B −A

2η1
− 1) ≥ γ1

2η1
(B −A).

Hence

(9. 23)
(

0 < η1 ≤ A < B, and B −A ≥ 2η1

)
=⇒

∫ B

A

sin2 x dx ≥ γ1

2η1
(B −A) with γ1 = γ1(η1).

Now we are in position to conclude the proof of Lemma 9.3. This is based on the
observation that we are in one of the two situations studied previously: using (9. 6),
we see that there is some η0 such that

ωνα,mκα ≤ η0 =⇒ 0 < ωνα,m[1− (
b

`
)κα ] < ωνα,m[1− (

a

`
)κα ] ≤ π

2
;

in this case, (9. 22) gives that∫ ωνα,m[1−( a` )κα ]

ωνα,m[1−( b` )κα ]

sin2 x dx

≥ 4

π2

(
ωνα,m[1− (

b

`
)κα ]

)2(
ωνα,m[1− (

a

`
)κα ]− ωνα,m[1− (

b

`
)κα ]

)
=

4

π2
ω3
να,m[1− (

b

`
)κα ]2

(
[1− (

a

`
)κα ]− [1− (

b

`
)κα ]

)
,

hence, thanks to (9. 6) and (9. 7), there exists some γ(a, b, `) > 0 such that

ωνα,mκα ≤ η0 =⇒
∫ ωνα,m[1−( a` )κα ]

ωνα,m[1−( b` )κα ]

sin2 x dx ≥ γ(a, b, `)ω3
να,m κ

3
α,

which gives (9. 20).
Now if ωνα,mκα ≥ η0: then, thanks to (9. 6) and (9. 7), there is some η1 =

η1(a, b, `) such that

η1 < ωνα,m[1− (
b

`
)κα ] < ωνα,m[1− (

a

`
)κα ],

and

ωνα,m[1− (
a

`
)κα ]− ωνα,m[1− (

b

`
)κα ] ≥ 2η1.
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Then (9. 23) gives that there exists γ1 = γ1(a, b, `) such that∫ ωνα,m[1−( a` )κα ]

ωνα,m[1−( b` )κα ]

sin2 x dx ≥ γ1

2η1

(
ωνα,m[1− (

a

`
)κα ]− ωνα,m[1− (

b

`
)κα ]

)
,

hence, once again with (9. 7), we obtain that

ωνα,mκα ≥ η0 =⇒
∫ ωνα,m[1−( a` )κα ]

ωνα,m[1−( b` )κα ]

sin2 x dx ≥ γ1

2η1
ωνα,mγκα,

which gives (9. 21). �

9.6.b. The third term of (9. 15).
We study

M3 :=

∫ 1−( a` )κα

1−( b` )κα
sin(ωνα,mz)

(∫ z

0

(ν2
α−

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z−s)) ds

)
dz,

and we prove the following

Lemma 9.4. Choose η0 = η0(a, b, `) > 0 given in Lemma 9.3. Then there exists
γ′0 = γ′0(a, b, `) > 0 independent of α ∈ [1, 2) and of m ≥ 1 such that

• if ωνα,mκα ≤ η0, then

(9. 24) |M3| ≤ γ′0ωνα,mκ2
α,

• if ωνα,mκα ≥ η0, then

(9. 25) |M3| ≤ γ′0κα,
hence in any case

(9. 26) |M3| ≤ γ′0κα.

Proof of Lemma 9.4. First we prove (9. 24). Assume that ωνα,mκα ≤ η0. Then,
since we have proved in Lemma 9.1 that Lνα,m is uniformly bounded in [0, 1−(a` )κα ],
we have

|M3| ≤
∫ 1−( a` )κα

1−( b` )κα
| sinωνα,mz|

(∫ z

0

|ν2
α−

1

4
| |2s− s

2|
(1− s)2

|Lνα,m(s)|| sinωνα,m(z−s)| ds
)
dz

≤
∫ 1−( a` )κα

1−( b` )κα
ωνα,mz

(∫ z

0

|ν2
α −

1

4
| 2s

(1− s)2
Cu ds

)
dz

≤ ωνα,m|ν2
α −

1

4
|C ′u

∫ 1−( a` )κα

1−( b` )κα
z3 dz

≤ ωνα,m|ν2
α −

1

4
|C ′u(1− (

a

`
)κα)3

(
(1− (

a

`
)κα)− 1− (

b

`
)κα)

)
≤ C ′′uωνα,m|ν2

α −
1

4
|κ4
α ≤ C ′′uωνα,mκ−2

α κ4
α = C ′′uωνα,mκ

2
α,

which is (9. 24) (which implies (9. 26)).
Now we prove (9. 25). Assume that ωνα,mκα ≥ η0. Then, once again using the

fact that Lνα,m is uniformly bounded in [0, 1− (a` )κα ] (Lemma 9.1), we have

|M3| ≤
∫ 1−( a` )κα

1−( b` )κα
| sinωνα,mz|

(∫ z

0

|ν2
α−

1

4
| |2s− s

2|
(1− s)2

|Lνα,m(s)|| sinωνα,m(z−s)| ds
)
dz

≤
∫ 1−( a` )κα

1−( b` )κα

(∫ z

0

|ν2
α −

1

4
|C ′us ds

)
dz ≤ C ′u|ν2

α −
1

4
|[z

3

6
]
1−( a` )κα

1−( b` )κα

≤ C ′′u |ν2
α −

1

4
|(1− (

a

`
)κα)2

(
(1− (

a

`
)κα)− 1− (

b

`
)κα)

)
≤ C ′′′u κ−2

α κ3
α = C ′′′u κα
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which is (9. 25). �

9.6.c. The L2 norm of Lνα,m for large values of να.
We prove the following

Lemma 9.5. Choose η0 = η0(a, b, `) > 0 and γ0 = γ0(a, b, `) > 0 given in Lemma
9.3. Then there exists α ∈ [1, 2) such that

(9. 27) ∀α ∈ [α, 2),∀m ≥ 1,

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ γ0

2

j2
να,mκ

3
α

1 + ω2
να,mκ

2
α

.

Proof of Lemma 9.5. We start from (9. 15), that gives

(9. 28)

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥

j2
να,m

ω2
να,m

∫ 1−( a` )κα

1−( b` )κα
sin2(ωνα,mz) dz

+2
jνα,m
ω2
να,m

∫ 1−( a` )κα

1−( b` )κα
sin(ωνα,mz)

(∫ z

0

(ν2
α−

1

4
)

2s− s2

(1− s)2
Lνα,m(s) sin(ωνα,m(z−s)) ds

)
dz.

First we prove (9. 27) when ωνα,mκα ≤ η0. Using (9. 20) and (9. 24) in (9. 28),
we have∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥

j2
να,m

ω2
να,m

γ0 ω
2
να,m κ

3
α − 2

jνα,m
ω2
να,m

γ′0ωνα,mκ
2
α

= γ0j
2
να,mκ

3
α − 2γ′0

jνα,m
ωνα,m

κ2
α = j2

να,mκ
3
α

(
γ0 −

2γ′0
jνα,mωνα,mκα

)
.

Now remember that (3. 10) ([55]) says that

jν,k ≥ ν −
a1

21/3
ν1/3,

where a1 < 0. Hence

jνα,m − να ≥ −
a1

21/3
ν1/3
α ,

and
jνα,m + να ≥ 2να,

therefore

ωνα,m =

√
j2
να,m − ν2

α +
1

4
≥
√
− 2a1

21/3
ν

4/3
α .

Since jνα,m ≥ να, this implies that

jνα,mωνα,mκα ≥
(
− 2a1

21/3

)1/2

ν5/3
α κα.

That last quantity goes to infinity when α→ 2−, hence there exists α0 ∈ [1, 2) such
that

∀α ∈ [α0, 2),∀m ≥ 1,

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ γ0

2
j2
να,mκ

3
α,

which implies (9. 27) when ωνα,mκα ≤ η0.
Next we prove (9. 27) when ωνα,mκα ≥ η0. Using (9. 21) and (9. 25) in (9. 28),

we have

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥

j2
να,m

ω2
να,m

γ0κα − 2
jνα,m
ω2
να,m

γ′0κα =
j2
να,mκα

ω2
να,m

(
γ0 − 2

γ′0
jνα,m

)
.

Hence, once again, there exists α1 ∈ [1, 2) such that

∀α ∈ [α1, 2),∀m ≥ 1,

∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ γ0

2

j2
να,mκα

ω2
να,m

.
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Finally, since

inf{a, 1

b
} ≥ a

1 + ab
,

we obtain that∫ 1−( a` )κα

1−( b` )κα
Lνα,m(z)2 dz ≥ inf{γ0

2
j2
να,mκ

3
α,
γ0

2

j2
να,mκα

ω2
να,m

}

=
γ0

2
j2
να,mκ

3
α inf{1, 1

ω2
να,mκ

2
α

} ≥ γ0

2
j2
να,mκ

3
α

1

1 + ω2
να,mκ

2
α

,

which is (9. 27). �

9.7. Proof of Proposition 2.5.
We deduce from (9. 5) and (9. 27) that, for α ≥ α,

∀m ≥ 1,

∫ b

a

Φα,m(x)2 dx ≥ γ0

j2
να,mκ

3
α

1 + ω2
να,mκ

2
α

= γ0κα
j2
να,mκ

2
α

1 + ω2
να,mκ

2
α

= γ0κα
ω2
να,mκ

2
α + (ν2

α − 1
4 )κ2

α

1 + ω2
να,mκ

2
α

.

Since νακα → 1
2 as α → 2−, there exists α∗ ∈ [α, 2) such that (ν2

α − 1
4 )κ2

α ≥ 1
8 for

all α ∈ [α∗, 2). Then, for all α ∈ [α∗, 2), we have

ω2
να,mκ

2
α + (ν2

α − 1
4 )κ2

α

1 + ω2
να,mκ

2
α

≥
ω2
να,mκ

2
α + 1

8

1 + ω2
να,mκ

2
α

≥ 1

8
.

Hence

(9. 29) ∀α ∈ [α∗, 2),∀m ≥ 1,

∫ b

a

Φα,m(x)2 dx ≥ γ0

8
κα.

But we already proved in (9. 13) that (
∫ b
a

Φ2
α,m)m≥1 is uniformly bounded from

below when α ∈ [1, α∗]. Hence (9. 13) and (9. 29) give (2. 18) and the proof of
Proposition 2.5 is completed. �
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[54] Y. Privat, E. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter

systems with the moment method, SIAM J. Control Optim. Vol. 55 (No 2), p. 1128-1152.

[55] C. K. Qu, R. Wong, ”Best possible” upper and lower bounds for the zeros of the Bessel
function Jν(x), Trans. Amer. Math. Soc. 351 (1999), no. 7, 2833-2859.

[56] R.M. Redheffer, Elementary remarks on completeness, Duke Math. Journal 35 (1968), p.
103-116.

[57] L. Schwartz, Étude des sommes d’exponentielles, deuxième édition. Paris, Hermann 1959.
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