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Abstract—The challenge proposed by this study is to re-
consider the entire animation pipeline for data-driven character
animation. By observing that significant loss of information and
precision occur in the traditional animation pipeline (skeleton
reconstruction from markers, rigging and retargeting), our goal
is to directly control at interactive framerates articulated meshes
from a low number of positional constraints. Our method builds
on top of efficient deformation techniques and proceeds as
follows: an original mesh is embedded into a coarse volumetric
control lattice which contains simplified information from the
initial reference mesh, skeleton elements and marker locations.
An iterative method is applied on this structure which preserves
the geometry details, the bones lengths, and the associated joint
limits. We show the ability of our approach to animate and
interactively deform high resolution models from a low-number
of markers while retaining the subtleties of the motion. It notably
allows to entirely skip the tedious rigging phase.

Index Terms—Computer Graphics, Character Animation,
Computational Geometry and Modeling

I. INTRODUCTION

Interactive and natural looking shape animation and
deformation of articulated bodies is one of the key topics
in computer graphics. Many techniques have been proposed
with different approaches from the perspective of data-driven
animation, e.g. skeleton-based, or positional-constraints-based
animation. The traditional pipeline of character animation
is classically composed of two stages: first, the skeleton-
driven animation, i.e. joints rotations over time, is computed
from positions of motion capture markers. This process
can be rather approximate, in particular for determining
articulatory centers and axis of rotation, especially for
complex articulatory systems such as hands. It sometimes
requires the intervention of designers or automatic processing
involving inverse kinematics. Secondly, the mesh vertices
of an existing 3D mesh are bound to one or several joints
of the skeleton through a rigging operation. This last step
is a tedious task which is often conducted manually by
infographists. Several drawbacks characterize this animation
pipeline: (i) difficulties to adapt the approximate skeleton
with the mesh , generally implying retargeting techniques
that tend to alter the original data; (ii) difficulties to deal
with too few markers , which most often amplifies the
manual post-processing and correction steps; (iii) limited
control over the mesh through the skeleton; the inconsistency

between the skeleton and mesh models leading consequently
to some incoherencies (mesh collisions, unnatural foldings or
deformations, etc.) along the animation.

The challenge proposed by this study is to re-consider
the entire animation pipeline for data-driven character ani-
mation. We focus especially on the animation of complex
systems driven by low dimensional positional constraints, and
in particular by few trajectories of markers. Our approach
is strongly inspired by shape deformation techniques which
use markers as control points to animate the character’s
mesh [Krayevoy and Sheffer(2005)], [Stoll et al.(2007)Stoll,
de Aguiar, Theobalt and Seidel]. However our method differs
from these works as it implicitly integrates all the properties
induced by an underlying skeleton (the segment lengths and
the joint limits) while preserving the details of the mesh
geometry. The introduction of skeleton specific constraints
compensates for the use of a small number of input data. As a
consequence, our approach enables to control the mesh struc-
ture by using few trajectories of captured marker positions. It
also gives the opportunity to drive the animation by editing
manually some mesh vertices, or by using solely positions of
the skeleton joints as control inputs. It is demonstrated over
several examples of articulated bodies animation. We focus in
particular on a difficult case which is the animation of high
quality hand models. Indeed these complex articulated models
include many degrees of freedom and constraints that make the
operation of rigging tedious and pore to errors.
Methodology. Our novel interactive mesh animation method
relies on a volumetric control mesh, deformed by control
points. The different steps of the approach are illustrated by the
Figure 1. More specifically our method follows the following
processes: (i) the control mesh is built as a tetrahedral mesh
which has the property of two-manifold, implying no inter-
section and no hole, thus leading to consistent deformation
properties. It includes the original mesh and takes into
account internal constraints derived from the skeleton joints,
and external control points representing the markers; (ii) Then,
we apply a volumetric deformation preserving the surface
details and skeleton properties; consequently the deformation
process respects the constrained positions induced by the
markers; (iii) Simultaneously, we use a skeleton described by



a hierarchy of joints updated at each step of the deformation,
and satisfying joint limits. These properties are then back-
ward integrated into the previous step; (iv) As suggested by
Borosan [Borosán et al.(2010)Borosán, Howard, Zhang and
Nealen], we optionally improve this last step by using an
intermediate and simplified coarse mesh including the skeleton
and markers properties. More precisely, the method consists
in applying the deformation on this coarse mesh that drives
the original mesh by using a cage-based method called Green
Coordinates (GC) [Lipman et al.(2008)Lipman, Levin and
Cohen-Or].

Fig. 1. Our animation pipeline: with a short number of markers’ trajectories
(left image), our method first start by building a volumetric control mesh
(middle image) which embeds the rigidity information of the mesh expressed
as a skeleton endowed with joint limits; this control mesh is then used to
animate the full resolution mesh (right image)

Contributions. Our method builds on top of recent deforma-
tion and marker-based animation techniques. Its originality
stems from a strong coupling of an internal skeleton struc-
ture with the deformation process. This coupling is operated
inside an optimization procedure which alternates an efficient
volumetric shape deformation and the enforcing of skeleton
specific constraints. As a result, it allows to bypass the skeleton
reconstruction of the original animation pipeline and control
directly the mesh from the motion capture markers. Contrary
to previous works, one of the main advantage is to allow the
introduction of non-linear constraints such as the enforcing
of joint limits. The resulting mesh animation is characterized
by an enhanced rigidity and volume preservation of the mesh
structure. Our method also implicitly embeds a retargeting
step, which allows to conveniently transfer animations to
multiple target meshes. Finally, it is robust and particularly
well suited for interactive character animation.

After reviewing previous work in Section 2, we will describe
in Section 3 the method for constructing the different mesh
structures and explain how the deformation method can be
applied to these structures for generating realistic animation.
We will then show in Section 4 the benefits of our method in
several practical applications with multiple sets of data, before
concluding and giving perspectives of this work.

II. BACKGROUND

Many different approaches have been proposed to tackle
the problem of generating realistic animation of charac-
ters while maintaining plausible shape deformation. Most
of them concern the use of a skeleton as a guide to de-
form and animate the mesh, for example using linear skin-
ning [Lewis et al.(2000)Lewis, Cordner and Fong] or us-
ing dual quaternions interpolation [Kavan et al.(2008)Kavan,
Collins, Žára and O’Sullivan], and more recently a geomet-
ric technique to make realistic folding around joints [Vail-
lant et al.(2013)Vaillant, Barthe, Guennebaud, Cani, Rohmer,
Wyvill et al.]. However, these methods animate meshes only
through the control of a skeleton. With our goal to drive the
mesh with marker trajectories, we focus on the two following
thematic: animation of models driven by markers, and mesh
deformation using skeleton constraints.

Animation driven by markers

Several studies have investigated marker-driven animation
techniques. In this line of research, Park et al. [Park and
Hodgins(2006)] propose a technique to animate mesh models
from 3D captured motion. The binding between the mesh and
the markers is achieved by establishing a skinning relationship
obtained through the segmentation of rigid areas of the mesh.
The animation results, which integrate the geometry variations
induced by muscles’ deformations, are very realistic. However,
their method requires a large number of markers (several
hundred). On the contrary, the method proposed by Sumner
et al. [Sumner et al.(2005)Sumner, Zwicker, Gotsman and
Popović] proposes the animation of a mesh from a low number
of control points, thanks to a learning space determined from
mesh samples. Recently [Wheatland et al.(2013)Wheatland,
Jörg and Zordan] used also a learning method for producing
high quality hand motion using a small number of markers
by establishing the correspondence between markers and joint
angle trajectories with the help of a reference database. Zor-
dan et al. [Zordan and Van Der Horst(2003)] also propose
a dynamical system driven by 3D captured motion, which
guarantees several physical properties: the global rigidity of
the system, the preservation of segment lengths and the
consideration of joint limits. This approach is closely linked to
ours, but is applied to physical bodies instead of geometrical
shapes, and therefore it does not take into account all the
geometrical details during the animation.

Closer to our approach, Krayevoy [Krayevoy and Shef-
fer(2005)] and Stoll [Stoll et al.(2007)Stoll, de Aguiar,
Theobalt and Seidel] use a deformation technique called
Mean-value Encoding for the former one, and the Laplacian
operator for the latter one to directly drive the mesh by
markers. Their objectives are the same as ours, but the first
approach does not take into account the properties of the
skeleton and requires a morphology consistent with the cloud
of markers as input. The second study proposes to use a
coarse volumetric mesh that enables interactive shape editing.
The method alternates a Laplacian deformation technique
and a gradient-based differential update process, making it



stable even for large deformations. It produces high-quality
mesh animations from motion capture data. Although very
promising, the method does not incorporate same skeleton
properties such as the length of bones or joint limits, which
are essential to guarantee natural deformations.

Mesh deformation

Other approaches directly focus on mesh deformation
and edition techniques, without skeletal information. In or-
der to produce high-quality deformations, several recent
works have been interested in preserving surface details of
the geometry. Some of them, based on Laplacian differ-
ential coordinates [Sorkine et al.(2004)Sorkine, Cohen-Or,
Lipman, Alexa, Rössl and Seidel], [Alexa(2003)], [Lipman
et al.(2004)Lipman, Sorkine, Cohen-or, Levin, Rssl and peter
Seidel], facilitate interactive mesh editing while producing
natural-looking deformations, but they fail to handle large
rotations. In order to solve the problem of large deformations,
several methods derived from this approach have been devel-
oped. In particular, the ARAP deformation paradigm, which
stipulates that the mesh is directly linked to the local rigidity
of the shape, has been proposed to edit surface meshes subject
to large amplitude rotations [Sorkine and Alexa(2007a)].

These surface differential methods have been extended to
volumetric graph Laplacian representations, with the idea to
preserve the volume during the deformation, and to enable
large deformations (i.e [Zhou et al.(2005)Zhou, Huang, Sny-
der, Liu, Bao, Guo et al.], [Huang et al.(2006)Huang, Shi, Liu,
Zhou, Wei, Teng et al.], [Stoll et al.(2007)Stoll, de Aguiar,
Theobalt and Seidel], [Zhao et al.(2009)Zhao, Liu, Peng
and Bao], [Jacobson et al.(2011)Jacobson, Baran, Popović
and Sorkine], [Zhao and Liu(2012)]). Among them, several
include skeleton properties. For example, Huang et al. [Huang
et al.(2006)Huang, Shi, Liu, Zhou, Wei, Teng et al.] present
a subspace iterative solver for mesh deformation constrained
by skeleton and volume properties. Their system enables to
maintain the segment lengths during the deformation, but
fails to preserve joint limits. This method has been recently
extended by Zhao [Zhao and Liu(2012)] to reach the volume
preservation during the deformation. Closer to our objectives,
Shi et al. [Shi et al.(2007)Shi, Zhou, Tong, Desbrun, Bao and
Guo] present a technique that preserves the same previous
properties with the approximate respect of joint limits. Indeed,
their system enables to satisfy an angle constraint along a
plane, but does not exactly preserve the joint limits on the
three degrees of freedom. Recently Jacobson et al. [Jacob-
son et al.(2011)Jacobson, Baran, Popović and Sorkine] use
bounded biharmonic weights to intuitively deform geometries
associated with a skeleton structure.

Concerning the methods using ARAP, Zhang et al. [Zhang
et al.(2010)Zhang, Nealen and Metaxas] have demonstrated
the benefit to introduce the concept of rigidity in the interior
of the surface mesh to improve the preservation of the volume.
Zhao [Zhao et al.(2009)Zhao, Liu, Peng and Bao] propose to
apply ARAP with a volumetric graph associated with rigidity
constraints in particularly to avoid unnatural volumetric distor-

tions. Latter Borosan [Borosán et al.(2010)Borosán, Howard,
Zhang and Nealen] combine ARAP with the mean coordinate
values method to deform faster high-resolution meshes. Faraj
and all [Faraj et al.(2012)Faraj, Thiery, Bloch, Varsier, Wiart
and Boubekeur] also propose in a problem of volumetric data
editing to use ARAP on cage structures before applying the
deformation with the Green Coordinate method. The other
benefit to use a lattice structure is to deform all kinds of
meshes since the mesh to deform needs to be without self
intersection and holes.

A more general method than the ARAP principle uses
the concept of elastic energy. Introduced by Chao [Chao
et al.(2010)Chao, Pinkall, Sanan and Schröder], it allows to
produce high quality deformation on tetrahedral models and
presents several advantages as the preservation of the rotation
and the robustness of the method for large transformations.
This concept has been extended first in the work of McAdams
et al. [McAdams et al.(2011)McAdams, Zhu, Selle, Empey,
Tamstorf, Teran et al.], and then in Kavan et al. work [Kavan
and Sorkine(2012)] to solve the general problem of skinning
around character articulation. However, as the classical skin-
ning methods, these techniques need a good determination of
the weights applied to each vertex of the mesh.

Our approach inherits the advantages of recent differen-
tial techniques, applied on volumetric meshes for animation
of characters driven by captured motion points. We use a
tetrahedral mesh representation of the articulated system, thus
ensuring the preservation of the internal mesh volume and
avoiding joint artifacts. In addition, we integrate within this
mesh skeleton the internal skeleton structure with its rigidity
properties: length of bones, joint limits, etc.

III. SYSTEM OVERVIEW

Our approach aims at animating and deforming articulated
bodies. This deformation can be possibly driven by motion
capture markers, and the following description does not make
any assumption on the source of animation data. In Figure 2
an illustration of the pipeline is given through an example of
a hand animated by motion capture markers. Those markers
are located at specific places over the hand’s skin, with no
assumption on their positioning with respect to joints. From
a highly detailed reference mesh of a hand, that can be
morphologically different from the captured hand, a volumetric
control mesh is automatically constructed. This volumetric
control mesh is built by directly taking the reference mesh
and by adding the skeleton structure and marker points (note
that the binding between the markers and the reference mesh is
established by the volumetric control mesh). In the remainder
of this paper we will call original mesh the reference mesh,
and control mesh, the volumetric mesh. The control mesh
is deformed by minimizing over time the distances between
the marker positions and the corresponding vertices of the
control mesh. This deformation tends to preserve the shape
of the original mesh while taking into account the rigidity
constraints induced by the skeleton. Note that the original
mesh is included into the control mesh, thus the deformation



Fig. 2. Different steps of our method. 1: hand with reflexive markers. 2: the original mesh. 3: volumetric mesh integrating skeleton data and marker positions
according to the original hand markers. 4: one posture produced by our system.

of the control mesh induces the deformation of the original
mesh.

IV. VOLUMETRIC MESH DEFORMATION WITH SKELETON
CONSTRAINTS

In this Section, we detail the different operations of our
animation pipeline. We first begin by explaining how the
control mesh is built. We then proceed with the deformation
pipeline, with a focus on the preservation of the skeleton
properties. The deformation of the original mesh with Green
coordinates is then detailed, before giving an overall view of
the complete algorithm.

A. Pre-processing and mesh-skeleton coupling

Regarding the skeleton, several methods are available to au-
tomatically create it with respect to a reference mesh (e.g [Au
et al.(2008)Au, Tai, Chu, Cohen-Or and Lee]), but it is also
possible to construct it manually with a commercial software
(this step takes a few minutes and does not require specific
knowledges). At this step, no explicit relations exist between
the mesh and the skeleton apart from the relative positioning
in the 3D space.

Then we create the volumetric mesh by using a Delaunay
tetrahedrization applied on the original surface mesh. This
tetrahedrization also includes:
• the set of markers positions. They are associated to ver-

tices of the control mesh. They are manually positioned
at the right place according to the original hand markers
(see Figure 2, step 3) (possibly outside of the original
mesh),

• the vertices and edges corresponding to a discretization
of the skeleton (blue points and green edges in Figure 2).
This discretization is performed by a spatially regular
sampling of the skeleton. The length of the sampling step
allows to control the number of points associated to the
skeleton in the tetrahedrization process, and as such can
act as a tradeoff parameter for the overall computational
complexity.

The Delaunay tetrahedrization is a complex process and
several works have been proposed on the subject [Brid-
son et al.(2005)Bridson, Teran, Molino and Fedkiw], [Cutler
et al.(2004)Cutler, Dorsey and McMillan], [Shewchuk(1998)].
We chose the so-called piecewise linear complex (PLC)
method designed by Miller et al. [Miller et al.(1996)Miller,
Talmor, Teng, Walkington and Wang], and implemented by

Hang Si et al. [Si(2006)], which proved to be robust and
flexible. In the end, the resulting mesh is closed and composed
of triangles, which are then ready to be deformed by the
following method.

B. Volumetric ARAP mesh deformation

We present here our volumetric mesh deformation process.
We first begin by recalling the basic principles of Laplacian
surface editing [Sorkine et al.(2004)Sorkine, Cohen-Or, Lip-
man, Alexa, Rössl and Seidel], before presenting an adaptation
of the ARAP algorithm to consider volumetric cells.
Laplacian Surface Editing (LSE) Let the closed triangu-
larized structure, that is the control mesh characterized by
V = (V , E), where E describes the connectivity, and V =
v1, ...,vn are the Euclidian coordinates of the mesh vertices.
From V and a set U = u1, ...,um of control vertices, we
can compute the new positions V ′ = v′1, ...,v

′
n minimizing

the quadratic function given by

E(V ′) = El(V
′) + Ep(V

′). (1)

The first term El that penalizes the difference between the
differential coordinates after reconstruction can be written as

El(V
′) =

n∑
i=1

‖δi − L(v′i)‖2, (2)

where L is the Laplace-Beltrami discrete operator with cotan-
gent weights (for details, see [Pinkall et al.(1993)Pinkall, Juni
and Polthier], [Meyer et al.(2002a)Meyer, Desbrun, Schröder
and Barr]) and δi = L(vi) is the differential coordinate for
the vertex i. The second term Ep penalizes the changes of
position of control points and is defined by

Ep(V
′) =

m∑
i=1

‖v′i − ui‖2. (3)

Equation 1 can then be minimized as a (n+m)× n overde-
termined linear system(

L
Iu

)
V ′ =

(
∆
U

)
(4)

where Iu is the index matrix of U . The reconstructed
shape looks generally natural when low amplitude rotations
are applied. For large transformations, Sorkine [Sorkine and
Alexa(2007b)] proposes a non linear solution called ARAP to
preserve the local rigidity of each cell of the mesh.



ARAP modeling From a first estimation of V ′ given by
Equation 1, the goal of ARAP is to find iteratively the new
values of differential coordinates preserving the local rigidity.
Thus, if the cell Ci of the mesh corresponding to the vertex i is
deformed into a cell C ′i, the approximate rigid transformation
between Ci and C ′i can be expressed as a rotation matrix which
minimizes

E(Ci, C
′
i) =

∑
j∈N (i)

wij‖(v′i − v′j)−Ri(vi − vj)‖2 (5)

where N is the set of vertices connected to the vertex i and
wij is the cotangent weight of vertices i et j defined by

wij =
1

2
(cotαij + cotβij) (6)

(see [Sorkine et al.(2004)Sorkine, Cohen-Or, Lipman, Alexa,
Rössl and Seidel], [Meyer et al.(2003)Meyer, Desbrun,
Schröder and Barr] for details). Finally, solving this problem
can be rewritten as an iterative problem, each iteration being
expressed as E(V ′) = Ea(V ′) + Ep(V

′), with Ea defined
by:

Ea(V ′) =

n∑
i=1

‖δAi − L(v′i)‖2 (7)

where δAi is a term evaluated at each iteration. In the remainder
of the paper we use the shorthand notation ∆A = δAi .

Volumetric ARAP This algorithm is efficient on surface
meshes but can be improved by extending it to a volumetric
setting. The cell can now be considered as an element of a
3-manifold, and as such its energy is thus linked not only
to its volume but also to its global shape. The Laplace-
Beltrami operator is also virtually defined anywhere on this
manifold provided that it is differentiable everywhere, which
is guaranteed by the tetrahedrization process.

As described by the work of Meyer [Meyer
et al.(2003)Meyer, Desbrun, Schröder and Barr], the surfacic
Laplacian Beltrami operator can be readily generalized to 3D-
manifold. We therefore propose to extend the ARAP surfacic
method by using this operator applied on 3D-manifold. The
weight wij is now defined by:

wij =
1

6

∑
k

lki,j cotα
k
ij (8)

where k is the number of tetrahedrons sharing the edge
(vi, vj), lki,j is the length of the edge opposite to (vi, vj), and
αkij is the dihedral angle opposite to the edge (vi, vj).

Yet, while this method provides successful results, it does
not implicitly allow a good preservation of the skeleton
properties: rigidity around segments, length of segments and
joints limits (see Figure 3). In the next section we will see
how to consider those implicit constraints in the deformation
process.

Fig. 3. Example of large deformation with surface ARAP (left) and volu-
metric (middle and right) methods (100 iterations). Volumetric representation
preserves better the volume and is more robust to preserve the shape of the
original mesh. The right model is the result of our method incorporating
skeleton constraints.

Fig. 4. Example of respect of joint limits for the same control mesh and
markers target: left) without joint limits and right) with

C. Preservation of skeleton properties

As illustrated by the Figure 2 (step 3), the skeleton structure
is embedded into the tetrahedrization. The positions of joints
are represented by a set of vertices and the segments between
joints are decomposed into a set of edges that are included into
the control mesh. Two steps are considered. First, we introduce
a constraint that preserves simultaneously the collinearity be-
tween the edges of a same segment and the lengths of segment
edges. This constraint produces a deformation induced by a
novel rigidity constraint that follows the skeleton structure, as
shown in Figure 3. Second, we propose to add joint limits
to produce realistic postures. As these new constraints are
not linear, and joint limits are hardly expressed with our
formulation (no angular representation), we solve this problem
in two steps through an alternating descent method:

1) From the current configuration of the skeleton provided
by the deformation of the control mesh, we compute
a new skeleton posture close to the current one but
respecting the skeleton properties,

2) Then, the new posture is introduced into the previous
problem in terms of differential constraints.

These two steps are then repeated until convergence. This
formulation allows at the same time to deform the con-
trol mesh by minimizing the previously described volumetric
ARAP constraint and maintain the correct properties of the
skeleton. A formalization of this method is proposed below.



Skeleton constraints as a linear problem: Each segment
of the skeleton is decomposed into several edges. Given eab the
edge between the vertices a and b, we consider the differential
vector γab = −γba = va − vb, and the length defined by
‖γab‖ = ‖γba‖ = dab. Let us remark that those differential
coordinates both encode the direction and the length of the
edge. In the following we denote ES , the set of edges which
belong to the skeleton. This can be formalized in the following
quadratic energy function Ed:

Ed(V
′) =

∑
e(i,j)∈ES

‖γij −Dij(V ′)‖2, (9)

where Dij(V ′) = vi − vj .
Denoting by Γ the vector containing all possible values of

γij that match the distances and colinearity criteria, Equation 9
is therefore equivalent to solve the following linear system in
the least square sense

DV ′ = Γ (10)

where D, matrix of size card(ES)×n, is a discrete differential
operator which role is to compute all the differential coordi-
nates of every segments of ES . More precisely, a row of D is
given by the values 1 and −1 at the i− th and j− th indices,
0 elsewhere.

Now we turn on to the determination of the Γ differential
vector.

Determining Γ: The differential coordinates stored in
Γ are extracted from a correct skeleton respecting the rigidity
constraints as well as its joint limits. This is achieved through a
two-steps procedure: (i) First, the current approximate posture
of the skeleton Sc is extracted from all the vertices that belong
to the skeleton. The skeleton is traversed and for each segment,
the edges orientations are given by averaging all of the edges
of the segment. The lengths of the edges are also restored
to their initial, constant values. This intermediate skeleton
respects the rigidity constraints but may fail in respecting the
joint limits. (ii) We then project Sc into the space of admissible
postures by simply thresholding the joint angular values to
the closest acceptable value. This final step produces a new
skeleton Sa.
Γ is then directly computed from Sa, through the direct

computation of the vectors γij . Figure 4 illustrates the de-
formation of a hand before and after adding constraints. The
posture of the hand looks more natural in the latter case, as the
rigidity of all the fingers degrees of freedom is better preserve,
and as unnatural rotations are forbidden along the fingers.

Projecting Sc into the space of admissible postures: We
present below: (i) first how we calculate the rotations from the
displacement of the joints’ positions, and (ii) second how we
correct the postures of the skeleton during the deformation.

In a first step, we calculate the orthonormal basis for each
joints as illustrated by the figure 5. For example, considering
the positions p0, p1 and p2 of the joints j0, j1 and j2, we

Fig. 5. At the top: example of coordinate systems for each joint of the hand.
At the bottom: illustration of a rotation θj,Rel

1 applied on the joint J1.

define the Orthonormal basis B1 of j1 with the axis x1, y1
et z1 by: 

x1 = p12/‖p12‖
z1 = x1 × p01/‖p01‖
y1 = x1 × z1

x1 is the orientational term and z1 et y1 compose the rota-
tional of the joint rotation (see [Aristidou and Lasenby(2011)]
for more details). Next we define manually for each joint the
joint limits around each axis xi, yi and zi.

Moreover, the skeleton is classically defined as an hierarchy
of joints. Let the frame j and the joint i defined by Ji, the
absolute transformation of Ji is defined by Bj

i = Bj
i−1 ∗

Bj,Rel
i where the term Rel means that the transformation

BRel
i is expressed in the coordinate system Bj,Rel

i−1 . Finally,
Bj
i =

∏k=i
k=0B

j,Rel
k where k = 0 corresponds to the root node

of the skeleton.
Considering a skeleton with n joints and a vector of

relative rotation θj,Reli = {θj,Rel0 , ...,θj,Reln } corresponding
to the variation of rotation in each basis Bi, the absolute
transformation of Ji is then T θi =

∏k=i
k=0B

Rel
k ∗ θReli . Note

that T is composed by a rotation and a translation.
We follow then the method of Blow [Blow(2002)] to

calculate the angle θj,Reli , by using a quaternion from the
absolute posture of the skeleton. As illustrated by the fig-
ure 5, we consider for example the vector p01 and the vector
pj01 = B−1i ∗ pj,Abs01 , where pj01 is the vector expressed in
the coordinate system of ji. We determinate the quaternion
q0 = (a0, α0) by:a0 = (p01/‖p01‖)× (pj01/‖p

j
01‖)

α0 = arccos
(

(p01.p
j
01)/(‖p01‖ × ‖pj01‖)

)
As described in the work of Blow [Blow(2002)], it is now

easy to correct each quaternions qi by respecting the joint
limits given manually before. Finally, we calculate the final
posture of the skeleton by: T θi =

∏k=i
k=0B

Rel
k ∗θRel correctedi .



Control mesh deformation: Finally the system computes
a new configuration of the control mesh by minimizing the
quadratic function:

E(V ′) = wlEa(V ′) + wuEp(V
′) + wdEd(V

′), (11)

where the weights wl, wu and wd are used to balance
between the three energies: Laplacian, positional constraints
and distance constraints.

D. Optimization

Fig. 6. Examples of our mesh editing with user input deformations

Our system enables to produce realistic animations, but as
suggested by Borosan [Borosán et al.(2010)Borosán, Howard,
Zhang and Nealen], the computation time can be easily
improved by applying our method to a simplified control mesh
which drives then the original mesh.

In this way, a coarse mesh usually known as the cage
mesh [Meyer et al.(2002b)Meyer, Barr, Lee and Desbrun]
is created, which covers the original mesh. Note that for
complex structures such as hands, this cage mesh should
preserve at best the morphology of the system; especially,
it should take into account more details around the joints to
best preserve the geometric features for large deformations.
Some works have been proposed to create automatically this
kind of structure (i.e [Xian et al.(2009)Xian, Lin and Gao],
[Xian et al.(2012)Xian, Lin and Gao]). In our application, we
simply combined a mesh simplification by edge collapsing and
a global upscaling so that the cage mesh covers the original
mesh. This resulting cage mesh is characterized by the absence
of holes or self intersections. Then, the control mesh is built
from this cage mesh and as presented in the section IV-A, we
include into it the skeleton and markers information. Finally, as
presented in the next paragraph, we use the Green Coordinates
method (GC) [Lipman et al.(2008)Lipman, Levin and Cohen-
Or] to deform the original mesh.

Let the original mesh denoted by R = (X, F ), where F
describes the set of faces of R and X the set of Euclidan
coordinates of the vertices. The control mesh V is composed of
a set of tetrahedrons, also called cages, produced by the Delau-
nay tetrahedrization. Each cage C is defined by C = (Vc, Fc)
where Vc is the set of vertices of the cage (4 in our case),
and Fc the set of faces (4 also). The GC method determines
an application A which computes the transformation of the
vertex x belonging to the cage C into the vertex x′ as follows

x′ = A(x, C ′) =
∑
i∈|V |

φi(x)v′i +
∑
j∈|F |

ψj(x)sjn(f ′j) (12)

where C ′ is the deformed cage of C. The ”coordinates” φ and
ψ, as well as the coefficients s are calculated off line. Their
determination is described in [Lipman et al.(2008)Lipman,
Levin and Cohen-Or]. As shown in Figure 6 and Table I, this
technique allows us to reduce the preprocessing time as well
as the computation time during the animation.

E. Algorithm

Finally, we propose to use an iterative algorithm to solve
simultaneously the volumetric ARAP deformation and the
preservation of skeleton constraints. We evaluate the general
error of the algorithm by 0.5 ∗ ERRMS + 0.5 ∗ EED where
ERRMS is the relative root mean squared error given by
Equation 5 and EED =

∑
(i,j)∈ES

|d′ij − dij |/dij with dij and

d′ij are the lengths of the edge eij respectively before and
after the deformation. We test the convergence criteria of
an iteration by evaluating the change of the general error
compared to the previous iteration. The algorithm converges
rapidly because of a good starting point is given by the
previous step in the motion. The overall algorithm is given
in algorithm 1.

Algorithm 1: Control mesh deformation with implicit
skeleton constraints
Data:
X: Vector of original vertices of the original mesh
X ′: Vector of positions of the original mesh after
editing
V : Vector of original vertices of the control mesh
V ′: Vector of positions of the control mesh after
editing
U : A set of position constraints
V: the original control mesh

1 ComputeGreenCoordinates(X,V)

2 //Laplacian and positionnal constraints (offline):
3 V ′ = argminV El(V ) + Ep(V )

4 while playing animation do
5 while not convergence do
6 form Γ from argminV Es(V ,V) (equation 9),

preconditionned with V ′;

7 V ′ = argminV

 wlL
wuIu
wdD

V =

∆A

wuU
wdΓ


8 X ′ = GreenCoordinates(V ′,V)

V. IMPLEMENTATION AND RESULTS

This Section shows the practical advantages of using our
method to animate an articulated mesh driven by different
sets of low dimensional input. Our C++ implementation uses
the Cholmod sparse Cholesky solver [Chen et al.(2008)Chen,
Davis, Hager and Rajamanickam] on a Core2 Duo with
2.7GHz and 3GB RAM on Windows XP Pro. The Cholmod



library is able to solve large sparse linear system using a
Cholesky factorization. This resolution method is fast enough
for real time animation or interactive mesh editing.
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Original mesh vertex and
triangle count

172914
345944

172914
345944

8256
15198

5023
10042

Control mesh vertex and
triangle count

423
5092

27350
36814

1946
26364

368
4728

Time to build the Cholesky
syst. (offline)(sec.) 0.101 264.432 1.836 0.102
Time to update control mesh
system (sec.) 0.012 0.986 0.068 0.012
Time to update GC system
(sec.) 0.063 0.236 0.014 0.002

RRMS E 0.04 0.027 0.101 0.087
Original mesh RE V 0.042 0.029 0.012 0.061
Skeleton edges length error:
ED E

0.19 0.011 0.019 0.016
TABLE I

TABLE OF TIMES AND ERRORS FOR DIFFERENT ORIGINAL AND CONTROL
MESH SIZES AFTER 50 ITERATIONS. RRMS E IS THE RELATIVE ROOT
MEAN SQUARED ERRORS (EQUATION 5), RE V MEANS THE RELATIVE

ERROR OF VOLUME
MAGNITUDES(|V olumeOriginal − V olumecurrent|/V olumeOriginal).

We show through various examples that our method is
efficient to produce high quality animation in real time. These
experiments require a preliminary step of creating a skeleton
and a cage geometry corresponding to the mesh. These two
elements are achieved rather fast (about 10-15 minutes) by a
student.

In the first example, we apply the method to the animation
of a mesh composed of 8256 vertex and 15198 triangles, driven
by only 36 markers: eight markers for each hand, two for
each foot, four for the head and twelve for the rest of the
body). The markers are located inside and outside the target
mesh according to the difference of morphology between the
captured model and the target geometry. As shown in figure 7
and in the accompanying video, the movement of the markers
are successfully tracked and the resulting deformations look
very natural. For a quantitative evaluation of our algorithm,
table I shows that the constraints are well preserved and
figure 8 shows the good convergence of our alternating descent
approach which minimizes simultaneously the deformation
energies while respecting the skeleton properties.

In the second example, we animate two-hand meshes from
a sign language motion. Sign language animation of hands
is very critical: it requires high precision, especially for hand
configurations. Small changes in some postures or trajectories
might indeed modify the meaning of the produced signs [Gibet
et al.(2011)Gibet, Courty, Duarte and Naour]. Each hand is
represented by a geometry of a high resolution (5023 vertices
for 10042 triangles) and driven by few control points (eight

markers for each hand). The mesh model was acquired frorm
the Aim@shape repository and symmetrized for the demon-
stration purpose. Our original hand motion is represented by
some low dimensional and low quality signals extracted from
markers trajectories. This poorness of the captured motion is
due to several factors. First, occlusions occur frequently in
sign language statements, and the low number of markers
does not allow us to reconstruct complete trajectories. This
takes the form of missing samples or markers inversion in
some markers trajectories. Such motion data requires heavy
post-processing which also introduces some errors. When
observing the animations in the accompanying video, we thus
notice at some points jerky motion, or inter-penetration effects
introduced by motion retargeting. Skeleton errors or rigging
artifacts due to approximate weights are also visible for some
specific hand configurations.

Instead, as can be seen in figure 9 and in the accompanying
video, our method animates successfully both hands. The
meshes are subject to large deformations but as presented in
table I, they preserve both geometric details and skeleton prop-
erties. Furthermore, the animations look very realistic. Finally,
the accompanying video shows a comparison between the
original motion played after a traditional motion capture post-
processing/mesh rigging by a skilled CG artist and the motion
produced by our method. The results are very convincing and
demonstrate the interest of such an animation pipeline for this
kind of animation task.

VI. CONCLUSION

The challenge proposed by this paper was to reconsider
the traditional animation pipeline of character driven by the
control of a skeleton. Our main objective was both to improve
the quality of the animation by reducing a number of post-
processing tasks and control the mesh with a low signal
dimension. In this context, we presented an animation pipeline
driven by a small number of constraints based on an iterative
system involving a volumetric mesh with a skeleton structure.
The originality of the method lies in this strong coupling that
allows us to incorporate implicit skeleton constraints within the
deformation process. The concept of rigidity is improved by
several aspects of the approach. By extending the as-rigid-as-
possible paradigm to volumetric mesh, we prevent unintuitive
shape deformations and preserve the global volume of the
object. When building the volumetric mesh, we include an
internal structure resulting from a spatial discretization of the
skeleton, which plays a central role in the tetrahedrization
process. Furthermore, the rigidity properties of the system
are enhanced by taking into account skeleton properties such
as bone lengths and joint limits. As the skeleton constraints
are not linear, our descent method alternates between a linear
Laplacian deformation of the volumetric mesh and the com-
putation of postures enforcing these constraints. In order to
produce natural postures, we believe that the inclusion of such
constraints is of paramount importance for the animation of
articulated bodies, as illustrated for hand animations. Finally,
our animation pipeline is stable and robust, and allows us



Fig. 7. Animation of an arbitrary mesh. At left, first figure: the bind pose geometry and the manual positioning of markers. Next: five frame of our output
system.

Fig. 8. Example of convergence of the alternating descent algorithm for an
interval of ten frames during the animation. The distance and system energies
are the normalized values described in the table I

to produce in real time high-quality mesh animations from
a wide variety of motion capture inputs, even when the set
of input points is strongly reduced. As a major advantage, it
allows to bypass the tedious rigging phase, but also some of
the traditional post-processing of motion capture process.

The thorough study of the coupling mesh / skeleton opens
up promising perspectives for the animation of articulated
characters. One possible extension might be to consider other
types of constraints related to biomechanically plausible mod-
eling of the articulations. The proposed alternate descent
method might be challenged when strongly non-linear con-
straints are involved, which might require more sophisticated
optimization schemes. Also, other types of low dimensional
input constraints can be tested in our framework, such as
using accelerometers or vision inputs from mono or multi-
camera, which would alleviate the need of costly infrared
motion capture equipments.
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