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Abstract—UFMC is a candidate waveform technology for 5G
wireless systems and beyond. It combines the simplicity of OFDM
with the advantages of FBMC. However, these advantages come
together with an increase in the complexity at the transmitter
caused by the implementation of a filter and applying an FFT
for each sub-band, whereas at the receiver it is due doubling
the size of the FFT being implemented. Then a low-complexity
solutions must be found. UFMC waveform and FFT pruning
have been widely studied recently but separately. In this paper,
the computational complexity of different UFMC implementation
methods with FFT pruning is evaluated. Depending on the
number of sub-bands, it is shown that a complexity reduction
up to 50% of the UFMC transmitter can be obtained. Also,
the UFMC receiver complexity can be reduced to be similar or
even less than OFDM. This complexity reduction of the UFMC
transceiver comes without performance degradation since no
computational approximation is introduced.
Index Terms—5G, UFMC, Computational Complexity, pruned

Fast Fourier Transform (FFT), Power consumption.

I. INTRODUCTION

Universal Filtered Multi-Carrier (UFMC) or UF-OFDM is

a novel multi-carrier modulation technique, which can be seen

as a generalization of filtered OFDM, and Filter Bank Multi-

Carrier (FBMC). While the former filters the entire band

and the latter filters each sub-carrier, UFMC filters sub-band

blocks, thus groups of sub-carriers.

Briefly, UFMC provides promising advantages [1] such as

good spectral efficiency similar to FBMC with less overhead,

and lower Out-Of-Band (OOB) leakage than for OFDM [2].

The sub-carrier filtering in FBMC systems enhances the ro-

bustness against Inter-Carrier Interference (ICI) effects. How-

ever, typical FBMC filters have lengths multiple times of the

sub-carriers number, make it disadvantageous for communica-

tion in short up-link bursts [3] like low latency communication

or energy-efficient Machine Type Communication (MTC).

On the contrary, the sub-band filtering allows reducing the

filter length considerably, compared to FBMC. Furthermore,

QAM is still efficient for UFMC, in contrast to the FBMC case

[4] where OQAM is needed, making UFMC compatible with

all kinds of Multiple Input Multiple Output (MIMO) systems.

Therefore, while UFMC maintains the advantages of OFDM

and avoids its drawbacks such as the strict synchronicity

and orthogonality requirements and high OOB, it increases

the computational complexity as UFMC employs a filter to

achieve this effect. Hence, the implementation of the filter

and FFT for each sub-band at the transmitter increases the

complexity. Similarly, the double size of FFT at the receiver

leads to approximately double complexity relative to OFDM.

The computational complexity reduction of any system such

as 5G and beyond is an important goal since it directly affects

the speed, the power consumption and the cost of any new

device or base station. The most recent paper [5] discussing

the UFMC transmitter complexity proposed an approximation

that led to 3.7 OFDM complexity.

In this paper, we investigate how FFT input\output pruning
can reduce the computational complexity for all existing

UFMC implementations. In the literature, it was stated that

FFT pruning does not lead to a notable reduction. However,

for UFMC system, FFT pruning is very useful due to many

FFT blocks with a high percentage of zero-inputs and unused

outputs. In addition, the results show that UFMC system can

have a comparable power consumption to OFDM system.

This paper is organized as follows. In Section II, FFT

pruning is described and applied to existing implementation

methods of UFMC, whereas computational complexity ex-

pressions are derived in section III. Section IV illustrates and

interprets the different results. Finally, section V concludes the

paper.

The notations adopted are as follows. We use small letter x

for vectors in the time domain and capital X for the frequency

domain. All matrices are in capital bold X, (.)T denotes trans-

pose, and 0N×M denotes the all-zero matrix of size N ×M .

x ⊙ y denotes the Hadamard product. (I)FFTN denotes

(I)FFT of length N and (I)FFTNZ,RO
N denotes pruned (I)FFT

(PFFT) of length N with NZ nonzero inputs and RO required

outputs. The symbol ‘∗’denotes linear convolution operator.

CCM (I−FFT ) and CCA(I−FFT ) denote the computational
complexity of (I)FFT in terms of the complex multiplier and

complex adder respectively.

II. PRUNING-BASED COMPLEXITY REDUCTION

In this section, FFT pruning is described and applied to

existing implementation methods for UFMC transceiver to

reduce the computational complexity when it is possible.

Before describing the existing methods, we will introduce

FFT pruning technique at input and output which is the key

point to the complexity reduction.

The complexity of FFT can be decreased by removing

operations related to zero inputs and unused outputs. When

the number of nonzero inputs and/or used outputs is less than

the FFT size, the number of complex multipliers and adders

can be reduced. This technique is referred to input/output FFT

pruning and it was described by Markel [6], Skinner [7], Alves

et al [8] and many others.
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Figure 1. DIF FFT Flowchart With Input and Output Pruning

In all pruning algorithms, the basic concept is to identify

the butterflies to be computed and those to be discarded. In

addition, some methods can have some disadvantages in im-

plementation such as control overhead or additional memory.

However, in this paper, we are focusing on calculating the

computational complexity after applying FFT pruning.

In addition, FFT can be implemented using Decimation-

In-Frequency (DIF) or Decimation-In-Time (DIT). The latter

can be seen as the transpose of the former. In this paper, we

used DIF FFT radix-2 that contains N/2 butterflies per stage

and log2(N) stages, as shown in Fig. 1. The target is to have

an optimum reduction by applying Complete Pruning (CP) or

Complete-Partial Pruning (CPP). CP is applied when butterfly

inputs are all zeros or butterfly outputs are all unused, whereas

partial butterfly pruning is when some inputs are zeros or some

outputs are unused. Therefore each complete butterfly pruning

reduces the complexity by 1 Complex Multiplier (CM) and 2

Complex Additions (CA). However, partial input pruning can

save only 2 CA and partial output pruning can save 1 CA if

the used output is from the descending edge of butterfly, and

1 CA and 1 CM in the other case.

In [8], Alves et al proposed a method that takes into consid-

eration butterflies CP only. We upgrade this method in order

to include partially pruned butterflies. The new complexity

of FFT CPP\CP is calculated using the MATLAB flowchart

tracing method.

A. Reduced Complexity TX with Time Domain Filtering -

Baseline (RC-TDF TX)

The system model of UFMC is shown in Fig. 2, where

N is the total number of sub-carriers. The overall bandwidth

is divided into B sub-bands and each sub-band can be allo-

cated with NB consecutive sub-carriers. The sub-band may

correspond to Physical Resource Block (PRB) in LTE (1

PRB = 12 sub-carriers). Note that B.NB ≤ N is explicitly

allowed and neither B nor NB needs to divide N . An N-

point IFFT operation is performed for every sub-band i where
NB data symbolsXi are modulated in the allocated sub-carrier

positions for sub-band i and zeros are padded elsewhere. Then,

Figure 2. Baseline UFMC chain with time domain filtering at TX [2]

the output signal xi is filtered by an FIR-filter fi of length L
which results in a sub-band signal yi of length N + L − 1.
Afterwards, all sub-band signals are summed-up to generate

the transmitted UFMC signal y [2].

xi = IFFTN{[0[1×K0+i.NB ], X
T
i , 0[1×(N−(i+1)NB−K0)]]

T }
(1)

where K0 denotes the starting frequency of the lowest sub-

band.

y =

B−1∑

i=0

xi ∗ fi =

B−1∑

i=0

yi (2)

The sub-band FIR filters fi are obtained by frequency

shifting the prototype filter f to ith sub-band center and given

by:

fi[n] = f [n].e(j2π
0.5NB

N
n).e(j2π

K0+i.NB
N

n) (3)

The complexity of this method can be reduced by applying

FFT input pruning because each N-point IFFT exhibits (N −
NB) zero inputs. Hence, the described system is enhanced by

implementing Eq. 1 but with IFFT input pruning IFFTNB ,N
N .

B. TX Textbook One-Shot Implementation (OSI TX)

The UFMC transmitter can be modeled as a matrix multi-

plication known as Textbook One-Shot implementation where

a particular UFMC symbol can be represented by:

y
(N+L−1)×1

=
B−1∑

i=0

F i
(N+L−1)×N

. V i
N×NB

. Xi
NB×1

(4)

where Vi is the truncated IFFT matrix of the ith sub-band

which includes the relevant columns of the IFFT matrix ac-

cording to the respective sub-band position within the overall

available frequency range. Fi is a Toeplitz matrix, composed

of the FIR filter impulse response fi, performing the linear

convolution [9].

The Eq. 4 can be adjusted to deduce the transmitted UFMC

signal y by stacking all sub-bands data symbols in one vector

X of size B.NB :

⇒ y
(N+L−1)×1

= β
(N+L−1)×B.NB

. X
B.NB×1

(5)



where β can be seen as (N + L − 1) × B.NB the matrix

representation for the overall UFMC TX system.

Note that for a specific standard, the matrix β combining

IFFT and filtering can be pre-computed and the pruning

technique in this case cannot be applied .

C. Reduced Complexity TX with Time Domain Filtering Ap-

proximation (RC-TDFA TX)

According to [5], the idea behind this approximation is to

modify the filtering process for each sub-band to be a filtering

for each sub-carrier, then approximating the transmitted signal

by dividing adjacent sub-carriers into groups that use a com-

mon effective filter for modulation. This approximation is done

based on the assumption that the frequency response F (f) of
f [n] is designed far wider than a single sub-carrier so that

the amplitude difference between adjacent sub-carrier filters

is small or even negligible. Note that the phase difference

between adjacent sub-carriers is linear and can be corrected

by one-tap equalizer at the receiver side which is necessary

to compensate the channel effect and sub-band filter phase

rotation. This extra phase correction does not require any

additional complexity.

The UFMC transmitted signal before the approximation can

be written as follows:

y[n] =

B−1∑

i=0

NB−1∑

k=0

Xi,k.fk[n].e
(j2π

K0+i.NB
N

n) (6)

where n = 0, . . . , N + L − 2 and fk[n] can be understood

as the effective filter used to modulate the kth sub-carrier in

each sub-band and is given by

fk[n] = f [n].e(j2π
0.5NB

N
n) ∗ e(j2π

k.n
N

).RN [n] (7)

where RN [n] denotes a rectangular window ranging from

n = 0, . . . , N − 1. After some approximations, the simplified
UFMC transmitted signal is given by:

y[n] ≈

Q
∑

j=1

fkj
[n]

B−1∑

i=0

∑

k∈Qj

Xi,k.e
(j2π

K0+i.NB+(k−kj)

N
n)

︸ ︷︷ ︸

xj [n]

(8)

where Q denotes the number of sub-carrier groups, Qj , j =
1, . . . , Q is the set of sub-carriers that belongs to the jth sub-

carrier group in each sub-band and associated by the effective

filter fkj
[n]. Note that xj [n] is effectively the expression

of an N -point IFFT. The model given by Eq. 8 does not

contain a costly convolution but merely a simple time-domain

multiplication and hence offers the possibility for a reduced

complexity implementation according to [5]. However, an

additional complexity reduction is possible by using IFFT

input pruning in computing xj [n] because each subgroup IFFT
exhibits B.NB/Q nonzero inputs. Moreover, a method was

proposed in [10] based on Eq. 6 and taking advantage of this

sub-carrier processing to suggest a simplified UFMC filtering.

D. Reduced Complexity TX with Frequency Domain Filtering

(RC-FDF TX)

The frequency domain implementation of sub-band signals

would consist of frequency domain filtering and IFFT. Then,

UFMC signal is obtained by summing up all sub-band signals.

The frequency domain signal X̃i is oversampled by a factor

NOS , typically NOS = 2, by zero-padding xi of Eq. 1 and

then applying FFT of size NOS .N as given by:

X̃i = FFTNOS .N{[xT
i , 0[1×(NOS−1)N)]]

T } (9)

The sub-band filtering can be performed in the frequency

domain by Hadamard multiplication Ỹfili = F̃i ⊙ X̃i where

F̃i = FFTNOS .N{fi} is the oversampled frequency response

sub-band filter. Then the time domain UFMC signal is ob-

tained by summing up all sub-bands and applying NOS .N -

point IFFT as shown by:

Ỹtotal =
B−1∑

i=0

Ỹfili (10)

ỹtotal = IFFTNOS .N{Ỹtotal} (11)

where the first N+L−1 samples corresponds to the UFMC

transmitted signal y and the remaining ones are zeros.

In this method, (I)FFT input pruning can be applied in Eq.

1 and Eq. 9 so that the (I)FFTs in these equations are replaced

by IFFTNB ,N
N and FFTN,NOS .N

NOS .N respectively.

Moreover, IFFT output pruning can be applied in Eq.11

since only the first N + L − 1 outputs are required, and an

IFFTNOS .N,N+L−1
NOS .N will be implemented.

E. Reduced Complexity TX with Frequency Domain Approxi-

mation (RC-FDA TX)

According to [9], the idea for reducing the frequency

domain implementation complexity exploits the fact that sub-

band signals have to be generated with a lower sample rate,

compared to the full band.

This method can be summarized as follows: the first N-

point IFFT for Xi in Eq. 1 with NB data sub-carrier is

replaced by N0-IFFT where NB ≤ N0 ≤ N . All further

steps are adjusted to match the size NOS .N0. Before summing

up all the filtered sub-band-component Ỹfili of size NOS .N0

and proceeding with the same steps, Ỹfili are placed at their

respective frequency positions in the large NOS .N -point FFT.

The cut-off of frequency domain filter is one source of the

approximation errors. The cut of the last N − L+ 1 samples

in this method generates a further (small) approximation error.

Moreover, the error of this approximation decreases as N0

increases and it reaches 0 when N0 = N .

By applying the pruning technique, the IFFT\FFT in Eq. 1

and Eq. 9 will be IFFTNB ,N0

N0
and FFTN0,NOS .N0

NOS .N0
respec-

tively.

In addition, the IFFT in Eq. 11 is changed to include FFT

input and output pruning as follow IFFTNOS .N0,N+L−1
NOS .N .



Table I
FFT COMPLEXITY WITH\WITHOUT PRUNING, FFTN AND CONTIGUOUS NONZERO INPUT\REQUIRED OUTPUT X

Complexity Without pruning With Input OR Output pruning

Complex Multiplication N
2
.log2(N) N

2
. ⌊log2(X)⌋+ N

2
−X +

N
2
.X

2⌊log2(X)⌋

Complex Addition N.log2(N) N. ⌊log2(X)⌋+N − 2X + N.X

2⌊log2(X)⌋

Total Real Operations (1CM = 4M2A) 5N.log2(N) 5N. ⌊log2(X)⌋+ 5N − 10X + 5N.X

2⌊log2(X)⌋

F. Reduced Complexity TX with Re-sampling

According to [11] the baseline UFMC complexity can be

reduced by decreasing the IFFT size followed by a convenient

up-sampling and moving the frequency shift operation to

the end of transmission chain so that the filtering remains

with real coefficients. The small IFFT size N ′ instead of N
is the main design parameter to reduce the computational

complexity. In addition, the value of N ′ must be chosen

carefully with the upsampling factor N/N ′. However this

method can approximate the UFMC spectrum with reducing

the system complexity if only a few sub-bands (e.g 1-3PRB)

shall be generated as in the case of IoT MTC.

Similarly to previous methods, the IFFT pruning can have

sometimes more complexity reduction by using pruned small

size IFFT, i.e., IFFTNB ,N ′

N ′ .

G. Reduced Complexity RX - Baseline (RC-Baseline RX)

After a windowing pre-processing of the received signal

according to [2], a 2N -point FFT is applied to transform the

N+L−1 received samples into the frequency domain, where
a zero-padding is required. Note that all N+L−1 samples are
used for detection rather than only N samples as in OFDM.

Finally, only even sub-carriers are selected for data detection

while odd sub-carriers are discarded as shown in Fig. 2.

The UFMC receiver complexity is slightly higher than a

factor 2 of OFDM, as a 2N -point FFT is used for sub-

carrier demodulation to take the sub-band filter tails into

consideration. This complexity can be highly reduced by

using FFT output pruning since only half of FFT output

(even-indices) is selected. An additional enhancement can be

realized by making input FFT pruning due to input padding

by N−L+1 zeros. Hence, the FFT will be replaced by PFFT

FFTN+L−1,N
2N .

III. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, the computational complexity is derived for

all suggested methods of implementation with\without FFT
pruning. We consider the number of required CM\CA then

real multiplication\addition, and total real operations can be

deduced when needed.

Note that each complex multiplication requires 4 real mul-

tiplications and 2 real additions (4M2A) (6 real operations)

and each complex addition requires 2 real additions. How-

ever, complex multiplication can also be computed using 3

real multiplications and 3 real additions (3M3A) when one

complex factor is known in advance as in FFT. The complex

multiplication computed with 3M3A is as follows:

(a+ bi)(c+ di) = (k1 − k3) + j(k1 + k2)

k1 = c(a+ b); k2 = a(d− c); k3 = b(c+ d)
(12)

where the 2 factors (d− c) and (c+ d) are precomputed.
The complexity for radix-2 FFT without pruning and with

only CP for input or output is shown in Table I. The CP-

FFT complexity is according to [12]. These equations are

for contiguous nonzero inputs or required outputs and they

represent the FFT maximum complexity after pruning. In the

following, we will show that CPP may lead to an additional

complexity reduction. The complexity after applying CPP is

estimated using the flowchart tracing function based on the

number and the indices of nonzero\required inputs\outputs.
The complexity of the existing methods without using

FFT pruning technique can be deduced from the equations

derived in this section by replacing the P-FFT\IFFT C(I −
FFTNZ,RO

N ) by the un-pruned FFT (UFFT) C(I − FFTN ).

A. Reduced Complexity UFMC Transmitter

The equations of computational complexity in terms of

complex multiplication and complex addition for all reduced

complexity transmitter methods are derived and shown in

Table II. The complexity of pre-computations β in OSI TX,

the subgroup filter in TDFA TX and the FFT of the filter in

RC-FDF TX are not included in these equations.

Note that no complexity reduction is achieved with CP when

the number of required outputs (or nonzero inputs) is greater

than or equal to half the FFT size. In such case only the partial

pruning permits to reduce the complexity of the (I)FFTs.

As example, the complexity CCM (IFFTNOS .N,N+L−1
NOS .N ) and

CCA(IFFTNOS .N,N+L−1
NOS .N ) in equations of RC-FDF TX can

be replaced by NOS .N/2.log2(NOS .N) − (N − L + 1) and
NOS .N.log2(NOS .N)− (N − L+ 1) respectively.
Similarly in equations of RC-FDA TX, the complexity

CCM (IFFTNOS .N0,N+L−1
NOS .N ) and CCA(IFFTNOS .N0,N+L−1

NOS .N )

was reduced to C(IFFTNOS .N0,NOS .N
NOS .N )−(N−L+1), where

the latter part in the last equation represents the reduction ob-

tained by partial output pruning and the former part represents

the complexity after CPP at FFT input.

Concerning the method RC TX with re-sampling, the au-

thors [11] suggested to use FFT radix-4. In order to be

more general and fair in our comparison, all methods will be

evaluated with an FFT radix-2. Moreover, the filter impulse re-

sponse is considered real in all subbands because the frequency

shifting is moved to the end of chain and it is performed only

on nonzero samples after up-sampling by N/N ′. Note that the

complexity of filtering convolution by real coefficients is not

explicitly shown in Table II. This is due to the presence of



Table II
COMPUTATIONAL COMPLEXITY IN TERMS OF CM AND CA FOR UFMC TRANSMITTER METHODS

Methods Complex Multiplication Complex Addition

RC-TDF TX B[CCM (IFFT
NB ,N
N ) +N.L]

B[CCA(IFFT
NB ,N
N ) + (N − 1)(L− 1)]

+ (B − 1).(N + L− 1)
OSI TX B.NB .(N + L− 1) (B.NB − 1).(N + L− 1)

RC-TDFA TX Q[CCM (IFFT
B.NB/Q,N
N ) + (N + L− 1)] Q[CCA(IFFT

B.NB/Q,N
N )] + (Q− 1)(N + L− 1)

RC-FDF TX
B[CCM (IFFT

NB ,N
N ) + CCM (FFT

N,NOS .N
NOS .N )

+ (NOS .N)] + CCM (IFFT
NOS .N,N+L−1

NOS .N )

B[CCA(IFFT
NB ,N
N ) + CCA(FFT

N,NOS .N
NOS .N )]

+ CCA(IFFT
NOS .N,N+L−1

NOS .N ) + (B − 1)(NOS .N)

RC-FDA TX
B[CCM (IFFT

NB ,N0
N0

) + CCM (FFT
N0,NOS .N0
NOS .N0

)

+ (NOS .N0)] + CCM (IFFT
NOS .N0,N+L−1

NOS .N )

B[CCA(IFFT
NB ,N0
N0

) + CCA(FFT
N0,NOS .N0
NOS .N0

)]

+ CCA(IFFT
NOS .N0,N+L−1

NOS .N ) + (B − 1)(NOS .N0)

RC TX with Re-sampling
B[CCM (IFFT

NB ,N′

N′ ) + (N + L− 1)

+ Cfiltering ]

B[CCA(IFFT
NB ,N′

N′ ) + Cfiltering ]

+ (B − 1)(N + L− 1)

multiplications of real numbers by complex numbers instead

of two complex numbers. Then, these multiplications require

2 real multiplications instead of 6 real operations. For this

reason, the filtering complexity will be added directly to

the total complexity in terms of real operations to include

this reduction. By taking into consideration the operation on

nonzero samples only, the complexity of filtering in terms

of real operations is 2L.N ′ + 2N ′(L − α) − (L − 1) where
α = N/N ′ is the up-sampling factor according to [11].

B. Reduced Complexity UFMC Receiver

At the receiver, the N1-points FFT (N1 = 2N ) has

N + L − 1 nonzero inputs and N used outputs (even index

outputs). Hence, input and output pruning can be applied by

FFTN+L−1,N
2N .

1) Output Pruning: The required outputs are located on

even indices. Thus, the equation in Table I expressing the

complexity of the output pruning, defined for contiguous

required outputs, cannot be applied. Instead, the DIF flowchart

depicted in Fig. 1 will be used to determine the number of

multipliers/adders that will be saved using CPP.

The special distribution of required N outputs at even

indices leads to a great reduction since, as shown in Fig.

1 with N = 4 and L = 3 , the even index outputs are

the results of the upper N1/4 butterflies in the last stages

except the first one. Thus, the lower N1/4 butterflies in the

last log2(N1)−1 stages can be pruned completely. Moreover,

only the sum result (ascending edge) from the outputs of the

first stage butterflies contribute in the final result so no need to

compute the descending edge (Subtraction and Multiplication)

for all butterflies in first stage. Hence, the number of complex

multipliers after applying output pruning is given by:

CCM
RX =

N1

4
[log2(N1)− 1] =

N

2
[log2(2N)− 1] (13)

and the number of complex adders is given by:

CCA
RX = 2CA.[

N1

4
[log2(N1)− 1]]

︸ ︷︷ ︸

Last stages

+1CA.
N1

2
︸ ︷︷ ︸

1st stage

= Nlog2(2N)

(14)

Note that similar results could be obtained when DIT

flowchart is used.

2) Input Pruning: The firstN+L−1 inputs of anN1 = 2N
point FFT are nonzero. Therefore, the complexity reduction is

only from partial input pruning. Consequently, the saving per

butterfly for the last N − L+ 1 butterflies is only 2 complex

additions because the last N − L + 1 inputs (b in butterfly

section of Fig. 1) are zeros and joined with nonzero inputs (a
in butterfly section of Fig. 1) in the same butterfly.

CCA
RX = 2Nlog2(2N)− 2(N − L+ 1) (15)

3) Input and Output Pruning: Note that the operations

pruned by considering input pruning alone are different than

those pruned by output pruning. Therefore, the saving by using

both pruning is the sum of individual savings. The number of

the complex multiplications is as in Eq. 13 while the number

of complex additions is given by:

CCA
RX = 2Nlog2(2N)

︸ ︷︷ ︸

Without Pruning

− Nlog2(2N)
︸ ︷︷ ︸

Saving By Output Pruning

− 2(N − L+ 1)
︸ ︷︷ ︸

Saving By Input Pruning

= Nlog2(2N)− 2(N − L+ 1)

(16)

IV. NUMERICAL ANALYSIS

In this section, we evaluate, using numerical values of the

system parameters, the complexity reduction induced by the

(I)FFT pruning applied to the different UFMC implementation

methods. First, the Complexity Saving defined by Eq. 17, is

computed in terms of complex multiplications/additions as a

function of the percentage of nonzero contiguous inputs or

required outputs according to equations of Table I for CP-

FFT and according to MATLAB function for CPP-FFT. Thus,

CP-FFT permits to obtain a reduction ranging from 100 %

when all the inputs are zeros down to 0 % when the number of

nonzero contiguous inputs reaches 50 %. Additional reduction

is obtained using CPP-FFT especially in terms of complex

additions.
CSFFT = 1−

C(PFFT )

C(UFFT )
(17)

The system simulation parameters in this comparison are:

N = 1024, NB = 12 (1 PRB in LTE), Q = 3, N0 = 128, L =
73, B from 1 to 85, the oversampling factor NOS = 2. The
small I-FFT size N0 = N/16 or greater [9], and the number

of sub-carriers groups in each sub-band is Q = 3 to have
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Figure 3. Transmitter Computational Complexity relative to OFDM vs
number of sub-bands

negligible approximation errors [5]. In addition, the small I-

FFT size in RC TDF with re-sampling method N’ has been

chosen equal to 64 as suggested in [11] when N = 1024.
In our analysis in this section, we express the complexity in

terms of total real operations (multiplications and additions)

while knowing that this complexity is dominant by the number

of multipliers, and which in our case has the same behavior

when only the multiplications are considered.

A. UFMC Transmitter

The computational complexity for all methods of imple-

mentation of UFMC transmitter is estimated in terms of total

real operations relative to OFDM before and after pruning,

where we evaluate a Complexity Ratio (CR) metric called

CRRO
UFMC−OFDM , defined by Eq. 18, in function of the

number of sub-bands.

CRRO
UFMC,OFDM =

C(UFMC)

C(OFDM)
(18)

The simulations results are shown in Fig. 3, where each

method, except OSI, is evaluated in two versions: (1) without

FFT pruning (solid lines); (2) with CPP-FFT pruning (dotted

lines). We will refer to dotted lines by prefix RC, as example

RC-TDFA means TDFA with CPP FFT pruning. As shown,

the complexity is increasing with the number of sub-bands

except for TDFA TX without FFT pruning which is constant

whatever the number of sub-bands. Moreover, the TDF TX has

the highest complexity while its approximation RC-TDFA TX

has the lowest complexity. Thus, when the system is tolerable

for some approximations the RC-TDFA TX represents the

best solution in terms of reduced complexity, and the RC-

FDA TX comes as second best solution for large number of

subbands. While the method RC-TDF with re-sampling have

lower complexity with small number of sub-bands (1 to 3)

which is convenient for MTC application and IoT devices.

Moreover, when no approximation is tolerated, the OSI

TX, FDF TX in its both versions (pruned and un-pruned)

constitutes the less costly solution. However, both methods

requires additional memory to store the pre-computed matrix

β in OSI and the filter response in RC-FDF, knowing that

their complexities are much higher than OFDM complexity

especially with large B.
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Note that according to [5], the complexity of TDFA TX with

3 subgroups filter was around 3.7 OFDM complexity for any

number of sub-bands, whereas with the proposed reduction

method it is reduced to around 1.7 OFDM complexity for 2
sub-bands, 3 for 50 sub-bands and to 3.2 OFDM complexity

for maximum number of sub-bands by respecting the error

vector magnitude (EVM) requirement of 22dB for LTE.

In order to illustrate the amount of saving obtained when

using the pruning technique applied to all the UFMC methods,

we have evaluated a new CS metric CSRO
RC−UFMC,UFMC

defined in Eq. 19 indicating the amount of saving in terms

of real operations of RC-UFMC as compared to UFMC.

Fig. 4 shows the evolution of this metric as function of

number of sub-bands. We notice that the saving becomes

approximately constant after certain number of sub-bands. It

is worth mentioning that the TDFA CP and TDFA CPP with

low B permits to obtain a very high amount of complexity

saving when compared to their un-pruned version TDFA TX

that has the lowest complexity as previously shown in Fig. 3.

This complexity saving ranges from 7.5% up to 50.2% with

CPP and from 3% up to 43.4% with CP to depending on the

number of sub-bands. As compared to the CP technique, the

CPP offers additional saving ranging from 4.5% to 10% for

all the methods except the TDF TX and OSI TX.

CSRO
RC−UFMC,UFMC = 1−

C(RC − UFMC)

C(UFMC)
(19)

Moreover, according to [5] all MSE of time domain filtering

approximation for several number of sub-carriers with Filter

of 1 and 3 subgroups are below −30dB, which means that

the approximations deviate on average less then 0.1% from

the exact signal. This value is clearly below e.g. the EVM

requirement of 22dB for LTE. It is important to note that all

the proposed RC-UFMC techniques do not have any impact

on the performance, in terms of Bit Error Rate (BER), since

they do not introduce any further processing approximation.

Finally, the (I)FFT pruning techniques have a great impact

on power consumption and speed. For example, the FFT

energy saving is 73.7% and the speedup is around a factor

of 3 as compared to (I)FFT without pruning in the case of 64
nonzero contiguous inputs for 2048-point (I)FFT [13].
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B. UFMC Receiver

The complexity of the receiver is related only to the

parameter N (FFT size at the transmitter) and the filter length

L as shown in Eq. 13 and Eq. 16. In order to evaluate the

complexity reduction at the receiver, we define three new

complexity saving metrics that express the saving in terms

of CM, CA and total RO for PFFT as compared to the UFFT:

CSCM
RX = 1−

CCM
RX

N.log2(2N)
= 1−

log2(2N)− 1

2log2(2N)
(20)

CSCA
RX = 1−

CCA
RX

2N.log2(2N)
= 0.5 +

N − L+ 1

N.log2(2N)
(21)

CSRO
RX = 1−

6.CCM
RX + 2.CCA

RX

10N.log2(2N)
(22)

The total RO saving as a function of FFT size N with filter

length L = LCP +1 ≈ 7%.N is shown in Fig. 5, where LCP

is the OFDM cyclic prefix length in LTE, N is chosen to be

a power of 2 and ranges between 128 and 8192.
As shown in Fig. 5, the total RO saving is around 56% for

CPP-FFT and 46% for CP-FFT which approaches 50% for

large values of N. In addition, the complexity ratio CR in terms

total real operations of baseline UFMC receiver and OFDM

before pruning is 2 for N → ∞. However, the UFMC receiver

complexity with CPP-FFT is always less than that of OFDM

system, and it approaches OFDM as N → ∞. While in case of

CP-FFT, the UFMC complexity decreases from 1.28 till 1.15

OFDM complexity as N increases from 128 to 8192. In both

UFMC cases, their complexities tend to OFDM complexity for

N → ∞. Therefore, the UFMC receiver complexity becomes

similar or less than OFDM system.

V. CONCLUSION

In this paper, we discussed the complexity reduction tech-

niques for the different UFMC implementation methods using

(I)FFT pruning at both the transmitter and receiver sides.

Without any performance degradation and by respecting EVM

requirements of LTE system and beyond, the proposed com-

plexity reduction methods permits to reduce the complexity

of the UFMC TX chains, in terms of real operations, to reach

3.2 down to 1.7 OFDM complexity depending on the number

of sub-bands with the TDFA TX using the CPP technique and

Q=3, while the most simplified UFMC TX proposed in the

literature is of the order of 3.7 with any B and Q=3. As for

the receiver, we showed that the UFMC RX complexity can

be reduced from around 2.2 to less than OFDM complexity.

Also, we emphasized the importance of the complete-partial

pruning that gives additional simplification of the FFT.

Therefore, the main challenge of UFMC high computational

complexity for transceivers is tackled in this paper by using

FFT pruning techniques. In addition, it is worth mentioning

that the proposed UFMC transceivers have the lowest compu-

tational complexity among the 5G candidates FBMC, GFDM

and Filtered-OFDM that have complexity overheads of the

order of 5 times the OFDM [14].

Finally, the complexity reduction of UFMC transceiver have

a great impact on the system speed, the implementation cost

and the power consumption for future mobile devices and base

stations.

Future work will consider the hardware implementation of

the proposed RC-TDFA TX/RX chain in order to determine

the post-synthesis hardware complexity.
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