N

N

Asymptotic model for twisted bent ferromagnetic wires
with electric current
Abdel Kader Al Sayed, Gilles Carbou, Stéphane Labbé

» To cite this version:

Abdel Kader Al Sayed, Gilles Carbou, Stéphane Labbé. Asymptotic model for twisted bent ferromag-
netic wires with electric current. Zeitschrift fir Angewandte Mathematik und Physik, 2019, 70 (1),
10.1007/s00033-018-1052-4 . hal-01834628

HAL Id: hal-01834628
https://hal.science/hal-01834628
Submitted on 10 Jul 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01834628
https://hal.archives-ouvertes.fr

Asymptotic model for twisted bent ferromagnetic wires with
electric current

Abdel Kader Al Sayed?, Gilles Carbou! and Stéphane Labbé?

L CNRS / UNIV PAU & PAYS ADOUR, IPRA, LABORATOIRE DE MATHEMATIQUES ET
DE LEURS APPLICATIONS DE PAU, UMR CNRS 5142, Avenue de I’Université - BP 1155,
64013 PAU CEDEX, FRANCE
2 Univ. Grenoble Alpes, CNRS, Grenoble INP*, LJK, 38000 Grenoble, France
* Institute of Engineering Univ. Grenoble Alpes
email:abdel-kader.al-sayed @univ-grenoble-alpes.fr, gilles.carbou@univ-pau.fr,
stephane.labbe@univ-grenoble-alpes.fr

Abstract: In this paper, we derive a one-dimensional asymptotic model for the dynamics of
the magnetic moment in a twisted ferromagnetic nanowire with arbitrary elliptical cross-section,
curvature and torsion.
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1 Introduction

Ferromagnetic nanowires have promising potential applications in data storage devices (see [11])
and magnetic logic gates (see [1]). The wires used in these fields have complex shapes, with bends,
notches or junctions. The study of domain wall formation and dynamics in such wires with complex
geometry is crucial for applications (see [1, 11, 12, 13, 14, 16, 19]).

In this paper, we justify by asymptotic process a time-dependent one-dimensional model for a
twisted, bent nanowire of variable cross-section. Our model takes into account the current effects.
Several works address the justification of 1d models for ferromagnetic nanowires (see [6], [15], [7]),
however they consider a constant shaped cross-section or a cross-section oriented by the normal and
binormal vectors of the curve modeling the wire central line. In this work we are able to consider
here narrowing zones (arising in wires with notches) and twist shaped wires.

First, recall the 3d model for ferromagnetic materials (see [5, 10]). We consider a ferromagnetic
body occupying the volume 2 C R®. We denote by M(t, x) the magnetization distribution at the
time t and at the point x € ). At low temperature, the material satisfies the saturation constraint:

IM(t,x)| = M, (1.1)

where M is independent of t and x. The variations of M satisfy the following Landau-Lifschitz-
Gilbert equation:

oM « oM .
5o~ M X Gy = M x e — (i V)M, (1.2)

where x is the cross product in R3, v is the gyromagnetic constant, « is the damping coefficient.
The effective field Heg is given by:

A
Her = mAMJer(M)JrHa, (1.3)

S

where A is the exchange constant, yg is the permeability of the vacuum, H, is the applied magnetic
field and Hy(M) is the demagnetizing field that deduced from M by the operator Hy given by:

curl Hy(M) =0 and div(Hyz(M) + M) = 0, (1.4)

where M(t,x) = M(t,x) for x € Q and zero outside (2.



The right-hand-side transport term in (1.2) describes the current effects: the velocity u is given by

pPgpB 7
J
2eM,

ﬁ:

(1.5)

where J is the current density, p, g, up and e are respectively the current polarization, the Landé
factor, the Bohr Magneton and the electron charge (see [4] and [17]).

Writing M(t,x) = Msm(yMst,x), H,(t,x) = Msh,(yM,t,x), and t(t,x) = yM;V(yMt,x), we
obtain the rescaled model:

Jym — am X ym = —m X heg — (V- V)m,
(1.6)
her = ?Am + Hd(m) + h,.
. : o 2 A
where the dimensionless time is t = yMt and ¢ = .
pro M2

We consider a curved ferromagnetic wire with non constant elliptical cross-section. We introduce
s — I'(s), the arc-length parametrization of the wire central line. We assume that for all s, the cross-
section is an ellipse whose axis are directed by €,(s) and €p(s), where for all s, (I'(s), €a(s), €b(s))
forms a direct orthonormal basis of R3. We denote by na(s) and nb(s) the associated semi-axis,
where 7 is a small dimensionless parameter. Therefore, the wire is parametrized by:

x = U, (s,u,v) == T(s) + 7 (u a(s)@a(s) + vb(s)é’b(s)> , (1.7)

where (s,u,v) € O := [0, L] x B2(0,1). We denote by B(0,1) the unit ball of R? centered at 0 and
radius 1 and by Q, = ¥, (O) the domain occupied by the ferromagnetic wire presented in figure 1.

Figure 1: Ferromagnetic domain

We assume that I' € C2([0, L]), €x and ey, are in C1([0, L]). We assume also that a and b are C! on
[0, L] and bounded by below by a non negative constant.

Several Works study physically the effect of the geometrical form of the ferromagnetic wires on
the magnetic moment behavior [18, 13, 8]. They study the effect of several geometrical aspects on
the domain wall propagation. Respectively, they study the effect of the curvature, the torsion and
the turning of the ribbon around its central wire on the domain wall propagation. All of these
geometrical aspects are a particular cases of our geometry.

The existence of a global in time weak solution for (1.2) in ©,) is established in [2] and [3]:

Proposition 1.1. We fir n > 0. Let m{ € H'(Q,;R3) satisfying |m{| = 1 a.e. Let h,, €
CP(RT; L*(2)) and v,) € CP(RT;L>(RQy,)). There exists m" : RT x Q, — R? satisfying the
saturation constraint |m"(¢,x)| =1 a.e. such that

om"

= for allT >0, m” € L>(0,T; H*(Q,)) and o € L*([0,T] x ),



- m"(0,-) =m](-) in the trace sense,

~ For all ® € CF(RT; H'(Q,; R?)),

om”" om" 3 0P
— am" - ddt dx = § 22 (m" dtd
/£+XQW( or M o ) * J£+Xgni_1 (“1 " ox, ) ax,

_/ (HL(m") +ham)~¢>dtdx—/ (¥, - V)m" - & dt dx,
Rt xQ Rt %0y

(1.8)

— for almost every t > 0,
£ / / |7| dt dx < G, (1) <1+Vn(t)exp/0tVn(t)(s)ds> (1.9)

2
Ep(m") = é/ |Vm"|?dx + = / |H4(m")[2dx,

where

with

t 9 Lo
6,(0) = £) + [ Iyl ir and Vi(00) = oz [ 190 o

We aim to obtain an asymptotic one-dimensional model for the wire when the parameter n tends
to zero. By specifying the applied field and the electric current. We fix h, € C°(RT; L%([0, L]; R3))
and j € CO(RT; L>°([0, L])). We assume that the applied field is constant in the cross-section and
that the current is constant in the cross-section and oriented in the direction of the wire, i.e.

ha,n(tv v, (s,u,v)) = ha(t,s),
(1.10)
Vi (t, Wy (s,u,v)) = j(t,s)I'(s).

Then, we obtain the following theorem:

Theorem 1.1. Let h,, € CO(RT;L?(2,)), v, € CJ(RT;L>°(Q,)) defined by (1.10). Let mg €
H' ([0, L]; S?). Forn >0, we define the initial data m{ € H'(,; 5?) by: m{ (¥, (s,u,v)) = mo(s).

We introduce the weak solution m" of (1.2) given by Proposition 1.1 with initial data m{. We define
m”: Rt x O — 52 by
m"(t,s,u,v) =m"(t, ¥, (s,u,v)).

Then when n tends to zero, there exists a subsequence still denoted by m" such that m" — m in
L>(0,T; H! (O)) weak *. In addition, m does not depend on u and v and satisfies:

~ |m(t,s)] =1 a.e., dsm € L*>([0,T); L?([0, L])) and dym € L*([0,T] x [0, L]) for all T,
- m(0,8) = mq(s) in the trace sense,

~ for all € C(R*; HY([0, L])),

om 3m> om., 0¢
ol — —amx — -¢dtds=/ ol?(m x —) - = dtds
/]Rer[O,L] < ot ot R+ x[0,L] ( Os ) Os

—/ o (Hg(m) + he) - U dtds — / cjOsm - ® dt ds,
R+ x[0,L] R+ x[0,L]

where o(s) = ma(s)b(s) and where the resulting demagnetizing field Hq(m) is given by:

P 8280 — 2
a+b YT a+b

Hd(m) = — (m . éb)éb. (111)



Remark 1.2. From the physical point of view U is proportional to the density current J (see (1.5)),
it is natural to assume that the flux of ¥, through the cross-section is constant along the wire. For
the asymptotic model, the corresponding assumption is that s — o(s)j(s) is constant along the wire.

Our one dimensional model is equivalent to smooth solutions of the model:

2 /
om _ O0m_ (423 m MQU—a—? ¥ Hy(m) + ha> — josm. (1.12)
g

ot ot

The localization of the demagnetizing field in (1.11) has been already observed in [6] and [15].

It can be more convenient to describe m in the mobile frame (I'(s), €a(s), €p(s)). For this purpose,
we introduce r1, 72,73 in C°([0, L]) such that:

["(s) = r3(s)ea(s) — ra(s)en(s),

de, B v B
%o (5) = —ry(O)(5) + 1 (5)6(5) (113)

de?, / 5
T2 (s) = ra()T(s) ~ ra(s)€als).

1 (S) mq
We denote by R(s) = | ra(s) | and by m = | ma | the coordinates of m in the mobile frame:
r3(8)) ms

m(t,s) = my(t,s)'(s) + ma(t,s)€a(s) + m3(t,s)Ep(s).
We have |m| =1 for all ¢ and s, and m satisfies (1.12) if and only if m satisfies:

om om )
E—amxE——mx’}-l(m)—](asm—&—Rxm),
with
9?m dm dR o' (Om
_ 2 2 om  pdi 2 20 (Om
H(m)= ¢ 52 —|—2€R><as +/ dsxm+€R><(Rxm)+€ a(as —i—Rxm)
b .
atb ° a+b

m3+haa

where h, are the coordinates of h, in the mobile frame.

The paper is organized as follows. First, we achieve uniform bounds for m" by writing the energy
formula (1.9) using the new variables (s, u,v) in Section 2. Second, we take the limit of the formu-
lation verified by m" as n tends to zero in Section 3. To achieve this, we utilize the uniform bounds
achieved in the preceding section and rewrite the weak formulation 1.8 in the new variables. Finally,
the limit of the demagnetizing field is characterized in Section 4.

2 Uniform Estimates for the Rescaled Formulation

In this section, we aim to obtain uniform bounds for m”, by rewriting the energy formula (1.9) in
the variables (t,s, u,v).
We compute the differential of ¥, : O — Q, given by (1.7) with respect to its variables and using
(1.13), we obtain that:

% = (1 — n(ua(s)ry —vb(s)ra)) IV(s) + n (ua’(s) — vb(s)rs) € + n (ua(s)rs + vb’(s)) €p

:TY(s)(1+ng1) + 1g2€a + 193€b,

(2.1)



where
g1(s,u,v) = —ua(s)ri(s) — vb(s)ra(s),

g2(s,u,v) = ua'(s) — vb(s)rs(s),

g3(s,u,v) = vb/(s) + ua(s)rs(s).
Furthermore, we have
ov ov .
e na(s)é, and Fo 7b(s)ép.
Thus, we obtain:

ov,, g2 OV gs 0¥
—1 =T"(s)(1 1 1, 2.2
Js (8)(1 +ng1) + a(s) du  b(s) v (22)
Then,
1 ov g2 OV g3 OV o 1 oV . 1 0V
I'(s) = 1 _ =1 _Z=_3 = ———1 = ——1, 2.

(s) 1+ ng: < Os aou bao ) © na Ou and & nb Ov (2:3)

The Jacobian determinant of ¥, is given by:
J(s,u,0) = 0 (1 +ngi (s, u, v))a(s)b(s),
so that by changing the variable formula, for f: 2, — R or R3, we have:
/ F(x) dx = 12 / a(s)b(s) F(W, (s, 1, v)) (1 + g1 (s, 1, v)) ds dudo. (2.4)
Q, o

In order to estimate ||[Vm”||%, (an)» We remark that whatever the orthonormal frame (&1,6,8),

3
[V’ (x)* =) |dm” (x)(&) .
i=1
With the orthonormal frame (TV(s), €a(s), €n(s)), we obtain that
[V’ (U, (s, u,0))]* = [dm? (¥, (s, u,0))(I'(s))|? + |dm” (¥, (s, u, v)) (Ea(s))|”

+Hdm" (¥,y(s,u,v)) (€ (s))|*.

Since m"” = m" o ¥,,, then using the chain rule, and (2.3), we obtain that:

1 am"  go Om" g3 Om"
n / — _ 92 _ g
dn (W (s, u, v))(T(s)) 1+ng: < Os a Ou b ov >’
1 om"
n o) —
dm (¥, s, 0, 0))(63) =~
1 om"
n o
dm" (¥, (s, u,v))(ep) .

Thus, we have by (2.4) :

b
/ \Vm”|2dx = 772/ a
Q, ol+nq

1
+/ ab(1+ng1) (2
o a

n n n |2
8{;’; _ 92 9m" g3 Om ‘ ds du dv

a Ou b ov
2
)dsdudv.

(2.5)
om" |2

ou

1

aom"
o5 |5

ov




In particular, m{ does not depend on the transverse variables, so there exists a constant C; such
that for all n > 0,
£,(ml) < Cin?. (2.6)
By properties of the applied field h, ,, we have for all ¢:
wab
h, (1) = 772/ ha(t,s)|?ds.
oy = [ 7 ha(t:9)

So, using (2.6), there exists Cy such that for all 7,

t
G, (1) < Car? (1 - |ha<f,.>||%z([o,mdr) | (2.7)

In addition, the current induced velocity v, (t) is uniformly bounded by |[|5(t, )|/ Lo (jo,z])- So there
exists a constant C3 such that for all ¢,

) <Gy [ 1 M oy 2= w10 (28)
We define G as:
t
o) = (01 0 [ hur ~>||Lz<[o,m>df) (14 v(t) expr(t))
0

Therefore, using (2.7) and (2.8), we obtain by the energy formula that for all ¢ > 0 and for all 5 > 0,

2

om”"
ot (T7 ) dr < 772G<t)
L2(Q)

Also, with (2.5) we get that for all T' there exists a constant C'(T") such that for all > 0,

72 «
SIVm(t ) g, + 5

n |2 n |2
T Py 20
Lo°(0,T;L2(O % (0,T;L2(0))
(2.9)
om" om" om" || om" ||
H s 2o, 9B H 3 < C(T).
8 U U |l Lo (0,1;L2(0)) t N L2(0,11x0)

Concerning the demagnetizing field, for a given w : O — R3, we define w : Q, — R3 by
wo W, =w, and we define h,(w) : O — R? by:
H;(w)o ¥, = h,(w). (2.10)

Since —Hy is an orthogonal projection for the L?(IR?) inner product,then we have for all w € L?(O):

(W)l 720,y < IHa(W)lIZ2gs) < [WlIE2(q,), (2.11)

so in the rescaled variables, we obtain that there exists a constant K such that for all w and all
n > 0:
1 (w)l[720) < KllwlZz(o)- (2.12)

In addition, if w € L*°(0O) takes its values in the unit sphere, then there exists a constant K’
independent of w such that for all 7,

1 (w)[[ 720y < K- (2.13)

In particular, denoting by H"(t,-) = hy,(m"(t,-)), from the previous estimates, we obtain that for
all n > 0,
[ H"| oo (mt322(0)) < K. (2.14)

Therefore, using Estimates (2.9) and (2.14), there exists a subsequence that we also denote by m”
such that for all T,



1. m" —m in L>=(0,T; H*(O)) weak *,

n
. O (0,T; 12(0)),
ou
om"  Om . 1o
3. W E Weak m L ([O,T] X O),

4. H" — H in L*=(0,T; L2(0)) weak *.

By using the Aubin Simon Lemma, we conclude that m" strongly tends to m in L*°(0,T; LP(O))
for p € [2,6[ and by extracting a subsequence, we can assume that m” — m almost everywhere.
In particular, we obtain that |m| =1 a.e. on Rt x O.

3 Limit in the weak formulation

In this section, we aim to obtain the limit in the weak formulation by rewriting the formulation (1.8)
in the new variables (s, u,v) and taking the limit when 7 tends to zero. On the one hand, since the
current Vv, is given by (1.10), we have

((vy - V)m") (W (s, u,0)) = j(t,8)dm" (¥, (s, u, v))(I'(s)).

On the other hand, we remark that for all orthonormal frame (51, 52, f_;,), we have:

i(m’?(x)x%‘zﬂx) 5 Z( x) x dm’(x)(&)) - d2(x)(&)-

We take & = I"(s), & = €a(s), &3 = &p(s), and @ of the form D(¢, U, (s,u,v)) = ¢(t,s).
Since ¢ depends only on s, we have:

09 _ 0wy _

aiu - d(P(t’ W,,(S,uﬂ}))( au (S,U,, U)) - nadq)(tv \IJ (S U U))( ) - O

00— (0,0, (5, 0)) (T3 (5, 0,0) = b1, Wy (5, ,0)) (65) = 0.

ov ov
Thus, we obtain:

do(t, ¥, (s,u,v))(€a) = d®(t, ¥, (s, u,v))(ep) = 0. (3.1)

Next, differentiating ¢ with respect to s and by (2.1) and (3.1), we obtain:

99 ) = Yy _ :

8s (ta S) - d(b(tv \Ijn(sv ’LL, U)( 85 ) - (1 + 7791) d(I)(ta \IIU(S, ua U))(F (S))

Hence, we conclude that:

> (m7(x) x dm”(x)(&)) - dP(x)(&) = (m"(x) x dm” (x)(T'(s))) - d@(x)(I"(s))

i=1
1 1(x) x om" B @8m" g2 Om" ¢
IR " Js a Ju b Ou ds’

Then, we can write the weak formulation as follows:



om" om"

/R+XOa(s)b(s)(1 +n91(s,u,v)) ( 5% am™ x o > - ¢(t,s) =

am"  go Im" g3 Om" 0
2 n _ Jd4 _ Jo e
[R+><O€ als)b(s) (m . ( Js a Ju b Ov )> Js

—/ a(s)b(s)(1 + ng1(s,u,v))m" x (H" + h,) - ¢(t,s)
Rt xO

. am"  go Om" g3 Om"
- [ st (G - BEE I o,

Taking the limit when 7 tends to zero and using that

e m" tends to m strongly in L>(0,T; L*(0)),
om"
Os
om'

ot

om" and om"
ou

e m does not depend on the transverse variables u and v,

and H" tend respectively to 88—7: and H in L°°(0,T; L*(O)) weak *,

0
tends weakly to a—T in L2(0,T; L?(0)),

tend to zero strongly in L>(0,T; L?(0)),

we obtain the following formulation:

om 8m> / 5 < Bm) 0o
ol — —amx — | - ¢pdtds = lfolmx — | -=dtds
/R‘*'X[O,L] < ot ot R+x[0,L] Js ) Os

8
—/ amx(H+ha)-¢dtds—/ oj 20 b dt ds.
R+ x[0,L] R+ x[0,L] s

where o(s) = wa(s)b(s) is the rescaled area of the section. It remains to characterize the limit H of
the rescaled demagnetizing field.

4 Limit for the Demagnetizing Field

Recall that we denoted by H" the demagnetizing field induced by m" written in the variables
(s,U) € [0,L] x B3(0,1): H"(t,s,U) = Hy(m"(t,-))(¥"(s,U)). We introduce H, = hy,(m(t,-)).
From (2.12), for all n > 0:

[H" — Hy|[12(0) < K[[m" — ml|2(0)-
So in order to describe the limit of H", we will study the limit of H, when 7 tends to zero. We

claim the following Proposition.

Proposition 4.1. Let w € C*(O;R3). We assume that w is independent of the (u,v) variables,
50 that w(s,u,v) = wq(s)I"(s) + wa(s)€a(s) + ws(s)€p(s). Then when n tends to zero, hy(w) tends
strongly in L*(O) to Hy(w) given by



Since m does not depend on the transverse variables, using the density of C1([0, L]) in L%([0, L]),
and (2.12), we obtain through Proposition 4.1 that H, tends to Hy(m) strongly in L?*(£2), and we
conclude the proof of Theorem 1.1. So it remains to establish Proposition 4.1.

Proof of Proposition 4.1: we define w,, : ,, — R? by w,, o ¥,, = w. Recall that h,(w) is given
by hy,(w) = Hg(w,) o ¥,,. Since curl Hy(w,) = 0, we can write Hy(w,,) = —V¢ with A¢ = divw,,

where W, is the extension of w;,, by zero outside 2,,. From the last equation, we have ¢ = —Gx*divw,
where G(z) = %H € L}, .(R3) is the fundamental solution for the operator —A in R3. Therefore
we have:

1 X —

y 1 X—y
Hy(w,)(x) = —— ———divw dy + — / T v(y))do(y), 4.1
)00 = - [ vy + - [ S b)), ()
where v(y) is the outward unit normal on 052,,.

Writting w(s, u,v) = w1 (s)IV(s) + wa(s)€a(s) + w3(s)€p(s), then, by (2.3) we have:

— 1 OUy _ g2 0%y _ g3 0%,y 10%, 1 0%y
w(s, v, v) =wy <1+7791 < Os a du b v )> s (na ou s nb dv
o, 0w, oY,
= 8 ,y 6 ’YZ 6 '73

Now, we compute Gram’s matrix given by:

ov, 1 0v, ov,, 0V, ov,, 0V,
( D5 as’> ( D5 au'> ( D5 81)’> (1 Jr7791)2 +772(g2 +93)2 n*agy  1n°bys
_ ov, 1 0v, ov,, 0V, ov,, 0V, _ 2 2,2
G(s,u,v) - < le 6u7> < 8u7 8u1> < Bul 8vl> B "ag2 ma 0
ov, 1 0v, ov,, |0V, ov,, |0V, 2 21,2
< le 6v7> < 8u7 8v1> < Bvl 8vl> n bg3 0 N b

so that det G = n*a®b?(1 + ng;)?.

oV ov ov
Since w(s, u,v) = 8: v1 + 6'1:7 Yo + (%n ~3, then

g ( 2vdetG)+

divw, (¥, (s,u,v)) = ! <68 (mvVdetG) + 2(’YB,V det G)) .

Vdet G ou v
By direct substitution, we can see that
divw, (0, (s,u,v)) :2; [6 ( n*ab(1 +7791)>
n*ab(l+g1) [0s \1+ng

O [((w2  gow 5

"o ((na a(l +91)> mab(l +v791)>
9
0

(G ) bt o)

_ 1 B(wlab) ’ ’
_ab(l n 'r]gl) < Ds w1 (ba + ab ) rlabwg TQ&blUg .
So, we obtain that:
diVWn( (S U)) m (8811)1(5) - T1(s)w2(s) — 7'2(5)1113(5)) .

We split 0€2,, as ¥, ({0} x B2(0,1)) UW,({L} x B2(0,1)) U¥,([0, L] x 0B2(0,1)) :=T'; UT'y UT'3. So,
we can rewrite (4.1) in the variables (s,u,v) as follows:

Ha(wn)(¥(s,U)) = Hy(s,U) = I{(s,U) + I3(s,U) + I3(s, U) + 1{(s, U),

where



(s") —ri(s")wa(s’) — Tz(S')U}g(S')) o(s')ds'dU’

[ ]
—_

7" = _f “iji(sv U) — \I/ﬂ(slﬂ U/) %
CAr Jo [V, (s,U) — U, (s, U3\ Os

o J7 _12 \I/n(st) (0 U’ " )
1 4 Bs(0,1) |\I/n(8, U) - (0 U3 o(0)w:(0)dU’,
o [ = 772 )\ (S U) \\/ (L U/) " /
I3 47 B3(0,1) |\I/ (S U) (L U/)lg (L) 1(.[/)(1[]7
* = i " u \Iln(s’ U) -V (S er(a)) s/ s/ s/
- W/O / 14 U, (s, €,.(0))° s A(s,0)Gy (s, 0)ds'dd,
with

b(s")ws(s") cos§ + a(s")ws(s') sin
(b2(s') cos? § + a2(s') sin” 0) 2

€,.(0) = (cos®,sinf), A(s',0) =

)

Nl=

and G,(s',0) = (a1 (s, 0)az(s',0) — (as(s,0))?)
Lemma 4.1. There exists C > 0 and ng > 0 such that for all n < no, s,s’ € [0,L] and U, U’ €
B5(0,1) we have

1@, (s, U) = By (8, U)[lgs > C(Js — &'+ n?||U = U[|)2.

Proof of Lemma 4.1. Assume that this Lemma is false. Then for all n > 0, there exists 7, < %,
S, s;, € [0, L] and U, U, € B(0, 1) such that

! 1 1
1, (815 Un) = n(sy,, Un)ll < —(Isn = sy l*+ ()10 = U, [1P)2, (4.2)

which implies that || X (s,) — X (s,)|| tends to zero. By extracting a subsequence we can assume that
sp and s), tend respectively to so and s/ . Since || X (s,) — X(s),)|| — 0, then X (ss) = X (sL.),
which implies that so = s.,. Therefore (s, 7,Un)n, (s, U} )n tends to (SOO,O).

Next we define ¥ : (s,U) — T'(s) + ua(s)€a(s) + vb(s)ép(s). So, by the local inversion theorem,
there exists v > 0 such that W is a C!-diffeomorphism from [So, — v, Soo + ] x B2(0,v) into its range
V. Even if it means reducing v, we can assume that ¥ ! is Lipschitz on V:

3C,V(x,y) €V XV, [T (x) - 07 (y)| < Cllx —yl. (4.3)
For n large enough, (s,,n,U,) and ( s, U} are in [Soo — 1, S0 + 1] X B2(0, V), so by applying (4.3)
for x =¥, (s,,U,) and y = ¥, (s],,U]), we obtain that
1
(Isn = sul* + (00)2(|Un = ULIIP)* < ClWy, (80, Un) = ¥a(sy,, Uyl

which together with (4.2) implies that 1 < C % for n large enough, which is a contradiction. This
concludes the proof of Lemma 4.1.

O
We first prove that I and I7 tend to zero in L?(O) when 7 tends to zero. By Lemma 4.1,
B K[ < Kt
B,(01) S+ 02U = U|| B:(0,2) 82+ 2|U]|

2
”

< 2rKn® | ————=dr < 7K (In(s®+4n%) —Ins?).

< 27 n/052+7727”2r < 7K (In(s? 4+ 4n°) — Ins?)

Clearly, the right hand side of the previous inequality strongly tends to zero in L?(0) when 7 tends
to zero, so I tends to zero in L?(0). In the same way, we prove the same result for I3.

10



Since w € C1(O), we can bound I by the same arguments:

L L

1

|17 (s,U)| < Kn? / / dU'ds' < 2nK / In((s")? + 4n?) — In(s")?) ds’.
! o Jeyo1) (8=8)+n?|U-U|? 0 ( )

The right hand side of the previous estimate does not depend on (s,U) and tends to zero when 7
tends to zero, so I} tends to zero uniformly on €, and it strongly tends to zero in L?().

Now, we split I} in 2 parts: I}] = 12,1 + 12,2 with:

27 ! =
n _ S e?” — \Iln(s 7e7“(0)) / / l
I, = 47r/ / |\IJ V(5,6 0))° A(s',0)G, (s, 0)ds'do,
2 e — cosf) +b( )Ep(s)(v — sin 6)
Mo (u — cos Als , "
7 47T/ / I\I/ S N T (,0)Gy(s', 0)ds'df
By Lemma 4.1, we have:
27 L / / 21 / /
—s'|dfds s’ dfds
il Y S PR ) TN T E 42U — & 0]
g s’ 2 2 2 2
< 4dnK / ds'dd < 2mn (In(L + Ul -1)%)—1n Ul -1
1| eE T 3 (L + (U] = 1)) = P (U] - 1)%))

< 2mnln(L 4+ 2) — 4anlnn — 4onln(l — [|U]).
When 7 tends to zero, the right hand side term tends to zero in L?(O) so IZI tends to zero strongly
in L?(0).
For the last term, by Taylor expansion, we write I'(s’) — I'(s) = (s’ — s)A(s,s’) where A(s,s’) =
fol ["(s + 7(s’ —s)) dr so that A € C1([0, L]?;R?). In addition, we denote by x(s) the 3 x 2 matrix

such that x(s)(u,v) = a(s)€a(s)u + b(s)ép(s)v.
Using change of variable s’ = s + 77||U — €,(0)|| in the integral in s’, we obtain:

s o) 2 s er<9>\| U.6.7) dr do.
Len =3 [ [T T K ven

A=,
where

6000~ TV =S ONS)U ~ & (0D A +n7IU — &,(8),6)Gy(s + |l — &,(0)].6)
T 0, (s + 9]0 = &,(0)],8,(6)) — ¥ (5, U

U & (0)[x(s)(U — &-(0))A(s + n7|U — &.(6)[,0)Gy(s +07|U — &:(0)].0)
|70 = & (0)[A(s, s + Tn|U = &-(6)]) + x(s + mn|U — &(0)])(&-(8)) — x(s)(V)]’

Hence, using Lemma 4.1, and since A and G,, are uniformly bounded, then there exists a constant
M independent of n, s, U, 6, and 7 such that :

U - é&,.(0) M 1
K, (s,U,0,7)] < M U~ &(6)] _ < -
(7202 lU = &, (O)2 + n2lU — &, (8)2)? IU—&WM@+T%§
Therefore, when 7 tends to zero, for a fixed (s,U, 0, 7), K,(s,
Koo, r) e XU & (0D A0
(IU =& (0)*m2 + [x(s)(U — &:(6))?)
since A(s,s) = I(s) is orthogonal to the range of x(s).

(4.4)

(s ,T) tends to

Go(S, 0),

(MY
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With Estimate (4.4), we obtain by the Lebesgue dominated convergence theorem that for all (s, U),
I 5(s,U) tends to

o _ L [T X)W - & 0)As0)
D(s,U) = 47r/ /KosUaT)dee 27T/ NAIATAGIE Go(s, 0)do

In addition, using Estimate (4.4) we obtain that for all , and for all (s,U) € O,

1M

Using that U = re, such that (¢,7) € [0,27] x B(0,1) and by changing the variable v = 6 — ¢ we

obtain ) ) _—
" M T M ™ M
o |U—&(9) o =€l < fr—e?]

v

Since the function v — r — e is 2w-periodic, we get:

27
d9 = / df.
/0 |U_eT \/ —cosf)? +sin? 0

In order to show the right hand of (4.5) is in L?(O), we have the following Lemma.
Lemma 4.2. There exists a constant C > 0, such that for all (0,7) € [0,27] x B(0,1), we have

(r —cos0)? +sin?0 > C((r — 1) + 6?).

Proof of Lemma 4.2 Denoting by g(#,7) = (r — cos#)? + sin? §, note that

9(0,1) =0, Vg(0,1)=0 and Hessg(0,1) = (g g) .

Then by Taylor expansion in the neighbourhood of (0, 1), so that for all (6,r) € B((0,1),v)

1
g(6,r) = / (0,7 — 1)"Hess g((0,1) + (6,7 — 1))(0,7 — 1)(1 — t)dt.
0
Since the Hess g(0, 1) is strictely positive, there exists C7 > 0, such that
g(0,7) > C1(02 + (r — 1)?).
9(6,7)

@+ (-~ 1P)
B((0,1),v) is compact, so there exists Cy such that

We remark that the function is continuous and positive, furthermore [0, 27| x B(0,1)—

9(0,7)
— > (!
@2+ (r—1)2) =
taking C' = min{C1, C2}, we conclude the proof of our Lemma. O
Now, using the above Lemma, we obtain:
2m 2m
M
/ ————df < —df
o =60 =) Jo_1rie
. : 4 .
Using the change of variable u = ﬁ, yields:
r—
2w 2r

1 [
a—1| —_—du < du+/|a71| lalu.
0 1 u

/%¢r;1+m /‘ ﬂ??
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Then, we conclude that

2m

M 2m

—————df < M(1 +log(———)) € L*(O).
/0 U —&(0)] r =1

Furthermore |}/ ,| strongly tends to D(s,U) in L*(O).

We denote X = ua(s)+ivb(s). We remark that cosf = 1(2+1) and sinf = L (z— 1), with z = ¢®.

So D(s,U) can be written as an integral of a meromorphic function F' on the circle C(0, 1) of center

0 and radius 1: )

2 c(0,1)

(a(s)wa(s) + ib(s)ws(s)) 22 + a(s)wa(s) + iws(s)b(s) .
z ((b(s) —a(s))z?2+2Xz — (a(s) + b(s)))

In [9], using complex analysis arguments, Jizzini proves the following proposition:

D(s,U)

with

F(z)=

Proposition 4.2. The meromorphic function F has only one pole z = 0 and its residue is given by:

b(s)wz(s) + iws(s)a(s)
—(a(s) +b(s))
For the convenience of the reader, we reproduce here the proof of the proposition (see [9]).

Proof of Proposition 4.2. Let us suppose that z # 0 is a pole of F inside C(0,1) which means z
verifies the following equation

Resp (0) =

(b(s) —a(s))z? +2Xz — (a(s) + b(s)) = 0. (4.6)

b
Denoting d(s) = ——, we can rewrite (4.6) as follows:

a(s)

(6(s) — 1)z + @ —(6(s) + 1)% =

Since X is inside the ellipse E(a(s),d(s)a(s)), there exists Ao(s) € [0,1] and Oy(s) €] — 7, «[ such
that

0. (4.7)

X
a(s)

Thus the equation (4.7) is equivalent to the following equation

= Ao cosBy(s) +irgd(s)sinby(s).

(5(s) — 1)z + Mozo(1 — 6(s)) + 2—2(1 +o(s)) — (1 + 5(s))§ ~0, (4.8)

where zp = €% . By simple calculation we obtain that

1 /\0 - (5(5) -1
PR 5(5)—1—1(2 A020)-

6—1
Furthermore since z is a pole in By(0,1) and |m| < 1, we obtain

1

A
|* — £| < |Z — )\OZO|.
z 20

So, we get
[T = Aos| < [c = Aol

where ¢ = i, which means
20
1= [g* < X1 = [s]).
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Hence, we conclude that A\g > 1 which is a contradiction. Thus F' has one simple pole z = 0 and by
direct application of the residue Theorem, we conclude the proof of Proposition 4.2. ([l

Finally we conclude that:

1 L b
2w /(2(0,1) F(2)d a(s) + b(s)

This ends the proof of Proposition4.1.

7 [2]

D(s,U)
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