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Introduction

Ferromagnetic nanowires have promising potential applications in data storage devices (see [START_REF] Parkin | Magnetic domain-wall racetrack memory[END_REF]) and magnetic logic gates (see [START_REF] Allwood | Magnetic domain-wall logic[END_REF]). The wires used in these fields have complex shapes, with bends, notches or junctions. The study of domain wall formation and dynamics in such wires with complex geometry is crucial for applications (see [START_REF] Allwood | Magnetic domain-wall logic[END_REF][START_REF] Parkin | Magnetic domain-wall racetrack memory[END_REF][START_REF] Pylypovskyi | Rashba torque driven domain wall motion in magnetic helices[END_REF][START_REF] Sheka | Torsion-induced effects in magnetic nanowires[END_REF][START_REF] Silevitch | Room temperature domain wall pinning in bent ferromagnetic nanowires[END_REF][START_REF] Tanase | Magnetotransport properties of bent ferromagnetic nanowires[END_REF][START_REF] Yershov | Curvature and torsion effects in spin-current driven domain wall motion[END_REF]). In this paper, we justify by asymptotic process a time-dependent one-dimensional model for a twisted, bent nanowire of variable cross-section. Our model takes into account the current effects. Several works address the justification of 1d models for ferromagnetic nanowires (see [START_REF] Carbou | Stabilization of walls for nano-wires of finite length[END_REF], [START_REF] Slastikov | Reduced models for ferromagnetic nanowires[END_REF], [START_REF] Chacouche | Ferromagnetic of nanowires of infinite length and infinite thin films[END_REF]), however they consider a constant shaped cross-section or a cross-section oriented by the normal and binormal vectors of the curve modeling the wire central line. In this work we are able to consider here narrowing zones (arising in wires with notches) and twist shaped wires.

First, recall the 3d model for ferromagnetic materials (see [START_REF] Brown | Micromagnetics[END_REF][START_REF] Landau | Electrodynamique des milieux continus[END_REF]). We consider a ferromagnetic body occupying the volume Ω ⊂ R 3 . We denote by M(t, x) the magnetization distribution at the time t and at the point x ∈ Ω. At low temperature, the material satisfies the saturation constraint:

|M(t, x)| = M s , (1.1) 
where M s is independent of t and x. The variations of M satisfy the following Landau-Lifschitz-Gilbert equation:

∂M ∂t - α M s M × ∂M ∂t = -γM × H eff -( u • ∇)M, (1.2) 
where × is the cross product in R 3 , γ is the gyromagnetic constant, α is the damping coefficient.

The effective field H eff is given by:

H eff = A µ 0 M 2 s ∆M + H d (M) + H a , (1.3) 
where A is the exchange constant, µ 0 is the permeability of the vacuum, H a is the applied magnetic field and H d (M) is the demagnetizing field that deduced from M by the operator H d given by: curl H d (M) = 0 and div(H d (M) + M) = 0, (1.4) where M(t, x) = M(t, x) for x ∈ Ω and zero outside Ω.
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The right-hand-side transport term in (1.2) describes the current effects: the velocity u is given by u = p g µ B 2eM s J, (1.5) where J is the current density, p, g, µ B and e are respectively the current polarization, the Landé factor, the Bohr Magneton and the electron charge (see [START_REF] Boulle | Current-induced domain wall motion in nanoscale ferromagnetic elements[END_REF] and [START_REF] Thiaville | Micromagnetic understanding of currentdriven domain wall motion in patterned nanowires[END_REF]).

Writing M(t, x) = M s m(γM s t , x), H a (t, x) = M s h a (γM s t, x), and u(t, x) = γM s v(γM s t, x), we obtain the rescaled model:

   ∂ t m -αm × ∂ t m = -m × h eff -( v • ∇)m, h eff = 2 ∆m + H d (m) + h a . (1.6)
where the dimensionless time is t = γM s t and

2 = A µ 0 M 2 s .
We consider a curved ferromagnetic wire with non constant elliptical cross-section. We introduce s → Γ(s), the arc-length parametrization of the wire central line. We assume that for all s, the crosssection is an ellipse whose axis are directed by e a (s) and e b (s), where for all s, (Γ (s), e a (s), e b (s)) forms a direct orthonormal basis of R 3 . We denote by ηa(s) and ηb(s) the associated semi-axis, where η is a small dimensionless parameter. Therefore, the wire is parametrized by:

x = Ψ η (s, u, v) := Γ(s) + η u a(s) e a (s) + vb(s) e b (s) , (1.7) 
where (s, u, v) ∈ O := [0, L] × B 2 (0, 1). We denote by B 2 (0, 1) the unit ball of R 2 centered at 0 and radius 1 and by Ω η = Ψ η (O) the domain occupied by the ferromagnetic wire presented in figure 1. Several Works study physically the effect of the geometrical form of the ferromagnetic wires on the magnetic moment behavior [START_REF] Yershov | Curvature-induced domain wall pinning[END_REF][START_REF] Sheka | Torsion-induced effects in magnetic nanowires[END_REF][START_REF] Gaididei | Magnetization in narrow ribbons: curvature effects[END_REF]. They study the effect of several geometrical aspects on the domain wall propagation. Respectively, they study the effect of the curvature, the torsion and the turning of the ribbon around its central wire on the domain wall propagation. All of these geometrical aspects are a particular cases of our geometry.

The existence of a global in time weak solution for (1.2) in Ω η is established in [START_REF] Alouges | On global weak solutions for landau-lifshitz equations: Existence and nonuniqueness[END_REF] and [START_REF] Bonithon | Landau-Lifschitz-Gilbert equation with applied electric current[END_REF]:

Proposition 1.1. We fix η > 0. Let m η 0 ∈ H 1 (Ω η ; R 3 ) satisfying |m η 0 | = 1 a.e. Let h a,η ∈ C 0 b (R + ; L 2 (Ω η )) and v η ∈ C 0 b (R + ; L ∞ (Ω η )). There exists m η : R + × Ω η -→ R 3 satisfying the saturation constraint |m η (t, x)| = 1 a.e. such that -for all T ≥ 0, m η ∈ L ∞ (0, T ; H 1 (Ω η )) and ∂m η ∂t ∈ L 2 ([0, T ] × Ω η ), -m η (0, •) = m η 0 (•) in the trace sense, -For all Φ ∈ C ∞ c (R + ; H 1 (Ω η ; R 3 )), R + ×Ωη ∂m η ∂t -αm η × ∂m η ∂t • Φdt dx = R + ×Ωη 3 i=1 2 m η × ∂m η ∂x i ∂Φ ∂x i dt dx - R + ×Ωη (H d (m η ) + h a,η ) • Φ dt dx - R + ×Ωη ( v η • ∇)m η • Φ dt dx, (1.8) 
-for almost every t ≥ 0,

E η (m η )(t) + α 2 t 0 Ωη | ∂m η ∂t | 2 dt dx ≤ G η (t) 1 + V η (t) exp t 0 V η (t)(s)ds (1.9)
where

E η (m η ) = 2 2 Ωη |∇m η | 2 dx + 1 2 R 3 |H d (m η )| 2 dx, with G η (t) = E(m η 0 ) + t 0 h a,η (τ ) 2 L 2 (Ωη) dτ and V η (t)(t) = 2 α 2 t 0 v η (τ ) 2 L ∞ (Ωη) dτ.
We aim to obtain an asymptotic one-dimensional model for the wire when the parameter η tends to zero. By specifying the applied field and the electric current. We fix

h a ∈ C 0 (R + ; L 2 ([0, L]; R 3 )) and j ∈ C 0 (R + ; L ∞ ([0, L])).
We assume that the applied field is constant in the cross-section and that the current is constant in the cross-section and oriented in the direction of the wire, i.e.

   h a,η (t, Ψ η (s, u, v)) = h a (t, s), v η (t, Ψ η (s, u, v)) = j(t, s)Γ (s).
(1.10)

Then, we obtain the following theorem:

Theorem 1.1. Let h a,η ∈ C 0 b (R + ; L 2 (Ω η )), v η ∈ C 0 b (R + ; L ∞ (Ω η
)) defined by (1.10). Let m 0 ∈ H 1 ([0, L]; S 2 ). For η > 0, we define the initial data m η 0 ∈ H 1 (Ω η ; S 2 ) by: m η 0 (Ψ η (s, u, v)) = m 0 (s). We introduce the weak solution m η of (1.2) given by Proposition 1.1 with initial data m η 0 . We define

m η : R + × O -→ S 2 by m η (t, s, u, v) = m η (t, Ψ η (s, u, v)).
Then when η tends to zero, there exists a subsequence still denoted by m η such that m η m in L ∞ (0, T ; H 1 (O)) weak *. In addition, m does not depend on u and v and satisfies:

-|m(t, s)| = 1 a.e., ∂ s m ∈ L ∞ ([0, T ]; L 2 ([0, L])) and ∂ t m ∈ L 2 ([0, T ] × [0, L]) for all T , -m(0, s) = m 0 (s) in the trace sense, -for all φ ∈ C ∞ c (R + ; H 1 ([0, L])), R + ×[0,L] σ ∂m ∂t -αm × ∂m ∂t • φ dt ds = R + ×[0,L] σ 2 (m × ∂m ∂s ) • ∂φ ∂s dt ds - R + ×[0,L] σ (H d (m) + h a ) • Ψ dt ds - R + ×[0,L] σj∂ s m • Φ dt ds,
where σ(s) = πa(s)b(s) and where the resulting demagnetizing field H d (m) is given by:

H d (m) = - b a + b (m • e a ) e a - a a + b (m • e b ) e b . (1.11) Remark 1.2.
From the physical point of view u is proportional to the density current J (see (1.5)), it is natural to assume that the flux of v η through the cross-section is constant along the wire. For the asymptotic model, the corresponding assumption is that s → σ(s)j(s) is constant along the wire.

Our one dimensional model is equivalent to smooth solutions of the model:

∂m ∂t -αm × ∂m ∂t = -m × 2 ∂ 2 m ∂s 2 + 2 σ σ ∂m ∂s + H d (m) + h a -j∂ s m. (1.
12)

The localization of the demagnetizing field in (1.11) has been already observed in [START_REF] Carbou | Stabilization of walls for nano-wires of finite length[END_REF] and [START_REF] Slastikov | Reduced models for ferromagnetic nanowires[END_REF].

It can be more convenient to describe m in the mobile frame (Γ (s), e a (s), e b (s)). For this purpose, we introduce r 1 , r 2 , r 3 in C 0 ([0, L]) such that:

                 Γ (s) = r 3 (s) e a (s) -r 2 (s) e b (s), d e a ds (s) = -r 3 (s)Γ (s) + r 1 (s) e b (s), d e b ds (s) = r 2 (s)Γ (s) -r 1 (s) e a (s). (1.13) We denote by R(s) =   r 1 (s) r 2 (s) r 3 (s))   and by m =   m 1 m 2 m 3 
 the coordinates of m in the mobile frame:

m(t, s) = m 1 (t, s)Γ (s) + m 2 (t, s) e a (s) + m 3 (t, s) e b (s).
We have |m| = 1 for all t and s, and m satisfies (1.12) if and only if m satisfies:

∂m ∂t -αm × ∂m ∂t = -m × H(m) -j(∂ s m + R × m), with 
H(m) = 2 ∂ 2 m ∂s 2 + 2 2 R × ∂m ∂s + 2 dR ds × m + 2 R × (R × m) + 2 σ σ ∂m ∂s + R × m - b a + b m 2 - a a + b m 3 + h a ,
where h a are the coordinates of h a in the mobile frame.

The paper is organized as follows. First, we achieve uniform bounds for m η by writing the energy formula (1.9) using the new variables (s, u, v) in Section 2. Second, we take the limit of the formulation verified by m η as η tends to zero in Section 3. To achieve this, we utilize the uniform bounds achieved in the preceding section and rewrite the weak formulation 1.8 in the new variables. Finally, the limit of the demagnetizing field is characterized in Section 4.

Uniform Estimates for the Rescaled Formulation

In this section, we aim to obtain uniform bounds for m η , by rewriting the energy formula (1.9) in the variables (t, s, u, v).

We compute the differential of Ψ η : O -→ Ω η given by (1.7) with respect to its variables and using (1.13), we obtain that:

∂Ψ η ∂s = (1 -η (ua(s)r 1 -vb(s)r 2 )) Γ (s) + η (ua (s) -vb(s)r 3 ) e a + η (ua(s)r 3 + vb (s)) e b =: Γ (s)(1 + ηg 1 ) + ηg 2 e a + ηg 3 e b , (2.1) 
where

g 1 (s, u, v) = -ua(s)r 1 (s) -vb(s)r 2 (s), g 2 (s, u, v) = ua (s) -vb(s)r 3 (s), g 3 (s, u, v) = vb (s) + ua(s)r 3 (s).
Furthermore, we have

∂Ψ ∂u = ηa(s) e a and ∂Ψ ∂v = ηb(s) e b .
Thus, we obtain:

∂Ψ η ∂s = Γ (s)(1 + ηg 1 ) + g 2 a(s) ∂Ψ η ∂u + g 3 b(s) ∂Ψ η ∂v . (2.2)
Then,

Γ (s) = 1 1 + ηg 1 ∂Ψ η ∂s - g 2 a ∂Ψ η ∂u - g 3 b ∂Ψ η ∂v , e a = 1 ηa ∂Ψ η ∂u and e b = 1 ηb ∂Ψ η ∂v . (2.
3)

The Jacobian determinant of Ψ η is given by:

J(s, u, v) = η 2 (1 + ηg 1 (s, u, v))a(s)b(s),
so that by changing the variable formula, for f : Ω η -→ R or R 3 , we have:

Ωη f (x) dx = η 2 O a(s)b(s)f (Ψ η (s, u, v)) (1 + ηg 1 (s, u, v)) ds du dv. (2.4) 
In order to estimate ∇m η 2 L 2 (Ω η ) , we remark that whatever the orthonormal frame ( ξ 1 , ξ 2 , ξ 3 ),

|∇m η (x)| 2 = 3 i=1 |dm η (x)(ξ i )| 2 .
With the orthonormal frame (Γ (s), e a (s), e b (s)), we obtain that

|∇m η (Ψ η (s, u, v))| 2 = |dm η (Ψ η (s, u, v))(Γ (s))| 2 + |dm η (Ψ η (s, u, v))( e a (s))| 2 +|dm η (Ψ η (s, u, v))( e b (s))| 2 .
Since m η = m η • Ψ η , then using the chain rule, and (2.3), we obtain that:

dm η (Ψ η (s, u, v))(Γ (s)) = 1 1 + ηg 1 ∂m η ∂s - g 2 a ∂m η ∂u - g 3 b ∂m η ∂v , dm η (Ψ η (s, u, v))( e a ) = 1 ηa ∂m η ∂u , dm η (Ψ η (s, u, v))( e b ) = 1 ηb ∂m η ∂v .
Thus, we have by (2.4) :

Ωη |∇m η | 2 dx = η 2 O ab 1 + ηg 1 ∂m η ∂s - g 2 a ∂m η ∂u - g 3 b ∂m η ∂v 2 ds du dv + O ab(1 + ηg 1 ) 1 a 2 ∂m η ∂u 2 + 1 b 2
∂m η ∂v 2 ds du dv.

(2.5)

In particular, m η 0 does not depend on the transverse variables, so there exists a constant C 1 such that for all η > 0,

E η (m η 0 ) ≤ C 1 η 2 . (2.6)
By properties of the applied field h a,η , we have for all t:

h a,η (t) 2 L 2 (Ωη) = η 2 [0,L] πab 1 + ηg 1 |h a (t, s)| 2 ds.
So, using (2.6), there exists C 2 such that for all η,

G η (t) ≤ C 2 η 2 1 + t 0 h a (τ, •) 2 L 2 ([0,L]) dτ . (2.7)
In addition, the current induced velocity v η (t) is uniformly bounded by j(t, •) L ∞ ([0,L]) . So there exists a constant C 3 such that for all t,

V η (t) ≤ C 3 t 0 j(τ, •) 2 L ∞ ([0,L]) dτ := ν(t). (2.8) 
We define G as:

G(t) = C 1 + C 2 t 0 h a (τ, •) L 2 ([0,L]) dτ (1 + ν(t) exp ν(t)) .
Therefore, using (2.7) and (2.8), we obtain by the energy formula that for all t > 0 and for all η > 0,

2 2 ∇m η (t, •) 2 L 2 (Ωη) + α 2 t 0 ∂m η ∂t (τ, •) 2 L 2 (Ωη) dτ ≤ η 2 G(t).
Also, with (2.5) we get that for all T there exists a constant C(T ) such that for all η > 0,

∂m η ∂u 2 L ∞ (0,T ;L 2 (O)) + ∂m η ∂v 2 L ∞ (0,T ;L 2 (O)) ≤ C(T )η 2 , ∂m η ∂s -g 2 ∂m η ∂u -g 3 ∂m η ∂v 2 L ∞ (0,T ;L 2 (O)) + ∂m η ∂t 2 L 2 ([0,T ]×O)
≤ C(T ).

(2.9)

Concerning the demagnetizing field, for a given w : O -→ R 3 , we define w : Ω η -→ R 3 by w • Ψ η = w, and we define h η (w) : O -→ R 3 by:

H d (w) • Ψ η = h η (w). (2.10)
Since -H d is an orthogonal projection for the L 2 (R 3 ) inner product,then we have for all w ∈ L 2 (O):

H d (w) 2 L 2 (Ωη) ≤ H d (w) 2 L 2 (R 3 ) ≤ w 2 L 2 (Ωη) , (2.11) 
so in the rescaled variables, we obtain that there exists a constant K such that for all w and all η > 0:

h η (w) 2 L 2 (O) ≤ K w 2 L 2 (O) .
(2.12)

In addition, if w ∈ L ∞ (O) takes its values in the unit sphere, then there exists a constant K independent of w such that for all η,

h η (w) 2 L 2 (O) ≤ K . (2.13)
In particular, denoting by H η (t, •) = h η (m η (t, •)), from the previous estimates, we obtain that for all η > 0,

H η L ∞ (R + ;L 2 (O)) ≤ K . (2.14)
Therefore, using Estimates (2.9) and (2.14), there exists a subsequence that we also denote by m η such that for all T ,

1. m η m in L ∞ (0, T ; H 1 (O)) weak *, 2. ∂m η ∂u -→ 0 and ∂m η ∂u -→ 0 in L ∞ (0, T ; L 2 (O))), 3. ∂m η ∂t ∂m ∂t weak in L 2 ([0, T ] × O), 4. H η H in L ∞ (0, T ; L 2 (O)) weak *.
By using the Aubin Simon Lemma, we conclude that m η strongly tends to m in L ∞ (0, T ; L p (O)) for p ∈ [2, 6[ and by extracting a subsequence, we can assume that m η -→ m almost everywhere.

In particular, we obtain that |m| = 1 a.e. on R + × O.

Limit in the weak formulation

In this section, we aim to obtain the limit in the weak formulation by rewriting the formulation (1.8) in the new variables (s, u, v) and taking the limit when η tends to zero. On the one hand, since the current v η is given by (1.10), we have

((v η • ∇)m η )(Ψ η (s, u, v)) = j(t, s)dm η (Ψ η (s, u, v))(Γ (s)).
On the other hand, we remark that for all orthonormal frame ( ξ 1 , ξ 2 , ξ 3 ), we have:

3 i=1 m η (x) × ∂m η ∂x i (x) • ∂Φ ∂x i (x) = 3 i=1 m η (x) × dm η (x)( ξ i ) • dΦ(x)( ξ i ).
We take ξ 1 = Γ (s), ξ 2 = e a (s), ξ 3 = e b (s), and Φ of the form Φ(t, Ψ η (s, u, v)) = φ(t, s). Since φ depends only on s, we have:

∂φ ∂u = dΦ(t, Ψ η (s, u, v))( ∂Ψ η ∂u (s, u, v)) = ηadΦ(t, Ψ η (s, u, v))( e a ) = 0, ∂φ ∂v = dΦ(t, Ψ η (s, u, v))( ∂Ψ η ∂v (s, u, v)) = ηbdΦ(t, Ψ η (s, u, v))( e b ) = 0.
Thus, we obtain:

dΦ(t, Ψ η (s, u, v))( e a ) = dΦ(t, Ψ η (s, u, v))( e b ) = 0. (3.1)
Next, differentiating φ with respect to s and by (2.1) and (3.1), we obtain:

∂φ ∂s (t, s) = dΦ(t, Ψ η (s, u, v)( Ψ η ∂s ) = (1 + ηg 1 ) dΦ(t, Ψ η (s, u, v))(Γ (s)).
Hence, we conclude that:

3 i=1 m η (x) × dm η (x)( ξ i ) • dΦ(x)( ξ i ) = (m η (x) × dm η (x)(Γ (s))) • dΦ(x)(Γ (s)) = 1 1 + ηg 1 m η (x) × ∂m η ∂s - g 2 a ∂m η ∂u - g 2 b ∂m η ∂u ∂φ ∂s .
Then, we can write the weak formulation as follows:

R + ×O a(s)b(s)(1 + ηg 1 (s, u, v)) ∂m η ∂t -αm η × ∂m η ∂t • φ(t, s) = R + ×O 2 a(s)b(s) m η × ∂m η ∂s - g 2 a ∂m η ∂u - g 3 b ∂m η ∂v ∂φ ∂s - R + ×O a(s)b(s)(1 + ηg 1 (s, u, v))m η × (H η + h a ) • φ(t, s) - R + ×O a(s)b(s)j(t, s) ∂m η ∂s - g 2 a ∂m η ∂u - g 3 b ∂m η ∂v • φ(t, s)
Taking the limit when η tends to zero and using that

• m η tends to m strongly in L ∞ (0, T ; L 2 (O)),
• ∂m η ∂s and H η tend respectively to ∂m ∂s and H in L ∞ (0, T ; L 2 (O)) weak *,

• ∂m η ∂t tends weakly to ∂m ∂t in L 2 (0, T ; L 2 (O)),
• ∂m η ∂u and ∂m η ∂v tend to zero strongly in L ∞ (0, T ; L 2 (O)),

• m does not depend on the transverse variables u and v, we obtain the following formulation:

R + ×[0,L] σ ∂m ∂t -αm × ∂m ∂t • φ dt ds = R + ×[0,L] 2 σ m × ∂m ∂s • ∂φ ∂s dt ds - R + ×[0,L] σm × (H + h a ) • φ dt ds - R + ×[0,L] σj ∂m ∂s • φ dt ds.
where σ(s) = πa(s)b(s) is the rescaled area of the section. It remains to characterize the limit H of the rescaled demagnetizing field.

Limit for the Demagnetizing Field

Recall that we denoted by H η the demagnetizing field induced by m η written in the variables (s,

U ) ∈ [0, L] × B 2 (0, 1): H η (t, s, U ) = H d (m η (t, •))(Ψ η (s, U )). We introduce H η = h η (m(t, •)).
From (2.12), for all η > 0:

H η -H η L 2 (O) ≤ K m η -m L 2 (O) .
So in order to describe the limit of H η , we will study the limit of H η when η tends to zero. We claim the following Proposition.

Proposition 4.1. Let w ∈ C 1 (O; R 3 ). We assume that w is independent of the (u, v) variables, so that w(s, u, v) = w 1 (s)Γ (s) + w 2 (s) e a (s) + w 3 (s) e b (s). Then when η tends to zero, h η (w) tends strongly in L 2 (O) to H d (w) given by

H d (w) = - b(s) a(s) + b(s) (w • e a ) e a - a(s) a(s) + b(s) (w • e b ) e b .
Since m does not depend on the transverse variables, using the density of C 1 ([0, L]) in L 2 ([0, L]), and (2.12), we obtain through Proposition 4.1 that H η tends to H d (m) strongly in L 2 (Ω), and we conclude the proof of Theorem 1.1. So it remains to establish Proposition 4.1.

Proof of Proposition 4.1: we define

w η : Ω η -→ R 3 by w η • Ψ η = w. Recall that h η (w) is given by h η (w) = H d (w η ) • Ψ η .
Since curl H d (w η ) = 0, we can write H d (w η ) = -∇φ with ∆φ = div w η , where w η is the extension of w η by zero outside Ω η . From the last equation, we have φ = -G * div w η

where

G(x) = 1 4π|x| ∈ L 1 loc (R 3
) is the fundamental solution for the operator -∆ in R 3 . Therefore we have:

H d (w η )(x) = - 1 4π Ωη x -y |x -y| 3 div w η (y)dy + 1 4π ∂Ωη x -y |x -y| 3 w η (y)|ν(y) dσ(y), (4.1) 
where ν(y) is the outward unit normal on ∂Ω η . Writting w(s, u, v) = w 1 (s)Γ (s) + w 2 (s) e a (s) + w 3 (s) e b (s), then, by (2.3) we have:

w(s, u, v) =w 1 1 1 + ηg 1 ∂Ψ η ∂s - g 2 a ∂Ψ η ∂u - g 3 b ∂Ψ η ∂v + w 2 1 ηa ∂Ψ η ∂u + w 3 1 ηb ∂Ψ η ∂v =: ∂Ψ η ∂s γ 1 + ∂Ψ η ∂u γ 2 + ∂Ψ η ∂v γ 3 .
Now, we compute Gram's matrix given by: 

G(s, u, v) =      
      =       (1 + ηg 1 ) 2 + η 2 (g 2 + g 3 ) 2 η 2 ag 2 η 2 bg 3 η 2 ag 2 η 2 a 2 0 η 2 bg 3 0 η 2 b 2       , so that det G = η 4 a 2 b 2 (1 + ηg 1 ) 2 . Since w(s, u, v) = ∂Ψ η ∂s γ 1 + ∂Ψ η ∂u γ 2 + ∂Ψ η ∂v γ 3 , then div w η (Ψ η (s, u, v)) = 1 √ det G ∂ ∂s (γ 1 √ det G) + ∂ ∂u (γ 2 √ det G) + ∂ ∂v (γ 3 √ det G) .
By direct substitution, we can see that

div w η (Ψ η (s, u, v)) = 1 η 2 ab(1 + g 1 ) ∂ ∂s w 1 1 + ηg 1 η 2 ab(1 + ηg 1 ) + ∂ ∂u w 2 ηa - g 2 w 1 a(1 + g 1 ) η 2 ab(1 + ηg 1 ) + ∂ ∂v w 2 ηa - g 2 w 1 a(1 + g 1 ) η 2 ab(1 + ηg 1 ) = 1 ab(1 + ηg 1 ) ∂(w 1 ab) ∂s -w 1 (ba + ab ) -r 1 abw 2 -r 2 abw 3 .
So, we obtain that:

div w η (Ψ η (s, U )) = 1 1 + ηg 1 (s, U ) ∂w 1 ∂s (s) -r 1 (s)w 2 (s) -r 2 (s)w 3 (s) . We split ∂Ω η as Ψ η ({0} × B 2 (0, 1)) ∪ Ψ η ({L} × B 2 (0, 1)) ∪ Ψ η ([0, L] × ∂B 2 (0, 1)) := Γ 1 ∪ Γ 2 ∪ Γ 3 . So,
we can rewrite (4.1) in the variables (s, u, v) as follows:

H d (w η )(Ψ(s, U )) = H η (s, U ) = I η 1 (s, U ) + I η 2 (s, U ) + I η 3 (s, U ) + I η 4 (s, U )
, where

• I η 1 = - η 2 4π O Ψ η (s, U ) -Ψ η (s , U ) |Ψ η (s, U ) -Ψ η (s , U )| 3 ∂w 1 ∂s (s ) -r 1 (s )w 2 (s ) -r 2 (s )w 3 (s ) σ(s )ds dU • I η 2 = - η 2 4π B2(0,1) Ψ η (s, U ) -Ψ η (0, U ) |Ψ η (s, U ) -Ψ η (0, U )| 3 σ(0)w 1 (0)dU , • I η 3 = η 2 4π B2(0,1) Ψ η (s, U ) -Ψ η (L, U ) |Ψ η (s, U ) -Ψ η (L, U )| 3 σ(L)w 1 (L)dU , • I η 4 = η 4π L 0 2π 0 Ψ η (s, U ) -Ψ η (s , e r (θ)) |Ψ η (s, U ) -Ψ η (s , e r (θ))| 3 A(s , θ)G η (s , θ)ds dθ, with e r (θ) = (cos θ, sin θ), A(s , θ) = b(s )w 2 (s ) cos θ + a(s )w 3 (s ) sin θ (b 2 (s ) cos 2 θ + a 2 (s ) sin 2 θ) 1 2 
,

and G η (s , θ) = α 1 (s , θ)α 2 (s , θ) -(α 3 (s , θ)) 2 1 2 .
Lemma 4.1. There exists C > 0 and η 0 > 0 such that for all η ≤ η 0 , s, s ∈ [0, L] and U, U ∈ B 2 (0, 1) we have

Ψ η (s, U ) -Ψ η (s , U ) R 3 ≥ C(|s -s | 2 + η 2 U -U 2 ) 1 2 .
Proof of Lemma 4.1. Assume that this Lemma is false. Then for all n ≥ 0, there exists

η n ≤ 1 n , s n , s n ∈ [0, L] and U n , U n ∈ B 2 (0, 1) such that Ψ ηn (s n , U n ) -Ψ h (s n , U n ) < 1 n (|s n -s n | 2 + (η n ) 2 U n -U n 2 ) 1 2 , (4.2) 
which implies that X(s n ) -X(s n ) tends to zero. By extracting a subsequence we can assume that s n and s n tend respectively to s ∞ and s ∞ . Since X(s n ) -X(s n ) -→ 0, then X(s ∞ ) = X(s ∞ ), which implies that s ∞ = s ∞ . Therefore (s n , η n U n ) n , (s n , η n U n ) n tends to (s ∞ , 0). Next we define Ψ : (s, U ) → Γ(s) + ua(s) e a (s) + vb(s) e b (s). So, by the local inversion theorem, there exists ν > 0 such that Ψ is a C 1 -diffeomorphism from [s ∞ -ν, s ∞ + ν] × B 2 (0, ν) into its range V. Even if it means reducing ν, we can assume that Ψ -1 is Lipschitz on V:

∃ C, ∀(x, y) ∈ V × V, Ψ -1 (x) -Ψ -1 (y) ≤ C x -y . (4.3) 
For n large enough, (s n , η n U n ) and (s n , η n U n ) are in [s ∞ -ν, s ∞ + ν] × B 2 (0, ν), so by applying (4.3) for x = Ψ ηn (s n , U n ) and y = Ψ ηn (s n , U n ), we obtain that

|s n -s n | 2 + (η n ) 2 U n -U n 2 1 2 ≤ C Ψ ηn (s n , U n ) -Ψ h (s n , U n )
which together with (4.2) implies that 1 < C 1 n for n large enough, which is a contradiction. This concludes the proof of Lemma 4.1.

We first prove that I η 2 and I η 3 tend to zero in L 2 (O) when η tends to zero. By Lemma 4.1,

|I η 2 (s, U )| ≤ Kη 2 B2(0,1) 1 s 2 + η 2 U -U 2 dU ≤ Kη 2 B2(0,2) 1 s 2 + η 2 U 2 dU ≤ 2πKη 2 2 0 r s 2 + η 2 r 2 dr ≤ πK ln(s 2 + 4η 2 ) -ln s 2 .
Clearly, the right hand side of the previous inequality strongly tends to zero in L 2 (O) when η tends to zero, so I η 2 tends to zero in L 2 (O). In the same way, we prove the same result for I η 3 .

Since w ∈ C 1 (O), we can bound I η 1 by the same arguments:

|I η 1 (s, U )| ≤ Kη 2 L 0 B2(0,1) 1 (s -s ) 2 + η 2 U -U 2 dU ds ≤ 2πK L 0 ln((s ) 2 + 4η 2 ) -ln(s ) 2 ds .
The right hand side of the previous estimate does not depend on (s, U ) and tends to zero when η tends to zero, so I η 1 tends to zero uniformly on Ω, and it strongly tends to zero in L 2 (Ω). Now, we split I η 4 in 2 parts: I η 4 = I η 4,1 + I η 4,2 with:

I η 4,1 = η 4π 2π 0 L 0 Ψ η (s, e r (θ)) -Ψ η (s , e r (θ)) |Ψ η (s, U ) -Ψ η (s , e r (θ))| 3 A(s , θ)G η (s , θ)ds dθ, I η 4,2 = η 2 4π 2π 0 L 0 a(s) e a (s)(u -cos θ) + b(s) e b (s)(v -sin θ) |Ψ η (s, U ) -Ψ η (s , e r (θ))| 3 A(s , θ)G η (s , θ)ds dθ.
By Lemma 4.1, we have:

|I η 4,1 | ≤ Kη 2π 0 L 0 |s -s |dθds (s -s ) 2 + η 2 U -e r (θ) 2 ≤ 2Kη 2π 0 L 0 s dθds (s ) 2 + η 2 U -e r (θ) 2 ≤ 4πKη L 0 s (s ) 2 + η 2 ( U -1) 2 ds dθ ≤ 2πη ln(L + η 2 ( U -1) 2 ) -ln η 2 ( U -1) 2 ) ≤ 2πη ln(L + 2) -4πη ln η -4πη ln(1 -U ).
When η tends to zero, the right hand side term tends to zero in L 2 (O) so I η 4,1 tends to zero strongly in L 2 (O).

For the last term, by Taylor expansion, we write Γ(s ) -Γ(s) = (s -s)Λ(s, s ) where Λ(s, s ) = 1 0 Γ (s + τ (s -s)) dτ so that Λ ∈ C 1 ([0, L] 2 ; R 3 ). In addition, we denote by χ(s) the 3 × 2 matrix such that χ(s)(u, v) = a(s) e a (s)u + b(s) e b (s)v. Using change of variable s = s + τ η U -e r (θ) in the integral in s , we obtain:

I η 4,2 (s, U ) = 1 4π 2π 0 L-s η||U -er (θ)|| -s η U -er (θ) K η (s, U, θ, τ ) dτ dθ, where K η (s, U, θ, τ ) = η 3 |U -e r (θ)|χ(s)(U -e r (θ))A(s + ητ |U -e r (θ)|, θ)G η (s + ητ |U -e r (θ)|, θ) |Ψ η (s + τ η|U -e r (θ)|, e r (θ)) -Ψ η (s, U )| 3 = |U -e r (θ)|χ(s)(U -e r (θ))A(s + ητ |U -e r (θ)|, θ)G η (s + ητ |U -e r (θ)|, θ) τ |U -e r (θ)|Λ(s, s + τ η|U -e r (θ)|) + χ(s + τ η|U -e r (θ)|)( e r (θ)) -χ(s)(U ) 3 .
Hence, using Lemma 4.1, and since A and G η are uniformly bounded, then there exists a constant M independent of η, s, U , θ, and τ such that :

|K η (s, U, θ, τ )| ≤ M η 3 |U -e r (θ)| 2 (|τ 2 η 2 |U -e r (θ)| 2 + η 2 |U -e r (θ)| 2 ) 3 2 ≤ M |U -e r (θ)| 1 (1 + τ 2 ) 3 2 . ( 4.4) 
Therefore, when η tends to zero, for a fixed (s, U, θ, τ ), K η (s, U, θ, τ ) tends to Since the function v → r -e iv is 2π-periodic, we get: In order to show the right hand of (4.5) is in L 2 (O), we have the following Lemma.

K 0 (s, U, θ, τ ) := χ(s)(U -e r (θ))A(s, θ) (|U -e r (θ)| 2 τ 2 + |χ(s)(U -e r (θ))| 2 )
Lemma 4.2. There exists a constant C > 0, such that for all (θ, r) ∈ [0, 2π] × B(0, 1), we have (r -cos θ) 2 + sin 2 θ ≥ C((r -1) 2 + θ 2 ).

Proof of Lemma 4.2 Denoting by g(θ, r) = (r -cos θ) 2 + sin 2 θ, note that g(0, 1) = 0, ∇g(0, 1) = 0 and Hess g(0, 1) = 2 0 0 2 .

Then by Taylor expansion in the neighbourhood of (0, 1), so that for all (θ, r) ∈ B((0, 1), ν) g(θ, r) = 1 0 (θ, r -1) T Hess g((0, 1) + t(θ, r -1))(θ, r -1)(1 -t)dt.

Since the Hess g(0, 1) is strictely positive, there exists C 1 > 0, such that g(θ, r) ≥ C 1 (θ 2 + (r -1) 2 ).

We remark that the function g(θ, r) (θ 2 + (r -1) 2 ) is continuous and positive, furthermore [0, 2π]×B(0, 1)-B((0, 1), ν) is compact, so there exists C 2 such that g(θ, r) (θ 2 + (r -1) 2 ) ≥ C 2 taking C = min{C 1 , C 2 }, we conclude the proof of our Lemma. Now, using the above Lemma, we obtain: Hence, we conclude that λ 0 > 1 which is a contradiction. Thus F has one simple pole z = 0 and by direct application of the residue Theorem, we conclude the proof of Proposition 4.2.

Finally we conclude that: This ends the proof of Proposition 4.1.
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 325 0 (s, θ), since Λ(s, s) = Γ (s) is orthogonal to the range of χ(s).With Estimate (4.4), we obtain by the Lebesgue dominated convergence theorem that for all (s, U ), )(U -e r (θ))A(s, θ) |χ(s)(U -e r (θ))| 2 G 0 (s, θ)dθ.In addition, using Estimate (4.4) we obtain that for all η, and for all (s, U )Using that U = re iζ , such that (ζ, r) ∈ [0, 2π] × B(0, 1) and by changing the variable v = θ -ζ we obtain

  cos θ) 2 + sin 2 θ dθ.

1 (r - 1 ) 2 + θ 2

 1122 Using the change of variable u = θ |r -1| , yields: 2π 0

  (s, U ) = 1 2iπ C(0,1) F (z)dz = -b(s) a(s) + b(s) w 2 (s) -a(s) a(s) + b(s) w 3 (s).

Then, we conclude that )) ∈ L 2 (O).

Furthermore |I η 4,2 | strongly tends to D(s, U ) in L 2 (O). We denote X = ua(s) + ivb(s). We remark that cos θ = 1 2 (z + 1 z ) and sin θ = 1 2i (z -1 z ), with z = e iθ . So D(s, U ) can be written as an integral of a meromorphic function F on the circle C(0, 1) of center 0 and radius 1:

F (z)dz, with

.

In [START_REF] Jizzini | Etude mathématique d'un modèle de fil ferromagnétique en présence d'un courant électrique[END_REF], using complex analysis arguments, Jizzini proves the following proposition:

Proposition 4.2. The meromorphic function F has only one pole z = 0 and its residue is given by:

For the convenience of the reader, we reproduce here the proof of the proposition (see [START_REF] Jizzini | Etude mathématique d'un modèle de fil ferromagnétique en présence d'un courant électrique[END_REF]).

Proof of Proposition 4.2. Let us suppose that z = 0 is a pole of F inside C(0, 1) which means z verifies the following equation

, we can rewrite (4.6) as follows:

Since X is inside the ellipse E(a(s), δ(s)a(s)), there exists λ 0 (s) ∈ [0, 1[ and θ 0 (s) ∈] -π, π[ such that X a(s) = λ 0 cos θ 0 (s) + iλ 0 δ(s) sin θ 0 (s).

Thus the equation (4.7) is equivalent to the following equation

where z 0 = e iθ0 . By simple calculation we obtain that