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64013 PAU CEDEX, FRANCE
2 Univ. Grenoble Alpes, CNRS, Grenoble INP*, LJK, 38000 Grenoble, France

* Institute of Engineering Univ. Grenoble Alpes
email:abdel-kader.al-sayed@univ-grenoble-alpes.fr, gilles.carbou@univ-pau.fr,

stephane.labbe@univ-grenoble-alpes.fr

Abstract: In this paper, we derive a one-dimensional asymptotic model for the dynamics of
the magnetic moment in a twisted ferromagnetic nanowire with arbitrary elliptical cross-section,
curvature and torsion.

Keywords: ferromagnetism, Landau-Lifschitz equation, nanowire, asymptotic process.

MSC: 35K55, 35Q60

1 Introduction

Ferromagnetic nanowires have promising potential applications in data storage devices (see [11])
and magnetic logic gates (see [1]). The wires used in these fields have complex shapes, with bends,
notches or junctions. The study of domain wall formation and dynamics in such wires with complex
geometry is crucial for applications (see [1, 11, 12, 13, 14, 16, 19]).
In this paper, we justify by asymptotic process a time-dependent one-dimensional model for a
twisted, bent nanowire of variable cross-section. Our model takes into account the current effects.
Several works address the justification of 1d models for ferromagnetic nanowires (see [6], [15], [7]),
however they consider a constant shaped cross-section or a cross-section oriented by the normal and
binormal vectors of the curve modeling the wire central line. In this work we are able to consider
here narrowing zones (arising in wires with notches) and twist shaped wires.

First, recall the 3d model for ferromagnetic materials (see [5, 10]). We consider a ferromagnetic
body occupying the volume Ω ⊂ R3. We denote by M(t,x) the magnetization distribution at the
time t and at the point x ∈ Ω. At low temperature, the material satisfies the saturation constraint:

|M(t,x)| = Ms, (1.1)

where Ms is independent of t and x. The variations of M satisfy the following Landau-Lifschitz-
Gilbert equation:

∂M

∂t
− α

Ms
M× ∂M

∂t
= −γM×Heff − (~u · ∇)M, (1.2)

where × is the cross product in R3, γ is the gyromagnetic constant, α is the damping coefficient.
The effective field Heff is given by:

Heff =
A

µ0M2
s

∆M + Hd(M) +Ha, (1.3)

where A is the exchange constant, µ0 is the permeability of the vacuum, Ha is the applied magnetic
field and Hd(M) is the demagnetizing field that deduced from M by the operator Hd given by:

curlHd(M) = 0 and div(Hd(M) + M̄) = 0, (1.4)

where M̄(t,x) = M(t,x) for x ∈ Ω and zero outside Ω.
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The right-hand-side transport term in (1.2) describes the current effects: the velocity ~u is given by

~u =
p g µB
2eMs

~J, (1.5)

where ~J is the current density, p, g, µB and e are respectively the current polarization, the Landé
factor, the Bohr Magneton and the electron charge (see [4] and [17]).

Writing M(t,x) = Msm(γMst ,x), Ha(t,x) = Msha(γMst,x), and ~u(t,x) = γMs~v(γMst,x), we
obtain the rescaled model:

∂tm− αm× ∂tm = −m× heff − (~v · ∇)m,

heff = `2∆m + Hd(m) + ha.
(1.6)

where the dimensionless time is t = γMst and `2 =
A

µ0M2
s

.

We consider a curved ferromagnetic wire with non constant elliptical cross-section. We introduce
s 7→ Γ(s), the arc-length parametrization of the wire central line. We assume that for all s, the cross-
section is an ellipse whose axis are directed by ~ea(s) and ~eb(s), where for all s, (Γ′(s),~ea(s),~eb(s))
forms a direct orthonormal basis of R3. We denote by ηa(s) and ηb(s) the associated semi-axis,
where η is a small dimensionless parameter. Therefore, the wire is parametrized by:

x = Ψη(s, u, v) := Γ(s) + η
(
ua(s)~ea(s) + vb(s)~eb(s)

)
, (1.7)

where (s, u, v) ∈ O := [0, L]×B2(0, 1). We denote by B2(0, 1) the unit ball of R2 centered at 0 and
radius 1 and by Ωη = Ψη(O) the domain occupied by the ferromagnetic wire presented in figure 1.

Figure 1: Ferromagnetic domain

We assume that Γ ∈ C2([0, L]), ~ea and ~eb are in C1([0, L]). We assume also that a and b are C1 on
[0, L] and bounded by below by a non negative constant.

Several Works study physically the effect of the geometrical form of the ferromagnetic wires on
the magnetic moment behavior [18, 13, 8]. They study the effect of several geometrical aspects on
the domain wall propagation. Respectively, they study the effect of the curvature, the torsion and
the turning of the ribbon around its central wire on the domain wall propagation. All of these
geometrical aspects are a particular cases of our geometry.

The existence of a global in time weak solution for (1.2) in Ωη is established in [2] and [3]:

Proposition 1.1. We fix η > 0. Let mη
0 ∈ H1(Ωη;R3) satisfying |mη

0 | = 1 a.e. Let ha,η ∈
C0
b (R+;L2(Ωη)) and ~vη ∈ C0

b (R+;L∞(Ωη)). There exists mη : R+ × Ωη −→ R3 satisfying the
saturation constraint |mη(t,x)| = 1 a.e. such that

– for all T ≥ 0, mη ∈ L∞(0, T ;H1(Ωη)) and
∂mη

∂t
∈ L2([0, T ]× Ωη),
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– mη(0, ·) = mη
0(·) in the trace sense,

– For all Φ ∈ C∞c (R+;H1(Ωη;R3)),∫
R+×Ωη

(
∂mη

∂t
− αmη × ∂mη

∂t

)
· Φdt dx =

∫
R+×Ωη

3∑
i=1

`2
(
mη × ∂mη

∂xi

)
∂Φ

∂xi
dt dx

−
∫
R+×Ωη

(Hd(m
η) + ha,η) · Φ dt dx−

∫
R+×Ωη

(~vη · ∇)mη · Φ dt dx,

(1.8)

– for almost every t ≥ 0,

Eη(mη)(t) +
α

2

∫ t

0

∫
Ωη

|∂m
η

∂t
|2dt dx ≤ Gη(t)

(
1 + Vη(t) exp

∫ t

0

Vη(t)(s)ds

)
(1.9)

where

Eη(mη) =
`2

2

∫
Ωη

|∇mη|2dx +
1

2

∫
R3

|Hd(m
η)|2dx,

with

Gη(t) = E(mη
0) +

∫ t

0

‖ha,η(τ)‖2L2(Ωη)dτ and Vη(t)(t) =
2

α`2

∫ t

0

‖~vη(τ)‖2L∞(Ωη)dτ.

We aim to obtain an asymptotic one-dimensional model for the wire when the parameter η tends
to zero. By specifying the applied field and the electric current. We fix ha ∈ C0(R+;L2([0, L];R3))
and j ∈ C0(R+;L∞([0, L])). We assume that the applied field is constant in the cross-section and
that the current is constant in the cross-section and oriented in the direction of the wire, i.e. ha,η(t,Ψη(s, u, v)) = ha(t, s),

~vη(t,Ψη(s, u, v)) = j(t, s)Γ′(s).
(1.10)

Then, we obtain the following theorem:

Theorem 1.1. Let ha,η ∈ C0
b (R+;L2(Ωη)), ~vη ∈ C0

b (R+;L∞(Ωη)) defined by (1.10). Let m0 ∈
H1([0, L];S2). For η > 0, we define the initial data mη

0 ∈ H1(Ωη;S2) by: mη
0(Ψη(s, u, v)) = m0(s).

We introduce the weak solution mη of (1.2) given by Proposition 1.1 with initial data mη
0. We define

mη : R+ ×O −→ S2 by
mη(t, s, u, v) = mη(t,Ψη(s, u, v)).

Then when η tends to zero, there exists a subsequence still denoted by mη such that mη ⇀ m in
L∞(0, T ;H1(O)) weak *. In addition, m does not depend on u and v and satisfies:

– |m(t, s)| = 1 a.e., ∂sm ∈ L∞([0, T ];L2([0, L])) and ∂tm ∈ L2([0, T ]× [0, L]) for all T ,

– m(0, s) = m0(s) in the trace sense,

– for all φ ∈ C∞c (R+;H1([0, L])),∫
R+×[0,L]

σ

(
∂m

∂t
− αm× ∂m

∂t

)
· φdt ds =

∫
R+×[0,L]

σ`2(m× ∂m

∂s
) · ∂φ
∂s

dt ds

−
∫
R+×[0,L]

σ (Hd(m) + ha) ·Ψ dt ds−
∫
R+×[0,L]

σj∂sm · Φ dt ds,

where σ(s) = πa(s)b(s) and where the resulting demagnetizing field Hd(m) is given by:

Hd(m) = − b

a + b
(m · ~ea)~ea −

a

a + b
(m · ~eb)~eb. (1.11)
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Remark 1.2. From the physical point of view ~u is proportional to the density current J (see (1.5)),
it is natural to assume that the flux of ~vη through the cross-section is constant along the wire. For
the asymptotic model, the corresponding assumption is that s 7→ σ(s)j(s) is constant along the wire.

Our one dimensional model is equivalent to smooth solutions of the model:

∂m

∂t
− αm× ∂m

∂t
= −m×

(
`2
∂2m

∂s2
+ `2

σ′

σ

∂m

∂s
+Hd(m) + ha

)
− j∂sm. (1.12)

The localization of the demagnetizing field in (1.11) has been already observed in [6] and [15].
It can be more convenient to describe m in the mobile frame (Γ′(s),~ea(s),~eb(s)). For this purpose,
we introduce r1, r2, r3 in C0([0, L]) such that:

Γ′′(s) = r3(s) ~ea(s)− r2(s) ~eb(s),

d ~ea
ds

(s) = −r3(s)Γ′(s) + r1(s) ~eb(s),

d ~eb
ds

(s) = r2(s)Γ′(s)− r1(s) ~ea(s).

(1.13)

We denote by R(s) =

 r1(s)
r2(s)
r3(s))

 and by m =

m1

m2

m3

 the coordinates of m in the mobile frame:

m(t, s) = m1(t, s)Γ′(s) + m2(t, s)~ea(s) + m3(t, s)~eb(s).

We have |m| = 1 for all t and s, and m satisfies (1.12) if and only if m satisfies:

∂m

∂t
− αm× ∂m

∂t
= −m×H(m)− j(∂sm +R×m),

with

H(m) = `2
∂2m

∂s2
+ 2`2R× ∂m

∂s
+ `2

dR

ds
×m + `2R× (R×m) + `2

σ′

σ

(
∂m

∂s
+R×m

)

− b

a + b
m2 −

a

a + b
m3 + ha,

where ha are the coordinates of ha in the mobile frame.

The paper is organized as follows. First, we achieve uniform bounds for mη by writing the energy
formula (1.9) using the new variables (s, u, v) in Section 2. Second, we take the limit of the formu-
lation verified by mη as η tends to zero in Section 3. To achieve this, we utilize the uniform bounds
achieved in the preceding section and rewrite the weak formulation 1.8 in the new variables. Finally,
the limit of the demagnetizing field is characterized in Section 4.

2 Uniform Estimates for the Rescaled Formulation

In this section, we aim to obtain uniform bounds for mη, by rewriting the energy formula (1.9) in
the variables (t, s, u, v).
We compute the differential of Ψη : O −→ Ωη given by (1.7) with respect to its variables and using
(1.13), we obtain that:

∂Ψη

∂s
= (1− η (ua(s)r1 − vb(s)r2)) Γ′(s) + η (ua′(s)− vb(s)r3)~ea + η (ua(s)r3 + vb′(s))~eb

=: Γ′(s)(1 + ηg1) + ηg2~ea + ηg3~eb,
(2.1)
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where
g1(s, u, v) = −ua(s)r1(s)− vb(s)r2(s),

g2(s, u, v) = ua′(s)− vb(s)r3(s),

g3(s, u, v) = vb′(s) + ua(s)r3(s).

Furthermore, we have

∂Ψ

∂u
= ηa(s)~ea and

∂Ψ

∂v
= ηb(s)~eb.

Thus, we obtain:
∂Ψη

∂s
= Γ′(s)(1 + ηg1) +

g2

a(s)

∂Ψη

∂u
+

g3

b(s)

∂Ψη

∂v
. (2.2)

Then,

Γ′(s) =
1

1 + ηg1

(
∂Ψη

∂s
− g2

a

∂Ψη

∂u
− g3

b

∂Ψη

∂v

)
, ~ea =

1

ηa

∂Ψη

∂u
and ~eb =

1

ηb

∂Ψη

∂v
. (2.3)

The Jacobian determinant of Ψη is given by:

J(s, u, v) = η2(1 + ηg1(s, u, v))a(s)b(s),

so that by changing the variable formula, for f : Ωη −→ R or R3, we have:∫
Ωη

f(x) dx = η2

∫
O
a(s)b(s)f(Ψη(s, u, v)) (1 + ηg1(s, u, v)) ds du dv. (2.4)

In order to estimate ‖∇mη‖2L2(Ωη), we remark that whatever the orthonormal frame (~ξ1, ~ξ2, ~ξ3),

|∇mη(x)|2 =

3∑
i=1

|dmη(x)(ξi)|2.

With the orthonormal frame (Γ′(s),~ea(s),~eb(s)), we obtain that

|∇mη(Ψη(s, u, v))|2 = |dmη(Ψη(s, u, v))(Γ′(s))|2 + |dmη(Ψη(s, u, v))(~ea(s))|2

+|dmη(Ψη(s, u, v))(~eb(s))|2.

Since mη = mη ◦Ψη, then using the chain rule, and (2.3), we obtain that:

dmη(Ψη(s, u, v))(Γ′(s)) =
1

1 + ηg1

(
∂mη

∂s
− g2

a

∂mη

∂u
− g3

b

∂mη

∂v

)
,

dmη(Ψη(s, u, v))( ~ea) =
1

ηa

∂mη

∂u
,

dmη(Ψη(s, u, v))( ~eb) =
1

ηb

∂mη

∂v
.

Thus, we have by (2.4) :∫
Ωη

|∇mη|2dx = η2

∫
O

ab

1 + ηg1

∣∣∣∣∂mη

∂s
− g2

a

∂mη

∂u
− g3

b

∂mη

∂v

∣∣∣∣2 ds du dv
+

∫
O
ab(1 + ηg1)

(
1

a2

∣∣∣∣∂mη

∂u

∣∣∣∣2 +
1

b2

∣∣∣∣∂mη

∂v

∣∣∣∣2
)
ds du dv.

(2.5)
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In particular, mη
0 does not depend on the transverse variables, so there exists a constant C1 such

that for all η > 0,

Eη(mη
0) ≤ C1η

2. (2.6)

By properties of the applied field ha,η, we have for all t:

‖ha,η(t)‖2L2(Ωη) = η2

∫
[0,L]

πab

1 + ηg1
|ha(t, s)|2ds.

So, using (2.6), there exists C2 such that for all η,

Gη(t) ≤ C2η
2

(
1 +

∫ t

0

‖ha(τ, ·)‖2L2([0,L])dτ

)
. (2.7)

In addition, the current induced velocity ~vη(t) is uniformly bounded by ‖j(t, ·)‖L∞([0,L]). So there
exists a constant C3 such that for all t,

Vη(t) ≤ C3

∫ t

0

‖j(τ, ·)‖2L∞([0,L])dτ := ν(t). (2.8)

We define G as:

G(t) =

(
C1 + C2

∫ t

0

‖ha(τ, ·)‖L2([0,L])dτ

)
(1 + ν(t) exp ν(t)) .

Therefore, using (2.7) and (2.8), we obtain by the energy formula that for all t > 0 and for all η > 0,

`2

2
‖∇mη(t, ·)‖2L2(Ωη) +

α

2

∫ t

0

∥∥∥∥∂mη

∂t
(τ, ·)

∥∥∥∥2

L2(Ωη)

dτ ≤ η2G(t).

Also, with (2.5) we get that for all T there exists a constant C(T ) such that for all η > 0,∥∥∥∥∂mη

∂u

∥∥∥∥2

L∞(0,T ;L2(O))

+

∥∥∥∥∂mη

∂v

∥∥∥∥2

L∞(0,T ;L2(O))

≤ C(T )η2,

∥∥∥∥∂mη

∂s
− g2

∂mη

∂u
− g3

∂mη

∂v

∥∥∥∥2

L∞(0,T ;L2(O))

+

∥∥∥∥∂mη

∂t

∥∥∥∥2

L2([0,T ]×O)

≤ C(T ).

(2.9)

Concerning the demagnetizing field, for a given w : O −→ R3, we define w : Ωη −→ R3 by
w ◦Ψη = w, and we define hη(w) : O −→ R3 by:

Hd(w) ◦Ψη = hη(w). (2.10)

Since −Hd is an orthogonal projection for the L2(R3) inner product,then we have for all w ∈ L2(O):

‖Hd(w)‖2L2(Ωη) ≤ ‖Hd(w)‖2L2(R3) ≤ ‖w‖
2
L2(Ωη), (2.11)

so in the rescaled variables, we obtain that there exists a constant K such that for all w and all
η > 0:

‖hη(w)‖2L2(O) ≤ K‖w‖
2
L2(O). (2.12)

In addition, if w ∈ L∞(O) takes its values in the unit sphere, then there exists a constant K ′

independent of w such that for all η,

‖hη(w)‖2L2(O) ≤ K
′. (2.13)

In particular, denoting by Hη(t, ·) = hη(mη(t, ·)), from the previous estimates, we obtain that for
all η > 0,

‖Hη‖L∞(R+;L2(O)) ≤ K ′. (2.14)

Therefore, using Estimates (2.9) and (2.14), there exists a subsequence that we also denote by mη

such that for all T ,
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1. mη ⇀m in L∞(0, T ;H1(O)) weak *,

2.
∂mη

∂u
−→ 0 and

∂mη

∂u
−→ 0 in L∞(0, T ;L2(O))),

3.
∂mη

∂t
⇀

∂m

∂t
weak in L2([0, T ]×O),

4. Hη ⇀ H in L∞(0, T ;L2(O)) weak *.

By using the Aubin Simon Lemma, we conclude that mη strongly tends to m in L∞(0, T ;Lp(O))
for p ∈ [2, 6[ and by extracting a subsequence, we can assume that mη −→ m almost everywhere.
In particular, we obtain that |m| = 1 a.e. on R+ ×O.

3 Limit in the weak formulation

In this section, we aim to obtain the limit in the weak formulation by rewriting the formulation (1.8)
in the new variables (s, u, v) and taking the limit when η tends to zero. On the one hand, since the
current ~vη is given by (1.10), we have

((vη · ∇)mη)(Ψη(s, u, v)) = j(t, s)dmη(Ψη(s, u, v))(Γ′(s)).

On the other hand, we remark that for all orthonormal frame (~ξ1, ~ξ2, ~ξ3), we have:

3∑
i=1

(
mη(x)× ∂mη

∂xi
(x)

)
· ∂Φ

∂xi
(x) =

3∑
i=1

(
mη(x)× dmη(x)(~ξi)

)
· dΦ(x)(~ξi).

We take ~ξ1 = Γ′(s), ~ξ2 = ~ea(s), ~ξ3 = ~eb(s), and Φ of the form Φ(t,Ψη(s, u, v)) = φ(t, s).
Since φ depends only on s, we have:

∂φ

∂u
= dΦ(t,Ψη(s, u, v))(

∂Ψη

∂u
(s, u, v)) = ηadΦ(t,Ψη(s, u, v))( ~ea) = 0,

∂φ

∂v
= dΦ(t,Ψη(s, u, v))(

∂Ψη

∂v
(s, u, v)) = ηbdΦ(t,Ψη(s, u, v))( ~eb) = 0.

Thus, we obtain:
dΦ(t,Ψη(s, u, v))( ~ea) = dΦ(t,Ψη(s, u, v))( ~eb) = 0. (3.1)

Next, differentiating φ with respect to s and by (2.1) and (3.1), we obtain:

∂φ

∂s
(t, s) = dΦ(t,Ψη(s, u, v)(

Ψη

∂s
) = (1 + ηg1) dΦ(t,Ψη(s, u, v))(Γ′(s)).

Hence, we conclude that:

3∑
i=1

(
mη(x)× dmη(x)(~ξi)

)
· dΦ(x)(~ξi) = (mη(x)× dmη(x)(Γ′(s))) · dΦ(x)(Γ′(s))

=
1

1 + ηg1

(
mη(x)×

(
∂mη

∂s
− g2

a

∂mη

∂u
− g2

b

∂mη

∂u

))
∂φ

∂s
.

Then, we can write the weak formulation as follows:
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∫
R+×O

a(s)b(s)(1 + ηg1(s, u, v))

(
∂mη

∂t
− αmη × ∂mη

∂t

)
· φ(t, s) =

∫
R+×O

`2a(s)b(s)

(
mη ×

(
∂mη

∂s
− g2

a

∂mη

∂u
− g3

b

∂mη

∂v

))
∂φ

∂s

−
∫
R+×O

a(s)b(s)(1 + ηg1(s, u, v))mη × (Hη + ha) · φ(t, s)

−
∫
R+×O

a(s)b(s)j(t, s)

(
∂mη

∂s
− g2

a

∂mη

∂u
− g3

b

∂mη

∂v

)
· φ(t, s)

Taking the limit when η tends to zero and using that

• mη tends to m strongly in L∞(0, T ;L2(O)),

• ∂mη

∂s
and Hη tend respectively to

∂m

∂s
and H in L∞(0, T ;L2(O)) weak *,

• ∂mη

∂t
tends weakly to

∂m

∂t
in L2(0, T ;L2(O)),

• ∂mη

∂u
and

∂mη

∂v
tend to zero strongly in L∞(0, T ;L2(O)),

• m does not depend on the transverse variables u and v,

we obtain the following formulation:∫
R+×[0,L]

σ

(
∂m

∂t
− αm× ∂m

∂t

)
· φdt ds =

∫
R+×[0,L]

`2σ

(
m× ∂m

∂s

)
· ∂φ
∂s

dt ds

−
∫
R+×[0,L]

σm× (H + ha) · φdt ds−
∫
R+×[0,L]

σj
∂m

∂s
· φdt ds.

where σ(s) = πa(s)b(s) is the rescaled area of the section. It remains to characterize the limit H of
the rescaled demagnetizing field.

4 Limit for the Demagnetizing Field

Recall that we denoted by Hη the demagnetizing field induced by mη written in the variables
(s, U) ∈ [0, L] × B2(0, 1): Hη(t, s, U) = Hd(m

η(t, ·))(Ψη(s, U)). We introduce Hη = hη(m(t, ·)).
From (2.12), for all η > 0:

‖Hη −Hη‖L2(O) ≤ K‖mη −m‖L2(O).

So in order to describe the limit of Hη, we will study the limit of Hη when η tends to zero. We
claim the following Proposition.

Proposition 4.1. Let w ∈ C1(O;R3). We assume that w is independent of the (u, v) variables,
so that w(s, u, v) = w1(s)Γ′(s) + w2(s)~ea(s) + w3(s)~eb(s). Then when η tends to zero, hη(w) tends
strongly in L2(O) to Hd(w) given by

Hd(w) = − b(s)

a(s) + b(s)
(w · ~ea)~ea −

a(s)

a(s) + b(s)
(w · ~eb)~eb.
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Since m does not depend on the transverse variables, using the density of C1([0, L]) in L2([0, L]),
and (2.12), we obtain through Proposition 4.1 that Hη tends to Hd(m) strongly in L2(Ω), and we
conclude the proof of Theorem 1.1. So it remains to establish Proposition 4.1.

Proof of Proposition 4.1: we define wη : Ωη −→ R3 by wη ◦Ψη = w. Recall that hη(w) is given
by hη(w) = Hd(wη) ◦Ψη. Since curlHd(wη) = 0, we can write Hd(wη) = −∇φ with ∆φ = divwη,
where wη is the extension of wη by zero outside Ωη. From the last equation, we have φ = −G∗divwη

where G(x) =
1

4π|x|
∈ L1

loc(R3) is the fundamental solution for the operator −∆ in R3. Therefore

we have:

Hd(wη)(x) = − 1

4π

∫
Ωη

x− y

|x− y|3
divwη(y)dy +

1

4π

∫
∂Ωη

x− y

|x− y|3
〈wη(y)|ν(y)〉dσ(y), (4.1)

where ν(y) is the outward unit normal on ∂Ωη.

Writting w(s, u, v) = w1(s)Γ′(s) + w2(s)~ea(s) + w3(s)~eb(s), then, by (2.3) we have:

w(s, u, v) =w1

(
1

1 + ηg1

(
∂Ψη

∂s
− g2

a

∂Ψη

∂u
− g3

b

∂Ψη

∂v

))
+ w2

(
1

ηa

∂Ψη

∂u

)
+ w3

(
1

ηb

∂Ψη

∂v

)
=:

∂Ψη

∂s
γ1 +

∂Ψη

∂u
γ2 +

∂Ψη

∂v
γ3.

Now, we compute Gram’s matrix given by:

G(s, u, v) =


〈∂Ψη
∂s |

∂Ψη
∂s 〉 〈

∂Ψη
∂s |

∂Ψη
∂u 〉 〈

∂Ψη
∂s |

∂Ψη
∂v 〉

〈∂Ψη
∂s |

∂Ψη
∂u 〉 〈

∂Ψη
∂u |

∂Ψη
∂u 〉 〈

∂Ψη
∂u |

∂Ψη
∂v 〉

〈∂Ψη
∂s |

∂Ψη
∂v 〉 〈

∂Ψη
∂u |

∂Ψη
∂v 〉 〈

∂Ψη
∂v |

∂Ψη
∂v 〉

 =


(1 + ηg1)2 + η2(g2 + g3)2 η2ag2 η2bg3

η2ag2 η2a2 0

η2bg3 0 η2b2

 ,

so that det G = η4a2b2(1 + ηg1)2.

Since w(s, u, v) =
∂Ψη

∂s
γ1 +

∂Ψη

∂u
γ2 +

∂Ψη

∂v
γ3, then

divwη(Ψη(s, u, v)) =
1√

detG

(
∂

∂s
(γ1

√
detG) +

∂

∂u
(γ2

√
detG) +

∂

∂v
(γ3

√
detG)

)
.

By direct substitution, we can see that

divwη(Ψη(s, u, v)) =
1

η2ab(1 + g1)

[
∂

∂s

(
w1

1 + ηg1
η2ab(1 + ηg1)

)
+

∂

∂u

((
w2

ηa
− g2w1

a(1 + g1)

)
η2ab(1 + ηg1)

)
+

∂

∂v

((
w2

ηa
− g2w1

a(1 + g1)

)
η2ab(1 + ηg1)

)]
=

1

ab(1 + ηg1)

(
∂(w1ab)

∂s
− w1(ba′ + ab′)− r1abw2 − r2abw3

)
.

So, we obtain that:

divwη(Ψη(s, U)) =
1

1 + ηg1(s, U)

(
∂w1

∂s
(s)− r1(s)w2(s)− r2(s)w3(s)

)
.

We split ∂Ωη as Ψη({0}×B2(0, 1))∪Ψη({L}×B2(0, 1))∪Ψη([0, L]×∂B2(0, 1)) := Γ1∪Γ2∪Γ3. So,
we can rewrite (4.1) in the variables (s, u, v) as follows:

Hd(wη)(Ψ(s, U)) = Hη(s, U) = Iη1 (s, U) + Iη2 (s, U) + Iη3 (s, U) + Iη4 (s, U),

where
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• Iη1 = − η
2

4π

∫
O

Ψη(s, U)−Ψη(s′, U ′)

|Ψη(s, U)−Ψη(s′, U ′)|3

(
∂w1

∂s
(s′)− r1(s′)w2(s′)− r2(s′)w3(s′)

)
σ(s′)ds′dU ′

• Iη2 = − η
2

4π

∫
B2(0,1)

Ψη(s, U)−Ψη(0, U ′)

|Ψη(s, U)−Ψη(0, U ′)|3
σ(0)w1(0)dU ′,

• Iη3 =
η2

4π

∫
B2(0,1)

Ψη(s, U)−Ψη(L,U ′)

|Ψη(s, U)−Ψη(L,U ′)|3
σ(L)w1(L)dU ′,

• Iη4 =
η

4π

∫ L

0

∫ 2π

0

Ψη(s, U)−Ψη(s′,~er(θ))

|Ψη(s, U)−Ψη(s′,~er(θ))|3
A(s′, θ)Gη(s′, θ)ds′dθ,

with

~er(θ) = (cos θ, sin θ), A(s′, θ) =
b(s′)w2(s′) cos θ + a(s′)w3(s′) sin θ

(b2(s′) cos2 θ + a2(s′) sin2 θ)
1
2

,

and Gη(s′, θ) =
(
α1(s′, θ)α2(s′, θ)− (α3(s′, θ))2

) 1
2 .

Lemma 4.1. There exists C > 0 and η0 > 0 such that for all η ≤ η0, s, s′ ∈ [0, L] and U,U ′ ∈
B2(0, 1) we have

‖Ψη(s, U)−Ψη(s′, U ′)‖R3 ≥ C(|s− s′|2 + η2‖U − U ′‖2)
1
2 .

Proof of Lemma 4.1. Assume that this Lemma is false. Then for all n ≥ 0, there exists ηn ≤ 1
n ,

sn, s
′
n ∈ [0, L] and Un, U

′
n ∈ B2(0, 1) such that

‖Ψηn(sn, Un)−Ψh(s′n, U
′
n)‖ < 1

n
(|sn − s′n|2 + (ηn)2‖Un − U ′n‖2)

1
2 , (4.2)

which implies that ‖X(sn)−X(s′n)‖ tends to zero. By extracting a subsequence we can assume that
sn and s′n tend respectively to s∞ and s′∞. Since ‖X(sn) −X(s′n)‖ −→ 0, then X(s∞) = X(s′∞),
which implies that s∞ = s′∞. Therefore (sn, ηnUn)n, (s′n, ηnU

′
n)n tends to (s∞, 0).

Next we define Ψ : (s, U) 7→ Γ(s) + ua(s)~ea(s) + vb(s)~eb(s). So, by the local inversion theorem,
there exists ν > 0 such that Ψ is a C1-diffeomorphism from [s∞− ν, s∞+ ν]×B2(0, ν) into its range
V. Even if it means reducing ν, we can assume that Ψ−1 is Lipschitz on V:

∃C, ∀(x,y) ∈ V × V, ‖Ψ−1(x)−Ψ−1(y)‖ ≤ C‖x− y‖. (4.3)

For n large enough, (sn, ηnUn) and (s′n, ηnU
′
n) are in [s∞−ν, s∞+ν]×B2(0, ν), so by applying (4.3)

for x = Ψηn(sn, Un) and y = Ψηn(s′n, U
′
n), we obtain that(

|sn − s′n|2 + (ηn)2‖Un − U ′n‖2
) 1

2 ≤ C‖Ψηn(sn, Un)−Ψh(s′n, U
′
n)‖

which together with (4.2) implies that 1 < C 1
n for n large enough, which is a contradiction. This

concludes the proof of Lemma 4.1.

We first prove that Iη2 and Iη3 tend to zero in L2(O) when η tends to zero. By Lemma 4.1,

|Iη2 (s, U)| ≤ Kη2

∫
B2(0,1)

1

s2 + η2‖U − U ′‖2
dU ′ ≤ Kη2

∫
B2(0,2)

1

s2 + η2‖U ′‖2
dU ′

≤ 2πKη2

∫ 2

0

r

s2 + η2r2
dr ≤ πK

(
ln(s2 + 4η2)− ln s2

)
.

Clearly, the right hand side of the previous inequality strongly tends to zero in L2(O) when η tends
to zero, so Iη2 tends to zero in L2(O). In the same way, we prove the same result for Iη3 .
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Since w ∈ C1(O), we can bound Iη1 by the same arguments:

|Iη1 (s, U)| ≤ Kη2

∫ L

0

∫
B2(0,1)

1

(s− s′)2 + η2‖U − U ′‖2
dU ′ds′ ≤ 2πK

∫ L

0

(
ln((s′)2 + 4η2)− ln(s′)2

)
ds′.

The right hand side of the previous estimate does not depend on (s, U) and tends to zero when η
tends to zero, so Iη1 tends to zero uniformly on Ω, and it strongly tends to zero in L2(Ω).

Now, we split Iη4 in 2 parts: Iη4 = Iη4,1 + Iη4,2 with:

Iη4,1 =
η

4π

∫ 2π

0

∫ L

0

Ψη(s,~er(θ))−Ψη(s′,~er(θ))

|Ψη(s, U)−Ψη(s′,~er(θ))|3
A(s′, θ)Gη(s′, θ)ds′dθ,

Iη4,2 =
η2

4π

∫ 2π

0

∫ L

0

a(s)~ea(s)(u− cos θ) + b(s)~eb(s)(v − sin θ)

|Ψη(s, U)−Ψη(s′,~er(θ))|3
A(s′, θ)Gη(s′, θ)ds′dθ.

By Lemma 4.1, we have:

|Iη4,1| ≤ Kη

∫ 2π

0

∫ L

0

|s− s′|dθds′

(s− s′)2 + η2‖U − ~er(θ)‖2
≤ 2Kη

∫ 2π

0

∫ L

0

s′ dθds′

(s′)2 + η2‖U − ~er(θ)‖2

≤ 4πKη

∫ L

0

s′

(s′)2 + η2(‖U‖ − 1)2
ds′dθ ≤ 2πη

(
ln(L+ η2(‖U‖ − 1)2)− ln η2(‖U‖ − 1)2

)
)

≤ 2πη ln(L+ 2)− 4πη ln η − 4πη ln(1− ‖U‖).

When η tends to zero, the right hand side term tends to zero in L2(O) so Iη4,1 tends to zero strongly

in L2(O).

For the last term, by Taylor expansion, we write Γ(s′) − Γ(s) = (s′ − s)Λ(s, s′) where Λ(s, s′) =∫ 1

0
Γ′(s + τ(s′ − s)) dτ so that Λ ∈ C1([0, L]2;R3). In addition, we denote by χ(s) the 3 × 2 matrix

such that χ(s)(u, v) = a(s)~ea(s)u+ b(s)~eb(s)v.
Using change of variable s′ = s + τη‖U − ~er(θ)‖ in the integral in s′, we obtain:

Iη4,2(s, U) =
1

4π

∫ 2π

0

∫ L−s
η||U−~er(θ)||

−s
η‖U−~er(θ)‖

Kη(s, U, θ, τ) dτ dθ,

where

Kη(s, U, θ, τ) =
η3|U − ~er(θ)|χ(s)(U − ~er(θ))A(s + ητ |U − ~er(θ)|, θ)Gη(s + ητ |U − ~er(θ)|, θ)

|Ψη(s + τη|U − ~er(θ)|,~er(θ))−Ψη(s, U)|3

=
|U − ~er(θ)|χ(s)(U − ~er(θ))A(s + ητ |U − ~er(θ)|, θ)Gη(s + ητ |U − ~er(θ)|, θ)∣∣τ |U − ~er(θ)|Λ(s, s + τη|U − ~er(θ)|) + χ(s + τη|U − ~er(θ)|)(~er(θ))− χ(s)(U)

∣∣3 .
Hence, using Lemma 4.1, and since A and Gη are uniformly bounded, then there exists a constant
M independent of η, s, U , θ, and τ such that :

|Kη(s, U, θ, τ)| ≤M η3|U − ~er(θ)|2

(|τ2η2|U − ~er(θ)|2 + η2|U − ~er(θ)|2)
3
2

≤ M

|U − ~er(θ)|
1

(1 + τ2)
3
2

. (4.4)

Therefore, when η tends to zero, for a fixed (s, U, θ, τ), Kη(s, U, θ, τ) tends to

K0(s, U, θ, τ) :=
χ(s)(U − ~er(θ))A(s, θ)

(|U − ~er(θ)|2τ2 + |χ(s)(U − ~er(θ))|2)
3
2

G0(s, θ),

since Λ(s, s) = Γ′(s) is orthogonal to the range of χ(s).
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With Estimate (4.4), we obtain by the Lebesgue dominated convergence theorem that for all (s, U),
Iη4,2(s, U) tends to

D(s, U) =
1

4π

∫ 2π

0

∫
R
K0(s, U, θ, τ)dτ dθ =

1

2π

∫ 2π

0

χ(s)(U − ~er(θ))A(s, θ)

|χ(s)(U − ~er(θ))|2
G0(s, θ)dθ.

In addition, using Estimate (4.4) we obtain that for all η, and for all (s, U) ∈ O,

|Iη4,2(s, U)| ≤ 1

2π

∫ 2π

0

M

|U − ~er(θ)|
dθ. (4.5)

Using that U = reiζ , such that (ζ, r) ∈ [0, 2π]× B(0, 1) and by changing the variable v = θ − ζ we
obtain ∫ 2π

0

M

|U − ~er(θ)|
dθ =

∫ 2π

0

M

|r − ei(θ−ζ)|
dθ =

∫ 2π−ζ

−ζ

M

|r − eiv|
dv.

Since the function v → r − eiv is 2π-periodic, we get:∫ 2π

0

M

|U − ~er(θ)|
dθ =

∫ 2π

0

M√
(r − cos θ)2 + sin2 θ

dθ.

In order to show the right hand of (4.5) is in L2(O), we have the following Lemma.

Lemma 4.2. There exists a constant C > 0, such that for all (θ, r) ∈ [0, 2π]×B(0, 1), we have

(r − cos θ)2 + sin2 θ ≥ C((r − 1)2 + θ2).

Proof of Lemma4.2 Denoting by g(θ, r) = (r − cos θ)2 + sin2 θ, note that

g(0, 1) = 0, ∇g(0, 1) = 0 and Hess g(0, 1) =

(
2 0
0 2

)
.

Then by Taylor expansion in the neighbourhood of (0, 1), so that for all (θ, r) ∈ B((0, 1), ν)

g(θ, r) =

∫ 1

0

(θ, r − 1)THess g((0, 1) + t(θ, r − 1))(θ, r − 1)(1− t)dt.

Since the Hess g(0, 1) is strictely positive, there exists C1 > 0, such that

g(θ, r) ≥ C1(θ2 + (r − 1)2).

We remark that the function
g(θ, r)

(θ2 + (r − 1)2)
is continuous and positive, furthermore [0, 2π]×B(0, 1)−

B((0, 1), ν) is compact, so there exists C2 such that

g(θ, r)

(θ2 + (r − 1)2)
≥ C2

taking C = min{C1, C2}, we conclude the proof of our Lemma.

Now, using the above Lemma, we obtain:∫ 2π

0

M

|U − ~er(θ)|
dθ ≤

∫ 2π

0

M√
(r − 1)2 + θ2

dθ.

Using the change of variable u =
θ

|r − 1|
, yields:

∫ 2π

0

1√
(r − 1)2 + θ2

dθ ≤
∫ 2π

|a− 1|
0

1√
1 + u2

du ≤
∫ 1

0

du+

∫ 2π

|a− 1|
1

1

u
du.
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Then, we conclude that ∫ 2π

0

M

|U − ~er(θ)|
dθ ≤M(1 + log(

2π

|r − 1|
)) ∈ L2(O).

Furthermore |Iη4,2| strongly tends to D(s, U) in L2(O).

We denote X = ua(s)+ ivb(s). We remark that cos θ = 1
2 (z+ 1

z ) and sin θ = 1
2i (z−

1
z ), with z = eiθ.

So D(s, U) can be written as an integral of a meromorphic function F on the circle C(0, 1) of center
0 and radius 1:

D(s, U) =
1

2iπ

∫
C(0,1)

F (z)dz,

with

F (z) =
(a(s)w2(s) + ib(s)w3(s)) z2 + a(s)w2(s) + iw3(s)b(s)

z
(
(b(s)− a(s))z2 + 2X̄z − (a(s) + b(s))

) .

In [9], using complex analysis arguments, Jizzini proves the following proposition:

Proposition 4.2. The meromorphic function F has only one pole z = 0 and its residue is given by:

ResF (0) =
b(s)w2(s) + iw3(s)a(s)

−(a(s) + b(s))
.

For the convenience of the reader, we reproduce here the proof of the proposition (see [9]).
Proof of Proposition 4.2. Let us suppose that z 6= 0 is a pole of F inside C(0, 1) which means z
verifies the following equation

(b(s)− a(s))z2 + 2X̄z − (a(s) + b(s)) = 0. (4.6)

Denoting δ(s) =
b(s)

a(s)
, we can rewrite (4.6) as follows:

(δ(s)− 1)z +
X̄

a(s)
− (δ(s) + 1)

1

z
= 0. (4.7)

Since X is inside the ellipse E(a(s), δ(s)a(s)), there exists λ0(s) ∈ [0, 1[ and θ0(s) ∈] − π, π[ such
that

X̄

a(s)
= λ0 cos θ0(s) + iλ0δ(s) sin θ0(s).

Thus the equation (4.7) is equivalent to the following equation

(δ(s)− 1)z + λ0z0(1− δ(s)) +
λ0

z0
(1 + δ(s))− (1 + δ(s))

1

z
= 0, (4.8)

where z0 = eiθ0 . By simple calculation we obtain that

1

z
− λ0

z0
=
δ(s)− 1

δ(s) + 1
(z − λ0z0).

Furthermore since z is a pole in B2(0, 1) and |δ − 1

δ + 1
| < 1, we obtain

|1
z
− λ0

z0
| < |z − λ0z0|.

So, we get
|1− λ0ς| < |ς − λ0|,

where ς =
z

z0
, which means

1− |ς|2 < λ0(1− |ς|2).
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Hence, we conclude that λ0 > 1 which is a contradiction. Thus F has one simple pole z = 0 and by
direct application of the residue Theorem, we conclude the proof of Proposition 4.2. �

Finally we conclude that:

D(s, U) =
1

2iπ

∫
C(0,1)

F (z)dz = − b(s)

a(s) + b(s)
w2(s)− a(s)

a(s) + b(s)
w3(s).

This ends the proof of Proposition 4.1.
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