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dimensional repeated data
To deal with repeated data

e [inear mixed effects models are highly recommended.

Extension of the EM-algorithm using PLS (EM-PLS)

e A classical parameter estimation method: Expectation- Maximization (EM) algorithm. At iteration [t + 1]:

e E-step: Compute the expectation of the complete data log-likelihood given the observed data
and a current value of the parameters 6!’

To deal with high-dimensional data

e Reduction dimension methods can be used to summarize the numerous predictors in form

e M-step:
of a small number of new components. P

— Define the pseudo-response variable z[tt1) = x gltl + 52t Tl=1(, — x plt)

e Classical approach : Principal Component Regression (PCR) 14+1]

— Perform PLS regression of the pseudo-response variable 2 onto X:

— Does not consider the link between the outcome and the independent variables.
e Alternative method: Partial Least Squares (PLS) B prstHl X g)

— Takes the link between the outcome and the independent variables into account. . . o
where « is the PLS component number obtained by cross-validation.

To solve the high dimensional issue in the repeated data context - Calculate new parameter values 7! and o*"*!) from Equations (2) and (3).

— Introduction of a PLS step into the EM-algorithm for linear mixed models to reduce the
high-dimensional data.

Extension of the EM-algorithm using PCR (EM-PCR)

Similarly, a PCR step is introduced into the EM-algorithm to reduce the high-dimensional data

e Idea: At each iteration, the outcome data is substituted in the input of PLS by a pseudo- to low-dimensional features.

variable response whose expected value has a linear relationship with the covariates.

II. The linear mixed etfects model IV. A simulation study

Definition of the linear mixed effects model Simulation framework
oY =(Y/,..., Y[’)’ with Y; = (Y1, ..., Y}, ) the vector of all measurements for the ith individ- e For each individual i (i = 1,...,20), Y; = X; B+ U; & + ¢

ual, i =1,...,1. o X; = (I, X}, X2, X7, X}}) where X/I€ is the n; x 4 fixed centered design matrix, k = 1,...,4
e The linear mixed model for the response Y is defined as and U; = ]lm Wlth ng =12 Vi=1,...,20.

Y = X84 UE 1 e o 3= {25 {0} {0} {0.5}%, {0.5}4}

with X the n x p design matrix associated to the p-vector fixed effects 5, U the n x [ ° g? ~ N0, 72? and i ™ N (012, 0°1 d.12) Wher.e 0 and .TQ are respectively defined from a given

design vector associated to the random effects & = (£1,....&7), € ~ N(07,7%1d;) and signal-to-noise ratio SV and a given variances ratio TAU by

e ~ N (O, o%Idy). o SJ\}R2 HXB_%Z(XB)M and T2 = Ti[]'

Th inal distributi f th Y is ¢i b
e The marginal distribution of the response Y is given by e N = 100 simulated data sets of size n = 20 x 12 = 240 with different SN R and T'AU values

Y ~ N(X5,T) with I'= 720U + ¢%Id, (learning set= 100 and test set=100). .
e Criteria comparison: " " A
The ML estimation approach using the EM-algorithm ~Relative parameter estimation errors: § :| | % R R ﬂ D
e The log-likelihood associated with the complete data (y, {) is given by (@kﬁ_ﬁj)’ k= 1,...,100, 5 = 1 and E : %f?ff%%$ 8 DEHDMHHM
J g g 0 ’ g o E Lo | T E
1 ) )y W= XB-UQ(y—XB-UE & 10, ..., 17
LOly,&) = —5{(n+l) In 27+ Iln7"+nlno” + 2 +§} — Absolute parameter estimation errors: i = o L
/B']k . /Bjj k _ 1’ e 1007 j _ 27 o 79 B B2 Bs PBa Bs Bs Br Bs Po Bio P11 Biz Pz Bia Pis Pis Par
e At iteration [t + 1], the E-step consists of computing the expectation of the complete EM-PCR
likel; - 1 — ‘: 3 3
da[’;]a 1(2)% 111;([3%]11h00d given the observed data and a current value of the parameters 0 Results for SNR = 3 and TAU =1 : - -
(B, 775, 070): Q(9|9[t]) _ E{L(Q‘ng)‘ng[tq — Concerning the (;’s estimation, EM-PLS ¢ . é e o
method performs better than EM and EM-¢ | = | & | 77 A
e The M-step consists of maximizing Q(Qw[t]). It leads to the following explicit expressions: PCR methods: : 5 <7 £ 7
o | —On average, good parameter estimations = Bl i e T
gt = (X! ) X’ {X sl 4 2 Tl=1(y — xp [t])} (1) are obtained with EM-PLS method e
1 — Large variability is obtained with EM : 3 :
oft+1] _ L =177 pltl=1/.. v alt] 20t]  _A[t]y plt] =177y 7! } & y
T — 7 { gy Ti=tg ' rl=t (y — x81) 4 7 (U p o (2) method for all 3; different to 0 - . | -y
2+ l{ )/F[t]—lr[t]—l (y — Xﬁ[t]) 4o o2t T4[t]tr<r[t]—1)} (3) — EM-PCR method performs poorly for all_; o | o essadis § ] N ‘ff [ * + 4
n B; equal to 0 N ot s |trTr i
— Globally, good estimation results are ob- - m?
tained with the three methods for 72 and 2. - Bl i T
e Data about riboflavin (vitamin B2) production in Bacillus subtilis. Results
— Response variable : logarithm of the riboflavin production rate EM-PCR EM-PLS
— Design matrix : the logarithm of the expressions levels of 4088 genes (normalized) Number of optimal components g S
e 28 Bacillus subtilis with a total number of samples equal to 111 MAE 0.43 0.63
— Observations at different times in the same conditions &2 0.62 0.02
— From 2 to 6 measurements by Bacillus subtilis 22 1453 47 83
Logarithm of the riboflavin production rate (vitamin B2) vroduced in 28 Bacillus subtilis. Different colors are used for the different Bacillus subtilis.
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Metho d D Bacillus subtilis Fitted values Observed values Fitted values Observed values
e Subdivision of the data set into a learning set and a test set (ratio: 70 % - 30 %) e No results with EM method because of numerical problems.
e Application of EM, EM-PCR and EM-PLS methods e Similar results are obtained with EM-PLS and EM-PCR methods.
e Computation of the mean absolute prediction error: M AL = — yil — Possible improvement: a pre-selection step such as a Sure Independence Screening
e Diagnostics plots: Normalized residuals vs fitted values and f1tted values vs observed values plots. (SIS) procedure could be applied.
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