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EXTENSION OF THE EM-ALGORITHM USING PLS TO FIT LINEAR MIXED EFFECTS MODELS FOR HIGH DIMENSIONAL REPEATED DATA

I. Introduction

To deal with repeated data

• Linear mixed effects models are highly recommended.

• A classical parameter estimation method: Expectation-Maximization (EM) algorithm.

To deal with high-dimensional data

• Reduction dimension methods can be used to summarize the numerous predictors in form of a small number of new components. • Classical approach : Principal Component Regression (PCR) ֒→ Does not consider the link between the outcome and the independent variables.

• Alternative method: Partial Least Squares (PLS) ֒→ Takes the link between the outcome and the independent variables into account.

To solve the high dimensional issue in the repeated data context ֒→ Introduction of a PLS step into the EM-algorithm for linear mixed models to reduce the high-dimensional data. • Idea: At each iteration, the outcome data is substituted in the input of PLS by a pseudovariable response whose expected value has a linear relationship with the covariates.

III. Extension of the EM-algorithm for high dimensional repeated data

Extension of the EM-algorithm using PLS (EM-PLS)

At iteration [t + 1]:

• E-step: Compute the expectation of the complete data log-likelihood given the observed data and a current value of the parameters θ [t] • M-step:

-Define the pseudo-response variable z [t+1] = Xβ [t] + σ 2[t] Γ [t]-1 (y -Xβ [t] ) -Perform PLS regression of the pseudo-response variable z [t+1] onto X:

β [t+1] ← P LS(z [t+1] , X, κ)
where κ is the PLS component number obtained by cross-validation.

-Calculate new parameter values τ 2[t+1] and σ 2[t+1] from Equations ( 2) and (3).

Extension of the EM-algorithm using PCR (EM-PCR)

Similarly, a PCR step is introduced into the EM-algorithm to reduce the high-dimensional data to low-dimensional features.

II. The linear mixed effects model

Definition of the linear mixed effects model

• Y = (Y ′ 1 , . . . , Y ′ I ) ′ with Y i = (Y i1 , . . . , Y in i ) ′ the vector of all measurements for the ith individ- ual, i = 1, . . . , I.
• The linear mixed model for the response Y is defined as

Y = Xβ + U ξ + ε
with X the n × p design matrix associated to the p-vector fixed effects β, U the n × I design vector associated to the random effects ξ

= (ξ 1 , . . . , ξ I ) ′ , ξ ∼ N (0 I , τ 2 Id I ) and ε ∼ N (0 n , σ 2 Id n ). • The marginal distribution of the response Y is given by Y ∼ N (Xβ, Γ) with Γ = τ 2 U U ′ + σ 2 Id n
The ML estimation approach using the EM-algorithm

• The log-likelihood associated with the complete data (y, ξ) is given by

L(θ|y, ξ) = - 1 2 (n + I) ln 2π + I ln τ 2 + n ln σ 2 + (y -Xβ -U ξ) ′ (y -Xβ -U ξ) τ 2 + ξ 2 σ 2
• At iteration [t + 1], the E-step consists of computing the expectation of the complete data log-likelihood given the observed data and a current value of the parameters θ

[t] = (β [t] , τ 2[t] , σ 2[t] ): Q(θ|θ [t] ) = E L(θ|y, ξ)|y, θ [t]
• The M-step consists of maximizing Q(θ|θ [t] ). It leads to the following explicit expressions:

β [t+1] = X ′ X -1 X ′ Xβ [t] + σ 2[t] Γ [t]-1 (y -Xβ [t] ) (1) τ 2[t+1] = 1 I τ 4[t] (y -Xβ [t] ) ′ Γ [t]-1 U U ′ Γ [t]-1 (y -Xβ [t] ) + τ 2[t] -τ 4[t] tr(Γ [t]-1 U U ′ ) (2) σ 2[t+1] = 1 n σ 4[t] (y -Xβ [t] ) ′ Γ [t]-1 Γ [t]-1 (y -Xβ [t] ) + n σ 2[t] -τ 4[t] tr(Γ [t]-1 ) (3) 

IV. A simulation study

Simulation framework

• For each individual i (i = 1, . . . , 20), Y i = X i β + U i ξ i + ε i • X i = (1 1 n i , X 1 i , X 2 i , X 3 i , X 4 i ) where X k i is the n i × 4 fixed centered design matrix, k = 1, . . . , 4 and U i = 1 1 n i with n i = 12 ∀i = 1, . . . , 20. • β = 2.5, {0} 4 , {0} 4 , {0.5} 4 , {0.5} 4
• ξ i ∼ N (0, τ 2 ) and ε i ∼ N (0 12 , σ 2 Id 12 ) where σ 2 and τ 2 are respectively defined from a given signal-to-noise ratio SN R and a given variances ratio T AU by

σ 2 = 1 SN R 2 ||Xβ-E(Xβ)|| 2 n
and τ 2 = σ 2 T AU .

• N = 100 simulated data sets of size n = 20 × 12 = 240 with different SN R and T AU values (learning set= 100 and test set=100).

• Criteria comparison:

-Relative parameter estimation errors:

( βjk -β j ) β j , k = 1, . . . , 100, j = 1 and 10, . . . , 17 -Absolute parameter estimation errors: βjkβ j , k = 1, . . . , 100, j = 2, . . . , 9

Results for SN R = 3 and T AU = 1 ֒→ Concerning the β j 's estimation, EM-PLS method performs better than EM and EM-PCR methods:

-On average, good parameter estimations are obtained with EM-PLS method -Large variability is obtained with EM method for all β j different to 0 -EM-PCR method performs poorly for all β j equal to 0 ֒→ Globally, good estimation results are obtained with the three methods for τ 2 and σ 2 . V. An application: the Riboflavin data set

• Data about riboflavin (vitamin B2) production in Bacillus subtilis.

-Response variable : logarithm of the riboflavin production rate -Design matrix : the logarithm of the expressions levels of 4088 genes (normalized) • 28 Bacillus subtilis with a total number of samples equal to 111 -Observations at different times in the same conditions -From 2 to 6 measurements by Bacillus subtilis Logarithm of the riboflavin production rate (vitamin B2) produced in 28 Bacillus subtilis. Different colors are used for the different Bacillus subtilis. 

Results

EM-PCR EM-PLS

EM-PLS

• No results with EM method because of numerical problems.

• Similar results are obtained with EM-PLS and EM-PCR methods.

֒→ Possible improvement: a pre-selection step such as a Sure Independence Screening (SIS) procedure could be applied.
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  β 10 β 11 β 12 β 13 β 14 β 15 β 16 β 17 3 β 4 β 5 β 6 β 7 β 8 β 9 β 10 β 11 β 12 β 13 β 14 β 15 β 16 β 17 β 10 β 11 β 12 β 13 β 14 β 15 β 16 β 17

  Log(riboflavin production rate) Method • Subdivision of the data set into a learning set and a test set (ratio: 70 % -30 %) • Application of EM, EM-PCR and EM-PLS methods • Computation of the mean absolute prediction error: M AE = 1 n n i=1 | ŷiy i | • Diagnostics plots: Normalized residuals vs fitted values and fitted values vs observed values plots.