
HAL Id: hal-01834524
https://hal.science/hal-01834524

Preprint submitted on 10 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orbits of monomials and factorization into products of
linear forms

Pascal Koiran, Nicolas Ressayre

To cite this version:
Pascal Koiran, Nicolas Ressayre. Orbits of monomials and factorization into products of linear forms.
2018. �hal-01834524�

https://hal.science/hal-01834524
https://hal.archives-ouvertes.fr

Orbits of monomials and factorization into

products of linear forms∗

Pascal Koiran
Université de Lyon, Ecole Normale Supérieure de Lyon, LIP†

Nicolas Ressayre
Univ Lyon, Université Claude Bernard Lyon 1,
Institut Camille Jordan (CNRS UMR 5208),

43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

July 10, 2018

Abstract

This paper is devoted to the factorization of multivariate polyno-
mials into products of linear forms, a problem which has applications
to differential algebra, to the resolution of systems of polynomial equa-
tions and to Waring decomposition (i.e., decomposition in sums of d-th
powers of linear forms; this problem is also known as symmetric ten-
sor decomposition). We provide three black box algorithms for this
problem.

Our main contribution is an algorithm motivated by the application
to Waring decomposition. This algorithm reduces the corresponding
factorization problem to simultaenous matrix diagonalization, a stan-
dard task in linear algebra. The algorithm relies on ideas from invariant
theory, and more specifically on Lie algebras.

Our second algorithm reconstructs a factorization from several bi-
variate projections. Our third algorithm reconstructs it from the de-
termination of the zero set of the input polynomial, which is a union
of hyperplanes.

1 Introduction

The main contribution of this paper is a simple algorithm which determines
whether an input polynomial f(x1, . . . , xn) has a factorization of the form

f(x) = l1(x)
α1 · · · ln(x)

αn (1)

∗The authors are supported by ANR project CompA (code ANR–13–BS02–0001–01).
Email: pascal.koiran@ens-lyon.fr, ressayre@math.univ-lyon1.fr

†UMR 5668 ENS Lyon, CNRS, UCBL.

1

where the linear forms li are linearly independent. The algorithm outputs
such a factorization if there is one. Our algorithm works in the black box
model: we assume that we have access to the input polynomial f only
through a “black box” which on input (x1, . . . , xn) outputs f(x1, . . . , xn).

We therefore deal with a very special case of the polynomial factorization
problem. As explained in Section 1.2 below, this special case already has an
interesting application to Waring decomposition. The algorithm is based
on (elementary) ideas of invariant theory, but is nonetheless quite simple:
it essentially boils down to the simultaneous diagonalization of commuting
matrices, a standard task in linear algebra. For the general problem of fac-
torization in the black box model there is a rather involved algorithm by
Kaltofen and Trager [21], see Section 1.3 for more details. Our factorization
algorithm seems to be the first to rely on ideas from invariant theory, and to
reduce a multivariate polynomial factorization problem to matrix diagonal-
ization. Let us now explain why it is natural to use invariant theory in this
context.

1.1 Connection with invariant theory

Consider a field K of characteristic 0 and a polynomial f ∈ K[x1, . . . , xn]. By
definition, the orbit Orb(f) of f under the action of the general linear group is
the set of polynomials of the form f(A.x) where A ∈ GLn(K) is an arbitrary
invertible matrix. In their Geometric Complexity Theory program [32, 33],
Mulmuley and Sohoni have proposed the following approach to lower bounds
in algebraic complexity: in order to prove a lower bound for a polynomial g,
show that it does not belong to a suitable orbit closure Orb(f). The case
where f is the determinant polynomial is of particular interest as it allows to
address the infamous “permanent versus determinant” problem. Mulmuley
and Sohoni have also proposed a specific representation-theoretic approach
to deal with this orbit closure problem. As it turns out, the representation-
theoretic approach provably does not work [8]. The general approach based
on orbit closure remains plausible, but has so far not produced any major
lower bound result because the orbit closure of the determinant is difficult
to describe. By contrast, the renewed interest in invariant theory has led
to new positive results, i.e., to new polynomial time algorithms: see for
instance [7, 6, 18, 31] and especially [25], which is a main inspiration for this
paper.

We deal here with the simplest of all orbits, namely, the orbit of a single
monomial xα1

1 . . . xαn
n , and we derive a new factorization algorithm. It is

immediate from the definition that this orbit is the set of polynomials that
can be factorized as in (1) with linearly independent forms. Note that the
orbit closure of the monomial x1x2 . . . xn is the set of polynomials that can
be written as products of n linear forms (without any assumption of linear
independence). This is well known in algebraic geometry, see example (5) in

2

Section 3.1.2 of [27] and exercise 3.1.4.2 in the same book. Moreover, equa-
tions for this orbit closure are known, see chapter 9 of [27] for a derivation
of the equations and the history of this subject. However, no factorization
algorithm relying on ideas from invariant theory is currently known for ar-
bitrary products of linear forms. We suggest this problem as a natural step
before considering more complicated orbit closure problems.

1.2 Application to Waring decomposition

The factorization problem studied here is motivated mainly by an algorithm
due to Neeraj Kayal (see Section 5 of [24]). Factorization in products of
linear forms is also useful for algorithmic differential algebra [36, 38] and
for the resolution of systems of algebraic equations by factorization of the
U -resultant [14, 26].

Kayal’s algorithm determines whether a homogeneous polynomial f of
degree d in n variables can be written as the sum of n d-th powers of linearly
independent forms. This algorithm is based on the fact that such a poly-
nomial has a Hessian determinant which factors as a product of (d − 2)-th
powers of linearly independent forms. In [24] the Hessian is factorized with
Kaltofen’s algorithm for the factorization of polynomials given by straight-
line programs [23]. The decomposition of f as a sum of d-th powers can be
recovered from this information. The algorithm presented in this note can
therefore be used instead of Kaltofen’s algorithm to solve the same decom-
position problem.

Building on these ideas from [24], it was recently shown in [17] how to
recover up to O(n2) terms in a Waring decomposition1 (and more generally
in a sum of powers of affine forms with possibly different exponents in each
power). The algorithm works for polynomials of degree d ≥ 5 and is based
on the factorization of a “generalized Hessian” into products of linear forms.
There are now up to order n2 distinct linear forms in the factorization, and
that many linear forms must of course be linearly dependent. This pro-
vides further motivation for the problem suggested at the end of Section 1.1
(namely, the extension of our algorithm to the case of linearly dependent
forms). Factorization in products of dependent forms is discussed at the end
of Section 1.3.

1.3 Comparison with previous factorization algorithms

As mentioned above, the algorithm for Waring decomposition in [24] relies on
Kaltofen’s factorization algorithm [23] which works in the arithmetic circuit
(or “straight-line program”) model: the input polynomial f is described by

1This algorithm works when the linear forms to be recovered are sufficiently generic;
efficient reconstruction in the worst case is still open.

3

an arithmetic circuit, and the output is a list of arithmetic circuits for the
irreducible factors of f together with their multiplicities.

One could instead appeal to the black-box factorization algorithm by
Kaltofen and Trager [21]. In this case, instead of factorizing a circuit for
the determinant of a Hessian matrix one would use a black box for the
determinant of this matrix. The algorithm from [21] produces a black box
for the irreducible factors of f given a black-box for evaluating f .

Compared to [21, 23] our algorithm works in a hybrid model: we use the
most general of the two for the input polynomial (black box representation)
but we explicitly determine the linear forms li in (1) when they exist.2 For
the general polynomial factorization problem, it is apparently not known how
to efficiently produce "small" arithmetic circuits for the irreducible factors
of a polynomial f given a black-box for f . Due to the black box algorithm
of [21], this would be equivalent to producing a small arithmetic circuit for
a polynomial given a black box for this polynomial.

The algorithms from [21, 23] project the original n-variate factorization
problem to a bivariate factorization problem, solve the bivariate problem
using a factorization algorithm for polynomials in dense representation, and
then lift the result to a factorization of the n-variate input polynomial. It will
be clear that our algorithm is based on a very different principle: instead
of projecting we do linear algebra computations directly in n-dimensional
space.

There is an intringuing connection between our algorithm and Gao’s
algorithm for the absolute factorization of bivariate polynomials [16]: they
are both based on the study of certains partial differential equations. For
the connection of our approach to PDEs see Lemma 5 in Section 2.3.

As explained in Section 1.2, for the application to Waring decomposition
following [24] we can assume that the linear forms li are independent. This
assumption does not seem so natural in other applications such as differential
algebra [36, 38] or the resolution of systems of polynomial equations [14, 26].
For this reason, we present in Section 5 another algorithm for factorization
into products of linear forms based like [21, 23] on bivariate projections. Our
goal in that section is to give a simpler algorithm which takes advantage of
the fact that we are considering only a special case of the polynomial fac-
torization problem. We present another simple algorithm in Section 6. This
algorithm requires a univariate factorization algorithm, and the projection-
based algorithm requires a bivariate factorization algorithm (see Sections 5
and 6 for more details).

For these last two algorithms, no assumption of linear independence is
needed. This is also the case for the algorithms in [26, 38]. In these two
papers no complexity analysis is provided, and it is assumed in the second

2It would anyway be easy to explicitly determine the li by interpolation from a black
box for these linear forms.

4

one that the polynomial to be factorized is squarefree. We note that the
algorithm from [26] bears some similarity to the algorithm that we present
in Section 6: both are based on the determination of the zero set of the
input polynomial, which is a union of hyperplanes.

1.4 On the choice of fields

Polynomial factorization problems come with many variations. In particular,
the following choices need to be made:

(i) The input is a polynomial f ∈ K[x1, . . . , xn]. What field K do we
choose as field of coefficients for f?

(ii) What field K do we choose as field of coefficients for the output? More
precisely, the output is a factorization f = g1 . . . gk where the polyno-
mials gi belong to K[x1, . . . , xn] for some field extension K of K, and
are irreducible over K. In the literature it is often (but not always)
assumed that K = K.

(iii) How do we represent the field elements? Assume for instance that
K = Q and that we are interested in absolute factorization, i.e., fac-
torization over K = Q (the algebraic closure of Q). Do we insist on a
symbolic representation for the coefficients of the gi’s (in this case, the
coefficients would be represented as elements of an extension of Q of
finite degree) or, using an embedding Q ⊆ C, are we happy to compute
only numerical approximations of these coefficients?

Absolute factorization seems to be the most natural choice for this paper
because of the application to Waring decomposition (this problem has been
studied mostly in algebraically closed fields3). Moreover, for any field K if
a decomposition of f of the form (1) with the li in K[x1, . . . , xn] is possible
then this decomposition clearly is an absolute factorization of f .

Nevertheless, we do not commit to any specific choice for (i), (ii) and (iii)
except that K must be of characteristic zero. This is possible because our
main algorithm is a reduction (to matrix diagonalization). Any (efficient)
algorithm for this standard linear algebra task for a specific choice of (i),
(ii) and (iii) will therefore yield an (efficient) factorization algorithm. We
elaborate on the complexity of our reduction in Section 1.5.

1.5 Complexity of our invariant-theoretic algorithm

The black box algorithm in [21] applies to polynomials with coefficients in
a field K of characteristic 0. The only assumption on K if that a factor-
ization algorithm for univariate polynomials in K[x] is available. This black

3Some results are also known for the field of real numbers [11, 13]

5

box algorithm can therefore be thought of as a reduction from multivariate
to univariate polynomial factorization. In order to evaluate precisely the
complexity of this algorithm for a specific field K, one must of course take
into account the complexity of the univariate factorization problem for this
particular field.

Likewise, our main algorithm can be thought of as a reduction to (si-
multaneous) matrix diagonalization.4 When we write that the algorithms
of Section 4 run in polynomial time, we mean polynomial in n (the number
of variables of the input polynomial) and d (its degree). In particular, the
algorithm makes poly(n, d) calls to the black box for f . It also performs
simultaneous diagonalization on n (commuting) matrices, and makes a few
other auxiliary computations. The main one is the determination of the Lie
algebra of f , which as explained in Section 2.3 is a linear algebra problem; a
polynomial black box algorithm for it can be found in [25]. A more precise
analysis of our algorithm can be found in the appendix. It suggests that the
computation of the Lie algebra of f is a particularly expensive step. Improv-
ing the algorithm from [25] (or its analysis in the appendix) seems to be an
interesting open problem.

If we just want to decide the existence of a suitable factorization (rather
than compute it) our algorithm becomes purely algebraic, i.e., it just per-
forms arithmetic operations (additions, multiplications and tests to zero) on
the function values given by the black box for f . In particular, we do not
need to factor univariate polynomials or diagonalize matrices.

Like in [23, 21] our algorithm is randomized and can return a wrong
answer with a small probability ǫ. This is unavoidable because homogeneous
polynomials of degree d in n variables have

(n+d−1
d

)

coefficients and this is
bigger than any fixed polynomial in n and d if these two parameters are
nonconstant. As a result, for a polynomial f of form (1) there will always be
another polynomial g which agrees with f on all points queried on input f .
The algorithm will therefore erroneously5 output the same answer on these
two inputs. The probability of error ǫ can be thought of as a small fixed
constant, and as usual it can be made as small as desired by repeating the
algorithm (or by changing the parameters in the algorithm from [25] for the
computation of the Lie algebra; this is the main source of randomness in our
algorithm6).

4Note that diagonalizing a matrix is clearly related to the factorization of its charac-
teristic polynomial.

5Indeed, the algorithm should report failure if g is not of form (1), or if it is should
return a different factorization than for f .

6If f is given explicitly as a sum of monomials, the Lie algebra can be computed
deterministically in polynomial time; this is clear from the characterization of the Lie
algebra in Lemma 5.

6

1.6 Organization of the paper

In Section 2 we recall some background on matrix diagonalization, simul-
taenous diagonalization and invariant theory. In Section 3 we give a char-
acterization of the polynomials in the orbit of a monomial. We use this
characterization in Section 4 to derive our main algorithm for factorization
into products of (independent) linear forms. An algorithm based on the older
idea of bivariate projections is presented in Section 5. In contrast to [23, 21]
this algorithm recovers a factorization of the input polynomial from several
bivariate projections. Another simple algorithm is presented in Section 6.
As mentioned earlier, this algorithm relies on the determination of the zero
set of f . Our last two algorithms do not rely on any invariant theory and do
not require any independence property for the linear forms. As pointed out
at the end of Section 1.1, for factorization into products of arbitrary linear
forms no algorithm that would rely on ideas from invariant theory is known
at this time.

The paper ends with two appendices where we analyze the complexity of
our three algorithms in more detail than in the main body. In particular, we
point out in Appendix A an optimization of our invariant-theoretic algorithm
for the “white box” model, in which the black box for f is implemented by
an arithmetic circuit.

2 Background

We first recall the Schwarz-Zippel lemma [35, 42], a ubiquitous tool in the
analysis of randomized algorithms.

Lemma 1. Let f ∈ K[x1, . . . , xn] be a nonzero polynomial. If a1, . . . , an are
drawn independently and uniformly at random from a finite set S ⊆ K then

Pr[f(a1, . . . , an) = 0] ≤ deg(f)/|S|.

A similar result with a slightly worse bound was obtained a little earlier
by DeMillo and Lipton [15]. In the remainder of this section we recall some
background on matrix diagonalization, on simultaenous diagonalization, on
invariant theory and Lie algebras.

2.1 Background on matrix diagonalization

Since our main algorithm is a reduction to matrix diagonalization, it is ap-
propriate to provide some brief background on the algorithmic solutions to
this classical problem. After a first course on linear algebra, this might look
like a simple task: to diagonalize a matrix M , first compute its eigenvalues.
Then, for each eigenvalue λ compute a basis of Ker(M − λ.I). But this
problem is more subtle than it seems at first sight.

7

Let us begin with numerical algorithms. There is a vast literature on
numerical methods for eigenvalue problems (see for instance [2] and the ref-
erences there). Naively, one might want to compute the eigenvalues of M by
computing the roots of its characteristic polynomial χM (λ) = det(M − λI).
This approach is hardly ever used in practice for large matrices because the
roots of a polynomial can be very sensitive to perturbations of its coeffi-
cients [41]. A theoretical analysis explaining why such a bad behaviour is
rather prevalent can be found in [9]. The QR algorithm is now considered
to be the standard algorithm for computing all eigenvalues and eigenvectors
of a dense matrix [2]. It works well in practice, but a thorough understand-
ing of this algorithm (or of any efficient and stable numerical algorithm for
the computation of eigenvalue – eigenvector pairs) is still lacking, see Open
Problem 2 in [5].

Let us now turn to symbolic methods. In the absence of roundoff er-
rors, an approach based on the computation of the characteristic polynomial
becomes feasible (see [34] for the state of the art on the computation of
this polynomial). From the knowledge of χM we can decide whether M is
diagonalizable using the following classical result from linear algebra.

Proposition 2. Let K be a field of characteristic 0 and let χM be the char-
acteristic polynomial of a matrix M ∈ Mn(K). Let PM = χM/gcd(χM , χ′

M)
be the squarefree part of χM . The matrix M is diagonalizable over K iff
PM (M) = 0.7 Moreover, in this case M is diagonalizable over K iff all the
roots of PM lie in K.

Once we know that M is diagonalizable, computing the diagonal form
of M symbolically requires the factorization of PM . We note that for K =
Q, finding the roots of PM in Q is cheaper than the general problem of
factorization in irreducible factors over Q[X] ([3], Proposition 21.22). This
faster algorithm should therefore be used to diagonalize over Q. For the
purpose of this paper, this is relevant for factorisation into a product of
linear forms with rational coefficients.

Once we know the eigenvalues of M and their multiplicities, the last step
is the computation of a transition matrix T such that T−1MT is diagonal.
For this step we refer to [19, 20, 39]. These papers consider the more general
problem of computing symbolic representations of the Jordan normal form.

The knowledge of T is particularly important for the application to fac-
torization into product of linear forms because (as shown in Section 4) these
forms can be read off directly from the transition matrix. If we just want to
know whether such a factorization is possible over K or K, Proposition 2 is
sufficient.

7An equivalent characterization is that the minimal polynomial of M has only simple
roots.

8

2.2 Simultaneous diagonalization

It is a well known fact of linear algebra that a family of diagonalizable ma-
trices is simultaneously diagonalizable if and only if they pairwise commute.
We will use this criterion to test whether a family of matrices A1, . . . , Ak

is simultaneously diagonalizable. If the test succeeds, we will then need to
diagonalize them. Note that a transition matrix which diagonalizes A1 may
not necessarily diagonalize the other matrices (this may happen if A1 has
an eigenvalue of multiplicity larger than 1). We can nonetheless perform a
simultaneous diagonalization by diagonalizing a single matrix. Indeed, as
suggested in Section 6.1.1 of [25] we can diagonalize a random linear combi-
nation of the Ai’s. We sketch a proof of this simple fact below. For notational
simplicity we consider only the case of two matrices. The general case can
be treated in a similar way.

Lemma 3. Assume that M,N ∈ Mn(k) are two simultaneously diagonaliz-
able matrices. There is a set B ⊆ K of size at most n(n − 1)/2 such that
for any t ∈ K \ B any eigenvector of M + tN is also an eigenvector of M
and N .

Proof. Since M and N are simultaneously diagonalizable we may as well
work in a basis where these matrices become diagonal. We therefore as-
sume without loss of generality that M = diag(λ1, . . . , λn) and N =
diag(µ1, . . . , µn). We then have M + tN = diag(λ1 + tµ1, . . . , λn + tµn)
for any t ∈ K. We may take for B the set of t’s such that λi+ tµi = λj + tµj

for some pair {i, j} such that (λi, µi) 6= (λj , µj). This is indeed a set of size
at most n(n− 1)/2, and for t 6∈B the eigenspace of M + tN associated to the
eigenvalue λi+ tµi is the intersection of the eigenspace of M associated to λi

and of the eigenspace of N associated to µi. In particular, any eigenvector
of M + tN is also an eigenvector of M and N .

Proposition 4. Assume that M,N ∈ Mn(k) are two simultaneously diag-
onalizable matrices and that t is drawn from the uniform distribution on a
finite set S ⊂ K. With probability at least 1 − n(n−1)

2|S| , all the transition
matrices which diagonalize M + tN also diagonalize M and N .

Proof. We show that the required property holds true for any t that does
not belong to the “bad set” of Lemma 3.

For an invertible matrix T , T−1(M + tN)T is diagonal iff all the column
vectors of T are eigenvectors of M + tN . But for t 6∈ B, any eigenvector of
M + tN is also an eigenvector of M and N . As a result, if T−1(M + tN)T
is diagonal then T−1MT and T−1NT are diagonal as well.

2.3 Background on invariants and Lie algebras

In this section and in the remainder of the paper, K denotes a field of
characteristic 0. The general linear group GLn acts on the polynomial ring

9

K[x1, . . . , xn] by linear change of variables: an invertible matrix A ∈ GLn

sends a polynomial P (x) ∈ K[x1, . . . , xn] to P (A.x). The group of invariant
of P is the group of matrices A such that P (A.x) = P (x). We recall that
this is a Lie group. Its Lie algebra g is a linear subspace of Mn(K) defined
as the tangent space of G at identity. More precisely, g is the “linear part”
of the tangent space; the (affine) tangent space is I + g.

The Lie algebra associated to the group of invariants of P will be called
simply “Lie algebra of P ”, and we will denote it by gP . It can be explicitly
computed as follows.

Lemma 5 (Claim 59 in [25]). A matrix A = (aij) ∈ Mn(K) belongs to the
Lie algebra of P if and only if

∑

i,j∈[n]

aijxj
∂P

∂xi
= 0 (2)

The elements of the Lie algebra therefore correspond to linear dependence
relations between the polynomials xj

∂P
∂xi

.
As an example we determine the group of invariants of monomials.

Lemma 6. The group of invariants of a monomial m = xα1
1xαn

n with
αi ≥ 1 for all i is generated by:

(i) The diagonal matrices diag(λ1, . . . , λn) with
∏n

i=1 λ
αi

i = 1. We denote
this subgroup of GLn by Tα, where α is the tuple (α1, . . . , αn).

(ii) The permutation matrices which map any variable xi to a variable xπ(i)
with same exponent in m (i.e., with αi = απ(i)).

Proof. The monomial is obviously invariant under the actions of matrices
from (i) and (ii). Conversely, assume that m is invariant under the action of
an invertible matrix A. By uniqueness of factorization, A must send every
variable xi to the multiple of another variable, i.e., to λixπ(i). Moreover we
must have αi = απ(i) and

∏n
i=1 λ

αi

i = 1, so A is in the group generated by
(i) and (ii).

The Lie algebras of monomials is determined in Proposition 8. In this
paper we will follow the Lie-algebraic approach from [25]. As a result we will
not work directly with groups of invariants.

If two polynomials are equivalent under the action of GLn, their Lie
algebras are conjugate. More precisely:

Proposition 7 (Proposition 58 in [25]). If P (x) = Q(A.x) then

gP = A−1.gQ.A

10

3 The orbit of a monomial

Throughout the paper, m denotes a monomial xα1
1xαn

n with all exponents
αi ≥ 1.

Proposition 8. The Lie algebra gm of a monomial m = xα1
1 · · · xαn

n with all
exponents αi ≥ 1 is the space of diagonal matrices diag(λ1, . . . , λn) such that
∑n

i=1 αiλi = 0.

Proof. By Lemma 5, all these matrices are in gm since m satisfies the equa-
tion xi

∂m
∂xi

= αim. Conversely, if A ∈ g all off-diagonal entries aij must

vanish since the monomial xj
∂m
∂xi

could not cancel with any other monomial
in (2).

Remark 9. The above characterization of gm is no longer true if some
exponents αi may vanish. Indeed, in this case there is no constraint on the
entries in row i of a matrix in gm. However, we note for later use that in
all cases, the space of diagonal matrices diag(λ1, . . . , λn) which lie in gm is
defined by

∑n
i=1 αiλi = 0.

It is easy to check by a direct computation that the Lie algebra deter-
mined in Proposition 8 is (as expected) equal to the tangent space at identity
of the group Tα from Lemma 6. The next result turns Proposition 8 into an
equivalence.

Proposition 10. Let f ∈ K[x1, . . . , xn] be a homogeneous polynomial of
degree d. The two following properties are equivalent:

(i) f is a monomial which depends on all of its n variables.

(ii) The Lie algebra of f is an (n− 1)-dimensional subspace of the space of
diagonal matrices.

Proof. We have seen in Proposition 8 that (i) implies (ii). Conversely, for any
polynomial P let us denote by dP the subspace of its Lie algebra made of di-
agonal matrices. By Lemma 5, df is the space of of matrices diag(λ1, . . . , λn)
such that

n
∑

i=1

λixi
∂f

∂xi
= 0 (3)

For any monomial m, xi
∂m
∂xi

is proportional to m. This implies that df is the
intersection of the dm’s for the various monomials m appearing in f since
the contributions to (3) coming from different monomials cannot cancel.
By Remark 9, for two distinct monomials m1 and m2 appearing in f the
subspaces dm1 and dm2 are distinct since they are defined by linear forms
that are not proportional (here we use the homogeneity of f). It follows that
their intersection is of dimension n− 2 in contradiction with (ii). Therefore,

11

only one monomial can appear in f . Finally, by Remark 9 all of the n
variables must appear in this monomial; otherwise, gf would contain some
nondiagonal matrices.

We can now characterize the Lie algebras of polynomials in the orbit of
a monomial.

Theorem 11. Consider a monomial m = xα1
1 · · · xαn

n with αi ≥ 1 for all i,
a homogeneous polynomial f ∈ K[x1, . . . , xn] of degree d = α1+ · · ·+αn and
an invertible matrix A. The two following properties are equivalent.

(i) The action of A sends m to a multiple of f , i.e., m(A.x) = c.f(x) for
some constant c.

(ii) The Lie algebras of f and m are conjugate by A, i.e., gf = A−1.gm.A.

Proof. Proposition 7 shows that (i) implies (ii). For the converse, assume
that gf = A−1.gm.A and define g(x) = f(A−1.x). By Proposition 7 we have
gg = gm. It follows from Propositions 8 and 10 that g = λ.m for some
nonzero constant λ. We therefore have m(Ax) = f(x)/λ.

This characterization takes a particularly simple form in the case of equal
exponents.

Theorem 12. Consider a monomial m = (x1 · · · xn)
α and a homogeneous

polynomial f ∈ K[x1, . . . , xn] of degree d = nα. The two following properties
are equivalent.

(i) Some multiple of f belongs to the orbit of m, i.e., m(A.x) = c.f(x) for
some invertible matrix A and some constant c.

(ii) The Lie algebra of f has a basis made of n− 1 diagonalizable matrices
of trace zero which pairwise commute.

Moreover, f is a constant multiple of m if and only its Lie algebra is the
space of diagonal matrices of trace zero.

Proof. Let f be in the orbit of m. By Proposition 7, in order to establish (ii)
for f we just need to check that this property is true for m. This is the
case since (by Proposition 8) the Lie algebra of m is the space of diagonal
matrices of trace 0.

Conversely, assume that (ii) holds for f . It is a well known fact of linear
algebra that a family of diagonalizable matrices is simultaneously diagonal-
izable if and only if they pairwise commute. By simultaneously diagonalizing
the n−1 matrices in the basis of gf we find that this Lie algebra is conjugate
to gm (which as we just saw is the space of diagonal matrices of trace 0).
Hence some constant multiple of f is in the orbit of m by Theorem 11.

12

As to the second part of the theorem, we have already seen that gm is
the space of diagonal matrices of trace zero. Conversely, if gf = gm we can
apply Theorem 11 with A = Id and it follows that f is a constant multiple
of m.

Note that if (ii) holds for some basis of gf this property holds for all bases.
Also, if K is algebraically closed we can always take c = 1 in Theorems 11
and 12.

4 Factorization into products of independent forms

By definition, the orbit of a monomial m = xα1
1 · · · xαn

n contains the polyno-
mial f if an only if f can be written as f(x) = l1(x)

α1 · · · ln(x)
αn where the

linear forms li are linearly independent. We will exploit the characterization
of orbits obtained in Section 3 to factor such polynomials. We assume that
we have access to a black-box for f . We begin with the simpler case of equal
exponents. Note that this is exactly what is needed in Section 5 of [24].

4.1 Equal exponents

In this section we describe an algorithm which takes as input a homogeneous
polynomial f ∈ K[x1, . . . , xn] of degree d = nα, determines if it can be
expressed as f = (l1 · · · ln)

α where the li’s are linearly independent forms
and finds such a factorization if it exists. In the first three steps of the
following algorithm we decide whether such a factorization exists over K,
and in the last two we actually compute the factorization.

1. Compute a basis B1, . . . , Bk of the Lie algebra of f .

2. Reject if k 6= n− 1, i.e., if the Lie algebra is not of dimension n− 1.

3. Check that the matrices B1, . . . , Bn−1 commute, are all diagonalizable
over K and of trace zero. If this is the case, declare that f can be fac-
tored as f = (l1 · · · ln)

α where the li’s are linearly independent forms.
Otherwise, reject.

4. Perform a simultaneous diagonalization of the Bi’s, i.e., find an invert-
ible matrix A such that the n− 1 matrices ABiA

−1 are diagonal.

5. At the previous step we have found a matrix A such that f(A−1x) =
λ.m(x) where m is the monomial (x1 · · · xn)

α. We therefore have
f(x) = λ.m(Ax) and we output this factorization.

Note that this algorithm outputs a factorization of the form f = λ.(l1 · · · ln)
α.

We can of course obtain λ = 1 by an appropriate scaling of the li’s if desired.

13

Theorem 13. The above algorithm runs in polynomial time and determines
whether f can be written as f = (l1 · · · ln)

α where the forms li are linearly
independent. It ouputs such a factorization if there is one.

Proof. The correctness of the algorithm follows from Theorem 12. In partic-
ular, the equivalence of properties (i) and (ii) in Theorem 12 shows that the
algorithm will make a correct decision on the existence of a suitable factor-
ization at step 3. If this step succeeds, the simultaneous diagonalization at
step 4 is possible since (as already pointed out Section 2.2 and in the proof
of Theorem 12) simultaneous diagonalization is always possible for a family
of matrices which are diagonalizable and pairwise commute. By Proposi-
tion 7, the Lie algebra of f(A−1x) is the space of diagonal matrices of trace
0. This implies that f(A−1x) is a constant multiple of m by the last part of
Theorem 12, and justifies the last step of the algorithm.

Let us now explain how to implement the 5 steps. A randomized8 black
box algorithm for Step 1 based on Lemma 5 can be found in Lemma 22
of [25]. Steps 2 and 3 are mostly routine (use Proposition 2 to check that the
Bi’s are diagonalizable). Step 4 (simultaenous diagonalization of commuting
matrices) is also a standard linear alegbra computation. One suggestion
from Section 6.1.1 of [25] is to diagonalize a random linear combination of
the Bi’s (see Section 2.2 for more details). That matrix can be diagonalized
as explained in Section 2.1. Finally, the scaling factor λ at step 5 can be
computed by one call to the black box for f .

Remark 14. We have presented the above algorithm with a view towards
factorisation over K, but it is readily adapted to factorization over some
intermediate field K ⊆ K ⊆ K. Note in particular that to decide the existence
of a factorization at step 3, we would need to check that the matrices Bi are
diagonalizable over K. As recalled in Proposition 2, this requires an algorithm
that decides whether the characteristic polynomial of a matrix has all its roots
in K. In the case K = K, if we stop at step 3 we obtain a purely algebraic
algorithm for deciding the existence of a suitable factorization (in particular,
we do not need to factorize univariate polynomials or diagonalize matrices).

4.2 General case

In this section we describe an algorithm which takes as input a homogeneous
polynomial f of degree d = α1+· · ·+αn in n variables, determines if it can be
expressed as f(x) = l1(x)

α1 · · · ln(x)
αn where the li’s are linearly independent

forms, and finds such a factorization if it exists. Note that the values of the
exponents αi are determined by the algorithm (they are not given as input).
We assume that αi ≥ 1 for all i. The number of distinct factors is therefore

8There is no need for randomization if f is given explicitly as a sum of monomials rather
than by a black box (in this case we can directly solve the linear system from Lemma 5).

14

equal to the number of variables of f . The case where there are more factors
than variables is related to orbit closure and we do not treat it in this section.
Let us explain briefly explain how to handle the case where some exponents
αi may be 0, i.e., the case where the number r of distinct factors is smaller
than the number of variables. In this case, f has only r "essential variables",
i.e., it is possible to make a linear (invertible) change of variables after which
f depends only on r variables. This puts us therefore in the situation where
the number of distinct factors is equal to the number of variables. The
number of essential variables and the corresponding change of variables can
be computed with Kayal’s algorithm9 [24], see also [10].

We can now present our factorization algorithm. Like in the case of
equal exponents, the existence of a suitable factorization is decided in the
first three steps.

1. Compute a basis B1, . . . , Bk of the Lie algebra of f .

2. Reject if k 6= n− 1, i.e., if the Lie algebra is not of dimension n− 1.

3. Check that the matrices B1, . . . , Bn−1 commute and are all diagonal-
izable over K. If this is not the case, reject. Otherwise, declare the
existence of a factorization f(x) = l1(x)

α1 · · · ln(x)
αn where the linear

forms li are linearly independent and αi ≥ 1 (the li and αi will be
determined in the last 3 steps of the algorithm).

4. Perform a simultaneous diagonalization of the Bi’s, i.e., find an invert-
ible matrix A such that the n− 1 matrices ABiA

−1 are diagonal.

5. At the previous step we have found a matrix A such that g(x) =
f(A−1x) has a Lie algebra gg which is an (n−1)-dimensional subspace
of the space of diagonal matrices. Then we compute the orthogonal
of gg, i.e., we find a vector α = (α1, . . . , αn) such gg is the space of
matrices diag(λ1, . . . , λn) satisfying

∑n
i=1 αiλi = 0. We normalize α

so that
∑n

i=1 αi = d.

6. We must have g(x) = λ.m where λ ∈ K∗ and m is the monomial
xα1
1 · · · xαn

n (in particular, α must be a vector with integral entries).
We therefore have f(x) = λ.m(Ax) and we output this factorization.

Again, this algorithm outputs a factorization of the form f(x) =
λ.l1(x)

α1 · · · ln(x)
αn and we can obtain λ = 1 by an appropriate scaling

of the li’s.

Theorem 15. The above algorithm runs in polynomial time and determines
whether f can be written as f(x) = l1(x)

α1 · · · ln(x)
αn where the forms li are

9The algorithm in [24] works in the circuit model, i.e., it is assumed that the input
polynomial is given by an arithmetic circuit. Kayal later showed how to perform the same
task in the black box model, see Section 3 of [25].

15

linearly independent and αi ≥ 1 for all i. It ouputs such a factorization if
there is one.

Proof. The two main steps (finding a basis of gf and simultaneous diagonal-
ization) can be implemented efficiently as in the case of equal exponents, so
we’ll focus on the correctness of the algorithm.

Assume first that f can be written as f(x) = L1(x)
β1 · · ·Ln(x)

βn where
the Li’s are linearly independent forms and βi ≥ 1 for all i. Then f is in
the orbit of the monomial M = xβ1

1 · · · xβn
n , so gf and gM are conjugate

by Proposition 7. By Proposition 8, gM is the space of diagonal matrices
diag(λ1, . . . , λn) such that

∑n
i=1 βiλi = 0. These two facts imply that the

first 4 steps of the algorithm will succeed. The polynomial g(x) = f(A−1x)
defined at step 5 has a Lie algebra which is an (n− 1)-dimensional subspace
of the space of diagonal matrices. By Proposition 10, g must therefore be a
monomial. Proposition 8 implies that the tuple of exponents of g is correctly
determined at step 5, so that we indeed have g = λ.m at step 6. Note that m
may differ from M by a permutation of indices, and likewise the factorization
output by the algorithm may differ from f(x) = L1(x)

β1 · · ·Ln(x)
βn by a

permutation of indices and the scaling of linear forms.
Conversely, if the 3 first steps of the algorithm succeed the Bi must be

simultaneously diagonalizable and it follows again from Proposition 10 that
the polynomial g defined at step 5 satisfies g = λ.m where λ ∈ K∗ and m
is some monomial xα1

1 · · · xαn
n . In particular, Proposition 10 guarantees that

the exponents αi are all positive. The algorithm will then output at step 6
a correct factorization of f .

Like in Section 4.1 we have presented our algorithm with a view towards
factorisation over K, but it is readily adapted to factorization over some
intermediate field K ⊆ K ⊆ K as explained in Remark 14.

In the above algorithm we need to perform the simultaneous diagonaliza-
tion at step 4 before computing the exponents αi. In the remainder of this
section we show that the exponents can be computed without step 4. The
corresponding algorithm relies on Proposition 16 below. First, we recall that
for any set of matrices S ⊆ Mn(K) the centralizer of S is the set of matrices
that commute with all matrices of S. It is a linear subspace of Mn(K) and
we denote it by C(S).

Proposition 16. Consider a monomial m = xα1
1 · · · xαn

n with αi ≥ 1 for
all i, and a polynomial f in the orbit of m.

The centralizer C(gf) of the Lie algebra of f is of dimension n. Moreover,
there is a unique H in C(gf) such that TrH = d and Tr(HM) = 0 for all
M ∈ gf . The matrix H is diagonalizable, its eigenvalues are (α1, . . . , αn)
and C(gf) = gf ⊕ Span(H).

Note that the case α1 = . . . = αn = 1 corresponds to H = Id. The

16

condition Tr(HM) = 0 for all M ∈ gf is an analogue of the trace zero
condition in property (ii) of Theorem 12.

Proof. We first consider the case f = m. By Proposition 8, gm is the set of
diagonal matrices diag(λ1, . . . , λn) such that

∑

i αiλi = 0.
For 1 ≤ i 6= j ≤ n, let Hij denote the set of matrices diag(λ1, . . . , λn)

such that λi = λj. Consider the set h of diagonal matrices. The hyperplane
gm of h is equal to no hyperplane of the form Hij . Since the field is infinite,
gm is not contained in the union of the hyperplanes Hij . Then gm contains a
matrix M0 with pairwise distinct eigenvalues. Then h ⊆ C(gm) ⊆ C(M0) ⊆
h, and C(gm) = h.

Set H0 = diag(α1, . . . , αn) ∈ h. It is clear that Tr(H0) = d and
Tr(H0M) = 0 for any M ∈ gm. Conversely, let H = diag(β1, . . . , βn) ∈ h

and M = diag(λ1, . . . , λn) ∈ gm. Then Tr(HM) =
∑

i βiλi. Since gm
is the hyperplane of h defined by

∑

i αiλi = 0, Tr(HM) = 0, for any
M ∈ gm if and only if (β1, . . . , βn) is proportional to (α1, . . . , αn). If
moreover Tr(H) = d, we get H = H0. This proves the unicity. Morever,
Tr(H2

0) =
∑

i α
2
i 6= 0 and H0 6∈ gm, since the field has characteristic zero.

Then, since gm is an hyperplane of h, gm ⊕KH0 = C(gm) = h.

Consider now a point f in the orbit of m. Let A be an invertible matrix
such that f = A.m = m ◦ A−1. Then, by Proposition 7, gf = AgmA−1 and
C(gf) = AC(gm)A−1. One easily checks that H satisfies the proposition
for f if and only if A−1HA satisfies it for m. With the first part, this proves
the existence and unicity of H.

This proposition yields the following algorithm for the computation of the
exponents α1, . . . , αn. We assume that the first three steps of the algorithm
of Theorem 15 have executed successfully.

(a) Set up and solve the linear system which expresses that Tr[H] = d,
Tr[HBi] = 0 and HBi = BiH for all i = 1, . . . , n − 1. Here
(B1, . . . , Bn−1) is the basis of gf computed at step 1 of the algorithm
of Theorem 15. The system’s unknowns are the n2 entries of H.

(b) Compute the eigenvalues α1, . . . , αn of H.

Note that the system constructed at step (a) is overdetermined: it has Θ(n3)
equations but only n2 unknowns. Proposition 16 guarantees that the system
has a unique solution H, and that the eigenvalues of H are the exponents
α1, . . . , αn. We refer to Section 2.1 for the computation of eigenvalues at
step (b).

17

5 Bivariate projections

In this section we present a probabilistic black box algorithm that finds a
factorization into products of linear forms whenever this is possible, without
any assumption of linear independence of the linear forms. As explained
before this can be done with the algorithm by Kaltofen and Trager [21].

We assume that the input polynomial is in K[x1, . . . , xn] where K is
infinite. In contrast to Section 4, we do not need to assume that K is of
characteristic 0. The hypothesis that K is infinite is needed because the
algorithm draws random elements from “large enough” but finite subsets
S ⊆ K. The algorithm also applies to a finite field if K is large enough for
this, or if we can draw points from a large enough field extension.

As in [23, 21] we rely on bivariate projections but we present a simplified
algorithm which takes advantage of the fact that we are trying to factor poly-
nomials of a special form (another simple algorithm based on a different idea
is presented in the next section). In these two papers, a factorization of the
input polynomial is recovered from a single bivariate projection (see Step R
in [23] and Step 1 in [21] 10). By contrast, we will recover the solution to our
problem from several projections as in e.g. [17, 25]. A recurring difficulty
with projection-based algorithms is that when we try to “lift” the solutions of
problems on a lower-dimensional space to a solution of the original problem,
the lift may not be unique. We first present in Section 5.1 a solution under
an additional assumption which guarantees uniqueness of the lift. We then
lift (as it were) this assumption in Section 5.2.

We assume that a polynomial time factorization algorithm for polyno-
mials in K[x, y] is available. It is explained in [22] how to obtain such an
algorithm from a univariate factorization algorithm for the field of rational
numbers, and more generally for number fields and finite fields. In the case of
absolute factorization, polynomial time algoritms were first given by Gao [16]
and by Chèze and Lecerf [12]. The complexity of the latter algorithm was
analyzed in [12] for the algebraic (unit cost) model of computation. The com-
plexity of the former algorithm was analyzed in [16] for an input polynomial
with coefficients in a finite field Fq.

11

Without loss of generality, we’ll assume that our input f is in
K[x1, . . . , xn] with n ≥ 4. Indeed, if there are only 3 variables we can set
g(x1, x2) = f(x1, x2, 1), use the bivariate algorithm to factor g as a product
of affine forms, and homogonenize the result to obtain a factorization of f .

Note that the homogenization step includes a multiplication by x
deg(f)−deg(g)
3 .

10More precisely, the construction of the black boxes for the irreducible factors of f

requires a single projection. Evaluating these black boxes at an input point requires
another bivariate projection, see Step A in [21]

11The algorithm also works for fields of characteristic 0, but a precise analysis of its
complexity was left for future work.

18

5.1 A uniqueness condition

In this section we assume that our input f(x1, . . . , xn) can be factorized as

f(x) = λ.l1(x)
α1 · · · lk(x)

αk (4)

where the linear form li is not proportional to lj if i 6= j, and λ is a nonzero
constant. We would like to recover λ, the exponents αi’s and the li’s (note
that each linear forms is defined only up to a constant).

Write li(x) =
∑n

j=1 lijxj. In order to guarantee “uniqueness of the lift”
we make the following temporary assumption:

(*) The k coefficients li1 are distinct and nonzero and lin = 1 for all i.

The algorithm is as follows.

1. For j = 2, . . . , n− 1 define gj(x1, xj) = f ◦ πj where the projection πj
sends variable xn to the constant 1, leaves x1 and xj unchanged and
sets all other variables to 0. Compute the dense representation of the
gj ’s by interpolation.

2. Using the bivariate factorization algorithm, write each gj as

gj(x1, xj) = λ.
∏k

i=1(aijx1 + bijxj + 1)βij .

3. At the beginning of this step, each of the n − 2 tuples (a1j , . . . , akj)
is a permutation of the tuple (l11, . . . , lk1). We reorder the factors in
the factorizations of the gj from step 2 to make sure that the n − 2
tuples are identical (i.e., its elements always appear in the same order).
After reordering, the n− 2 tuples of exponents (β1j , . . . , βkj) will also
become identical. We therefore obtain factorizations of the form:

gj(x1, xj) = λ.
k
∏

i=1

(aix1 + cijxj + 1)γi .

4. We output the factorization:

f(x1, . . . , xn) = λ.
k
∏

i=1

(aix1 + ci2x2 + · · ·+ ci,n−1xn−1 + xn)
γi .

The main issue regarding the correctness of this algorithm is to make sure
that we have correctly combined the factors of the gj ’s to obtain the factors
of f . This is established in the next proposition. For an example of what can
go wrong without assumption (*) consider the following two polynomials:

f1 = (x1 + x2 + x3 + x4)(x1 + 2x2 + 2x3 + x4)

19

and
f2 = (x1 + x2 + 2x3 + x4)(x1 + 2x2 + x3 + x4).

At step 1 of the algorithm, these two polynomials are mapped to the same
pair of bivariate polynomials:

g2 = (x1 + x2 + 1)(x1 + 2x2 + 1), g3 = (x1 + x3 + 1)(x1 + 2x3 + 1)

and there is no unique way of lifting {g2, g3} to an input polynomial. Another
difficulty is that the factorization pattern of f (i.e., the set of exponents
{α1, . . . , αk}) could change after projection, for instance

f = (x1 + x2 + x3 + x4)(x1 + 2x2 + x3 + x4)

is mapped to

g2 = (x1 + x2 + 1)(x1 + 2x2 + 1), g3 = (x1 + x3 + 1)2.

Proposition 17. The above algorithm correctly factorizes the polynomials
of form (4) that satisfy assumption (*).

Proof. Since lin = 1 for all i we have λ = f(0, · · · , 0, 1) = gj(0, · · · , 0) for all
j = 2, . . . , n− 1. Each gj admits the factorization:

gj(x1, xj) = λ.
k
∏

i=1

(li1x1 + lijxj + 1)αj (5)

All these polynomials therefore have same factorization pattern as f (note in
particular that the affine forms li1x1+ lijxj+1 are nonconstant since li1 6= 0;
and two of these forms cannot be proportional since the li1 are distinct). It
follows that the factorization of gj discovered by the algorithm at step 2 is
identical to (5) up to a permutation, i.e., we have aij = lσj(i)1, bij = lσj(i)j

and βij = ασj(i) for some permutation σj ∈ Sk. Since the li1 are distinct,
after reordering at step 3 these n − 2 permutations become identical, i.e.,
we have ai = lσ(i)1, cij = lσ(i)j and γi = ασ(i) for some permutation σ.
Finally, at step 4 the algorithm outputs the correct factorization f(x) =
λ.

∏k
i=1 lσ(i)(x)

ασ(i) .

5.2 General case

In this section we present a black box algorithm that factors a homogeneous
polynomial f ∈ K[x1, . . . , xn] of degree d into a product of d linear forms
whenever this is possible, thereby lifting assumption (*) from Section 5.1.
The algorithm is as follows.

1. Set g(x) = f(A.x) where A ∈ Mn(K) is a random matrix.

20

2. Attempt to factor g with the algorithm of Section 5.1. If this fails,
reject f . In case of success, let g′(x) = λ.l1(x)

α1 · · · lk(x)
αk be the

factorization output by this algorithm.

3. Check that f(x) = g′(A−1.x) and output the corresponding factoriza-
tion.

The random matrix at step 1 is constructed by drawing its entries indepen-
dently at random from some large enough finite set S ⊆ K. The point of this
random change of variables is that g will satisfy assumption (*) of Section 5.1
with high probability if f can be factored as a product of linear forms. The
(quite standard) arguments needed to estimate the probability of success are
presented in the proof of Theorem 18. Note also that by the Schwarz-Zippel
lemma, A will be invertible with high probability.

At step 2 we need a black-box for g. Such a black box is easily obtained
by composing the black box for f with the map x 7→ A.x.

At step 3, we check the polynomial identity f(x) = g′(A−1.x) by evalu-
ating the left and right-hand sides at one random point.

Theorem 18. The above algorithm runs in polynomial time and determines
whether f can be written as a product of linear forms. It outputs such a
factorization if there is one.

Proof. By the Schwarz-Zippel lemma, any factorization of f output at step 3
will be correct with high probability. So we only need to prove the converse:
if f can be factored as a product of linear forms, the algorithm finds a correct
factorization with high probability. Suppose therefore that

f(x) = L1(x)
α1 · · ·Lk(x)

αk

where no two linear forms Li, Lj in this expression are proportional. Then
g(x) = f(A.x) can be written as

g(x) = ℓ1(x)
α1 · · · ℓk(x)

αk

where ℓi(x) = Li(A.x). If A is invertible, the linear forms in this expression
will not be proportional. The coefficients of these linear forms are given by
the expression:

ℓij =

n
∑

p=1

LipApj . (6)

If the entries Apj of A are drawn from a set S ⊂ K, ℓin = 0 with probability
at most 1/|S| since Li 6≡0. These n coefficients will all be nonzero with
probability at least 1 − n/|S|; in this case we can factor out λ =

∏k
i=1 ℓ

αi

in

to make sure that the coefficient of xn in each linear form is equal to 1 as
required by assumption (*). This gives the factorization

g(x) = λ.l1(x)
α1 · · · lk(x)

αk

21

where li(x) = ℓi(x)/ℓin. The same argument as for ℓin shows that ℓi1 and
therefore li1 will be nonzero with high probability. To take care of assump-
tion (*), it remains to check that the li1 will be distinct with high probability.
The condition li1 6= lj1 is equivalent to ℓi1ℓjn − ℓj1ℓin 6= 0. By (6) this ex-
pression can be viewed as a quadratic form in the entries of A. From unique
factorization and the hypothesis that the linear forms Li, Lj are not propor-
tional it follows that this quadratic form is not identically 0. We conclude
again that it will be nonzero with high probability by the Schwarz-Zippel
lemma.

We have established that g(x) = f(A.x) satisfies (*) with high probabil-
ity. In this case, by Proposition 17 the factorization of g at step 2 of the
algorithm and the verification of the polynomial identity at step 3 will also
succeed.

6 Identifying the hyperplanes and their multiplici-

ties

If a polynomial f can be factored as a product of linear forms, its zero set
Z(f) is a union of (homogeneous) hyperplanes. In this section we present
an algorithm based on this simple geometric fact.

We can identify each hyperplane in Z(f) by finding n− 1 nonzero points
that lie on it. Assume that f can be written as f(x) = λ.l1(x)

α1 · · · lk(x)
αk

where the linear forms li are not proportional. We will need a total of k(n−1)
points on Z(f) to identify the k hyperplanes. Our algorithm begins with the
determination of these k(n− 1) points.

1. Pick a random point a ∈ Kn and n − 1 random vectors v1, . . . , vn−1

in Kn (or representatives of points in P(Kn) to be more precise).

Let ∆i be the line of direction vi going through a. Compute the inter-
section ∆i ∩ Z(f) for i = 1, . . . , n − 1.

2. Output the k(n−1) intersection points a1, . . . , ak(n−1) found at step 1.

In the sequel, we assume that f(a) 6= 0. This holds with high probability by
the Schwarz-Zippel lemma.

At step 1 we compute ∆i ∩ Z(f) by finding the roots of the univari-
ate polynomial g(t) = f(a+ tvi). We obtain one point on each hyperplane
Z(l1), . . . , Z(lk) except if vi belongs to one of these hyperplanes. This can
happen only with negligible probability. Moreover, these k points are dis-
tinct except if ∆i goes through the intersection of two of these hyperplanes.
Again, this happens with negligible probability (we explain in the proof of
Theorem 19 how to obtain explicit bounds on the probabilities of these bad
events). Since a 6∈ Z(f), with high probability we find a total of k(n−1) dis-
tinct points as claimed at step 2. Moreover, each hyperplane Z(li) contains

22

exactly n − 1 points. Note that at step 1 we have also determined k if this
parameter was not already known in advance.

At the next stage of our algorithm we determine the k hyperplanes. We
first determine the hyperplane going through a1 as follows:

3. Find n − 2 points b2, . . . , bn−1 in the set {a2, . . . , ak(n−1)} such that
each line (a1bj) is included in Z(f).

4. Output the linear subspace H1 = Span(a1, b2, . . . , bn−1).

At step 3 we can find out whether a line (a1aj) is included in Z(f) by checking
that the univariate polynomial g(t) = f(ta1 + (1 − t)aj) is identically 0.
This can be done deterministically with k − 1 calls to the black box for f
(indeed, if g 6≡0 this polynomial has at most k roots, and we already know
that g(0) = g(1) = 0). Alternatively, we can perform a single call to the
black box by evaluating g at a random point.

Assume for instance that Z(l1) is the hyperplane going through a1. In
the analysis of the first two steps we saw that (with high probability) a1
does not lie on any other Z(lj), and that exactly n− 2 points b2, . . . , bn−1 in
{a2, . . . , ak(n−1)} lie on Z(l1). The algorithm identifies these points at step 3
(we will find exactly one point on each line ∆i). It follows that the subspace
H1 output at step 4 is included in Z(l1). To conclude that H1 = Z(l1),
it remains to show that H1 is of dimension n − 1. Assume without loss of
generality that {a1} = ∆1∩Z(l1) and {bj} = ∆j ∩Z(l1) for j = 2, . . . , n−1.
Then a1 = a+ t1v1 and bj = a+ tjvj for j = 2, . . . , n− 1. Here v1, . . . , vn−1

are the directions chosen at step 1, and t1, . . . , tn−1 are appropriate nonzero
scalars. With high probability, the n vectors a, v1, . . . , vn−1 are linearly in-
dependent. In this case, the family a+ t1v1, . . . , a+ tn−1vn−1 is of rank n−1
as desired.

The above analysis shows that steps 3 and 4 identify H1 = Z(l1) with
high probability. The k − 1 remaining hyperplanes can be identified by
repeating this procedure. For instance, to determine the second hyperplane
H2 we will remove the points a1, b2, . . . , bn−1 (which lie on H1) from the set
{a1, . . . , ak(n−1)} and we will determine the hyperplane going through the
first of the (k − 1)(n − 1) remaining points.

In the next stage of the algorithm we determine the multiplicities αi of
the linear forms li. This is done as follows:

5. Consider again the random point a and the random vector v1 drawn at
step 1. We have already computed the intersection points with H1 =
Z(l1), . . . ,Hk = Z(lk) of the line ∆1 of direction v1 going through a.
Recall that this was done by computing the roots t1, . . . , tk of the
univariate polynomial g(t) = f(a+ tv1).

Let us assume without loss of generality that these roots are ordered
so that {a + t1v1} = H1 ∩ ∆1, . . . , {a + tkv1} = Hk ∩ ∆1. Now we

23

compute the multiplicities α1, . . . , αk of t1, . . . , tk as roots of g and we
output these multiplicities.

If f(x) = l1(x)
α1 · · · lk(x)

αk , the multiplicities of the roots of g are indeed
equal to α1, . . . , αk except if ∆1 goes through the intersection of two of the
hyperplanes H1, . . . ,Hk. As already pointed out in the analysis of the first
two steps, this happens only with negligible probability. Note that there is
nothing special about ∆1 at step 5: we could have used a new random line ∆
instead.

The final stage of the algorithm is a normalization step.

6. At the beginning of this step we have determined linear forms li and
multiplicities αi so that f(x) = λ.l1(x)

α1 · · · lk(x)
αk for some con-

stant λ. We determine λ by one call to the black box for f at a
point where the li do not vanish (for instance, at a random point).

We have obtained the following result.

Theorem 19. Let f ∈ K[x1, . . . , xn] be a polynomial of degree d that ad-
mits a factorization f(x) = λ.l1(x)

α1 · · · lk(x)
αk over K, where no two linear

forms li are proportional. The above algorithm determines such a factoriza-
tion with high probability, and the number of calls to the black box for f is
polynomial in n and d.

Assume moreover that K = Q and that a factorization of f where li ∈
Q[x1, . . . , xn] is possible. If the coefficients of these linear forms are of bit
size at most s then all calls to the black box are made at rational points of
bit size polynomial in n, d and s.

Proof. The correctness of the algorithm follows from the above analysis. Let
us focus therefore on the case K = Q of the theorem. This result relies
on a standard application of the Schwarz-Zippel lemma. More precisely, as
explained in the analysis of the first two steps, we want to pick a random
point a such that f(a) 6= 0 and random vectors v1, . . . , vn−1 that do not
belong to any of the hyperplanes. Moreover, the line ∆i defined at step 1
should not go through the intersection of two hyperplanes. Let us pick the
coordinates of a and of the vi independently at random from a finite set
S ⊆ Q. By the Schwarz-Zippel lemma, Pr[f(a) = 0] ≤ k/|S| ≤ d/|S|; and
for any linear form lj we have Pr[lj(vi) = 0] ≤ 1/|S|. As to ∆i, let us bound
for instance the probability of going through the intersection of the first two
hyperplanes. Since ∆i is the line of direction vi going through a, it suffices
to make sure that l2(a)l1(vi)− l1(a)l2(vi) 6= 0. By the Schwarz-Zippel lemma
this happens with probability at least 1− 2/|S|.

Another constraint arising in the analysis of steps 3 and 4 is
that a, v1, . . . , vn−1 should be linearly independent. By the Schwarz-
Zippel lemma, the corresponding determinant vanishes with probability at
most n/|S|.

24

Note that the bounds obtained so far are independent of s. This param-
eter comes into play when we compute the intersections ∆i∩Z(f) at step 1.
Recall that we do this by finding the roots of the univariate polynomial
g(t) = f(a+ tvi). The roots are:

t1 = −l1(a)/l1(vi), . . . , tk = −lk(a)/lk(vi).

Then at step 3 we call the black box at points belonging to lines going
through two of the k(n− 1) intersections points found at step 1.

The algorithm presented in this section relies on a simple and appealing
geometric picture, but it suffers from a drawback compared to the algorithms
of sections 4 and 5:

Remark 20. Assume that K = Q. The above algorithm may need to call
the black box for f at algebraic (non rational) points in the case where the
linear forms li do not have rational coefficients. This is due to the fact that
we call the black box at points that lie on the hyperplanes li = 0.

By contrast, the algorithms of sections 4 and 5 always call the black box
at integer points even when f has algebraic (non rational) coefficients. To
see why this is true for the algorithm of Section 5, note that the main use
of the black box is for performing bivariate interpolation. In Section 4, the
black box is used only for the computation of the Lie algebra of f following
Lemma 22 of [25]. More details on the black box calls performed by our three
algorithms can be found in the appendix.

A Appendix: Cost of calls to the black box

In this section we compare the number of calls to the black box made by
our three algorithms (for the cost of other operations, see Appendix B). A
more thorough analysis would also take into account the size of points at
which the black box is queried (for this, Remark 20 would become especially
relevant).

It turns out that the hyperplane algorithm of Section 6 makes fewer calls
to the black box than the other two. We also analyze these algorithms in the
“white box” model, where we have access to an arithmetic circuit computing
the input polynomial f . In that model, the cost of function evaluations
becomes smallest for the Lie-theoretic algorithm of Section 4.

A.1 Lie-theoretic algorithm

In Section 4, the black box is used only for the computation of the Lie algebra
of f . By Lemma 5, this boils down to the determination of linear dependence
relations between the n2 polynomials xj

∂f
∂xi

. The general problem of finding
linear dependence relations between polynomials given by black box access
is solved by the following lemma (see appendix A1 of [24] for a proof).

25

Lemma 21 (Lemma 14 in [25]). Let (f1(x), f2(x), . . . , fm(x)) be an m-tuple
of n-variate polynomials. Let P = {ai; 1 ≤ i ≤ m} be a set of m points in
Kn. Consider the m×m matrix

M = (fj(ai))1≤i,j≤m.

With high probability over a random choice of P, the nullspace of M consists
precisely of all the vectors (α1, . . . , αm) ∈ Km such that

m
∑

i=1

αifi(x) ≡ 0.

We therefore need to evaluate the n polynomials ∂f/∂xi at n2 random
points. Note however that we have only access to a black box for f rather
than for its partial derivatives. As is well known, it is easy to take care of this
issue by polynomial interpolation. Suppose indeed that we wish to evaluate
∂f/∂xi at a point a. Then we evaluate f at d+1 = deg(f)+1 points on the
line ∆ which goes through a and is parallel to the i-th basis vector. From
these d+1 values we can recover f and ∂f/∂xi on ∆. We conclude that the
Lie-theoretic algorithm performs O(dn3) calls to the black box for f .

These n3 polynomial interpolations also have a cost in terms of arith-
metic operations, but it is relatively small. Suppose indeed that we wish
to compute ∂f/∂x1 at a point a = (a1, . . . , an) with a1 6= 0. Consider
the univariate polynomial g(x) = f(a1x, a2, . . . , an). It suffices to compute
g′(1) = a1∂f/∂x1(a). We can obtain g′(1) as a fixed linear combination
of g(0), g(1), . . . , g(d). One polynomial interpolation therefore requires one
linear combination of values of f and one division (by a1). We conclude
for use in Appendix B.1 that the arithmetic cost of these n3 interpolations
is O(n3d).

The Lie-theoretic algorithm admits an interesting optimization when the
black box is implemented by an arithmetic circuit. Suppose indeed that we
have access to an arithmetic circuit of size s computing f (this is the so-
called “white box” model). The above analysis translates immediately into
an arithmetic cost of order sdn3 for the evaluation of the partial derivatives
of f at our n2 random points. But one can do much better thanks to the
classical result by Baur and Strassen [1] (see also [30]), which shows that the
n partial derivatives of an arithmetic circuit of size s can be evaluated by a
single arithmetic circuit of size O(s). This reduces the cost of evaluations
from O(sdn3) to O(sn2). Moreover, the arithmetic cost of interpolations
drops from O(n3d) to 0 since we do not perform any interpolation in the
white box model.

A.2 Bivariate projections

The algorithm of Section 5 recovers a factorization of the input polynomial f
from the factorization of n− 2 bivariate projections g1, . . . , gn−2. The black

26

box is used only to obtain each gj in dense form by interpolation.12 This
can be done deterministically by evaluating gj on any set of the form S × S
where |S| = d+1. We therefore need a total of O(nd2) function evaluations.
Note that this is only O(n3) for d = n, i.e., smaller than the number of black
box call performed by the Lie-theoretic algorithm. In general the bounds
dn3 and nd2 obtained for our first two algorithms are not comparable since
d could be much larger than n (this can happen when the exponents αi in (1)
are large enough).

There is no obvious improvement to this analysis of our second algorithm
in the “white box” model described in Section A.1: the O(nd2) function
evaluations translate into an arithmetic cost of order snd2. Now the white
box version of the Lie-theoretic algorithm becomes more interesting from the
point of view of the cost of function evaluations: as explained above, this
cost is only O(sn2). By contrast, this cost is Ω(sn3) for the algorithm of
Section 5 since d ≥ n.

A.3 The hyperplane algorithm

In order to factor an input polynomial f(x) = λ.l1(x)
α1 · · · lk(x)

αk , this
algorithm determines the hyperplanes Hi = Z(li) together with their mul-
tiplicities αi. The black box calls are performed at steps 1, 3 and 6 of the
algorithm. We’ll focus on steps 1 and 3 since Step 6 performs only one call
to the black box.

At Step 1 we compute the intersection of n− 1 lines ∆1, . . . ,∆n−1 with
Z(f), the zero set of f . For this we need to interpolate f on each line; this
requires a total of (n− 1)(d+ 1) calls to the black box.

The determination of a single hyperplane of Z(f) is explained at step 3
of the algorithm, which we repeat here for convenience ({a2, . . . , ak(n−1)} are
the intersection points found at Step 1):

3. Find n − 2 points b2, . . . , bn−1 in the set {a2, . . . , ak(n−1)} such that
each line (a1bj) is included in Z(f).

As explained in Section 6, the test (a1bj) ⊆ Z(f) can be implemented with
one call to the black box at a random point on the line (a1bj). This test is
repeated at most k(n−1) times. We therefore need O(kn) calls to determine
a single hyperplane. There are k hyperplanes to determine, for a total cost
of order k2n. We conclude that this algorithm makes O(dn + k2n) calls
to the black box. The two terms dn and k2n in this bound are in general
incomparable since d ≥ k is the only relation between d = deg(f) and the
number k of distinct factors.

12There is also an additional call to the black box for verification of the final result, see
Step 3 in Section 5.2.

27

In order to compare with the Lie-theoretic algorithm we whould set k = n
since that algorithm applies only in this situation. The cost of the hyper-
plane algorithm becomes O(dn+n3); this is smaller than the O(dn3) bound
obtained for the Lie-theoretic algorithm. Note however that the latter algo-
rithm becomes cheaper in the white box model: as explained in Section A.1
the arithmetic cost of function evaluations is only O(sn2) when f is given by
an arithmetic circuit of size s. This should be compared to a cost of order
s(dn+n3) for the hyperplane algorithm (like the bivariate algorithm, it does
not seem to admit any interesting optimization in the white box model).

Finally, the hyperplane algorithm should be compared to bivariate pro-
jections. In number of calls to the black box, the latter algorithm is always
as expensive or more expensive than the former (compare dn+ k2n to d2n).

B Appendix: Cost of other operations

In this section we continue the analysis of our three algorithms. Appendix A
dealt with the number of calls to the black box. Here we estimate the cost
of “other operations”, which consist mostly of:

• arithmetic operations, in K or in an extension of K.

• certain non-algebraic steps such as eigenvalue computations or the fac-
torization of univariate polynomials.

The bounds that we give should only be viewed as very rough estimates of
the algorithms’ complexity since we do not perform a full analysis at the
level of bit operations.13

B.1 Lie-theoretic algorithm

In this section we analyze more precisely the algorithm of Section 4.2. We’ll
focus first on the complexity of deciding the existence of a suitable factor-
ization over K. This is done in the first three steps of the algorithm. Note
that the corresponding steps for the case of equal exponents (Section 4.1)
only differ by the presence of n − 1 trace computations. The cost of trace
computations turns out to be negligible, so this analysis applies to the two
versions of our algorithm.

At Step 1 of the algorithm we compute a basis of the Lie algebra of
f . The Lie algebra is the nullspace of a certain matrix M of size m = n2

which we have already computed as explained in Appendix A.1. A basis of
the nullspace can be computed with O(m3) arithmetic operations by Gaus-
sian elimination, and with O(mθ) operations using fast linear algebra [4].

13 Note that a complexity analysis at the level of bit operations is also omitted from
the paper by Kalftofen and Trager [21] on black box factorization.

28

Here θ denotes any exponent strictly larger than ω, the exponent of matrix
multiplication.

At Step 3 we first check that the matrices B1, . . . , Bn−1 commute, where
B1, . . . , Bn−1 is the basis of the Lie algebra found at Step 1. This can be
done in O(n2+ω) arithmetic operations. This is negligible compared to the
cost O(n2θ) of the first step since θ > ω ≥ 2.

Then we check that the Bi are all diagonalizable. Recall from Section 2.1
that Bi is diagonalizable over K iff its minimal polynomial mi has only
simple roots. The minimal polynomial can be computed in O(nθ) arithmetic
operations [20, 37]. Then we need to check that gcd(mi,m

′
i) = 1. The

cost of computing the gcd is negligible compared to nθ. The cost of the
n− 1 diagonalizability tests is O(n1+θ), which is again negligible compared
to Step 1. We conclude that the existence of a suitable factorization of f
can be decided in O(n2θ) arithmetic operations.

At Step 4 we perform a simultaneous diagonalization of the Bi. As
suggested in Section 2.2 and in Section 4, this can be done by diagonalizing
a random combination R of the Bi’s. For this, as recalled in Section 2.1
we can first compute the eigenvalues λ1, . . . , λn of R (a non algebraic step).
Then we compute a basis of ker(R−λiI) for all i. One basis can computed in
O(nθ) arithmetic operations, so O(n1+θ) is a rough estimate on the number
of arithmetic operations needed to compute a transition matrix T (we will
not try to improve it since it is dominated by the cost of Step 1). Note that
these arithmetic operations take place in K[λ1, . . . , λn], so counting such an
operation as “one step” is probably most appropriate when the λi lie in K,
or when we work with approximations of the λi.

Once T is known, the n − 1 diagonal matrices Di = T−1BiT can be
computed at a cost of O(n1+θ) arithmetic operations. Then, as explained at
Step 5, we obtain the exponents αi as the orthogonal of the space spanned
by the Di in the space of diagonal matrices. Alternatively, the αi can be
obtained without knowledge of T as explained after Proposition 16: the n
exponents are the eigenvalues of matrix H which is obtained as the unique
solution of a system of Θ(n3) equations in n2 unknowns. This approach
looks rather expensive since solving a square system in n2 unknowns would
already take O(n2θ) arithmetic operations.

The above analysis can be summarized as follows.

Proposition 22. The algorithm of Section 4.2 decides in O(n2θ + n3d)
arithmetic operations whether the input polynomial f admits a factorization
of the form (1) over K. If such a factorization exists, it can be computed
within the same number of arithmetic operations and the additional compu-
tation of the eigenvalues of a matrix R ∈ Mn(K).

In the white box model of Appendix A.1, the number of arithmetic oper-
ations drops from O(n2θ + n3d) to O(n2θ).

The term n3d in Proposition 22 is due to the arithmetic cost of inter-

29

polations as explained in Appendix A.1. Towards a more thorough analysis
of this algorithm one could attempt to estimate its bit complexity, assum-
ing for instance for simplicity that f admits a factorization with the li in
Z[x1, . . . , xn].

B.2 Bivariate projections

The algorithm from Section 5 recovers a factorization of f from n − 2 bi-
variate factorization. A state of the art algorithm for the latter task can
be found in [28], where the following reduction from bivariate to univariate
factorization is provided.

Theorem 23. Let K be a field of characteristic 0, and F ∈ K[x, y] a bivariate
polynomial of degree dx in the variable x and dy in the variable y. There is a
probabilistic algorithm that factors F in O((dxdy)

1.5) arithmetic operations.
Moreover, the algorithm performs irreducible factorizations of polynomials in
K[y] whose degree sum is at most dx + dy.

We have omitted the cost of generating random field elements from the
statement of the theorem. A deterministic version of this result is also pro-
vided in [28], with a slightly higher arithmetic cost: O((dxdy)

(θ+1)/2) instead
of O((dxdy)

1.5). The univariate factorizations in Theorem 23 can be viewed
as an analogue of the eigenvalue computations in Proposition 22.

For an input polynomial f with coefficients in K, it may be the case that
a factorization into products of linear forms exists only in an extension K of
K. We will therefore need to apply Theorem 23 to such a field extension,
and the arithmetic operations in Theorem 23 will also take place in this
field extension. We have already made a similar remark for the algorithm of
Section 4 in Section B.1.

If the input f has degree d, we can take dx = dy = d and we conclude
that the algorithm of Section 5 will make O(nd3) arithmetic operations. For
d = n this is smaller than the arithmetic cost O(n2θ) in Proposition 22, but
the latter bound becomes smaller if d significantly larger than n.

A complete analysis should also take the cost of univariate factorizations
into account. Assume for instance that K = K = Q. A polynomial time
algorithm for this task was first by given Lenstra, Lenstra and Lovasz [29].
This remains a relatively expensive task despite several improvements (see [3]
for an exposition and more references). However, we only need to find the
linear factors of F (together with their multiplicities). This boils down to
finding the rational roots of a univariate polynomial, a task which (as al-
ready pointed out in Section 2.1) has an essential quadratic binary cost ([3],
Proposition 21.22).

As an alternative to Theorem 23 one may use the absolute factorization
algorithm by Chèze and Lecerf [12]. This algorithm only performs arithmetic
operations (no univariate factorization is involved). Moreover, the number

30

of arithmetic operations is barely higher: Õ(d3) instead of O(d3), where
the Õ notation hides logarithmic terms. We refer to [12] for a more precise
statement of their result and a description of the output representation. One
advantage of their algorithm is that all arithmetic operations take place in
the coefficient field K of the input polynomial, even if the factors only exist
in a field extension K. Finally, we note that their algorithm only applies to
squarefree bivariate polynomials. For a reduction from the general case to
the squarefree case we refer to Section 4.2 of [28].

So far, we have not addressed the arithmetic cost of converting from
black box representation to dense bivariate representation. As pointed out
in Section A.2, this can be done by interpolating each of the n− 2 bivariate
polynomials on a set of size (d+1)2. There are several ways of doing this at
negligible cost compared to dense bivariate factorization.

First, recall that a univariate polynomial of degree d can be interpolated
from its values at roots of unity in O(d log d) arithmetic operations using the
Fast Fourier Transform. The cost of univariate interpolation at an arbitrary
set of d+ 1 points is a little higher but remains Õ(d), see Section 10 of [40]
for details.

Returning to bivariate polynomials, one option is to use the two-
dimensional FFT. Its cost remains O(N logN), where N is the number of
interpolation points. Here, N = (d + 1)2 and we interpolate on S × S
where S is the set of (1 + d)-th roots of unity. Another option is to per-
form the Kronecker substitution y = xd+1 and interpolate the polynomial
g(x) = f(x, xd+1) using one of the aforementioned univariate methods. The
coefficients of f can be recovered uniquely from those of g.

B.3 The hyperplane algorithm

Recall that the algorithm proposed in Section 6 factors an input polynomial
f(x) = λ.l1(x)

α1 · · · lk(x)
αk from n− 1 univariate polynomial factorizations.

Each univariate polynomial is of the form g(t) = f(a + tvi) and its coeffi-
cients must be determined by interpolation at Step 1. As already mentioned
in Section B.2, this can be done in O(d log d) arithmetic operations by FFT
from d + 1 values of g. In order to obtain one value of g we must compute
the coordinates of a + tvi before calling the black box for f , at a cost of n
arithmetic operations. Interpolating g therefore takes O(d log d+ dn) arith-
metic operations. Since we have n − 1 such polynomials to interpolate, the
arithmtic cost of interpolations is O(dn(n + log d)).

The roots a1, . . . , ak(n−1) of the n− 1 univariate polynomials are used at
steps 3 and 4 to determine the zero sets of the li. At step 5, the multiplicities
of the roots of the first polynomial yield the exponents αi.

At step 3 we test whether the line (a1b) is included in Z(f), where b
is one the k(n − 1) roots. This is done by evaluating the black box at a
random linear combination ta1 + (1 − t)b. The coordinates of this point

31

can be computed in O(n) arithmetic operations. Repeating this for all the
k(n− 1) roots takes O(kn2) operations.

At step 4 we determine H1 = Span(a1, b2, . . . , bn−1), where the bi have
been found at Step 3. Finding an equation for H1 amounts to solving a
linear system, and can be done in O(nθ) arithmetic operations as recalled
in Appendix B.1. The combined cost of the determination of H1 at steps 3
and 4 is therefore O(kn2 + nθ). This is repeated for all the hyperplanes, at
a total cost of O(k(kn2 + nθ)) operations. We recall that these arithmetic
operations may take place in a field extension.

Finally, at Step 6 we evaluate the product
∏k

i=1 li(x)
αi at some point x

and divide f(x) by this product to determine the normalization factor λ.
If we use repeated squaring to evaluate the powers li(x)

αi , we can complete
Step 6 in O(k(n+log d)) arithmetic operations. Since k ≤ d this is negligible
compared to the cost of the univariate interpolations at Step 1. The above
analysis can be therefore be summarized as follows.

Proposition 24. The algorithm of Section 6 obtains a factorization of the
form f(x) = λ.l1(x)

α1 · · · lk(x)
αk using O(k(kn2+nθ)+dn(n+log d)) arith-

metic operations. The algorithm also needs to compute the roots of n − 1
univariate polynomials of degree d, and for one of these polynomials it needs
to determine the multiplicities of roots.

For comparison with the Lie-theoretic algorithm, setting k = n in Propo-
sition 24 yields a count of O(n4 + dn(n + log d)) arithmetic operations. If
d remains polynomially bounded in n, this is always smaller than the corre-
sponding O(n2θ + n3d) bound for the black box version of the Lie-theoretic
algorithm.14 In the white box model, the arithmetic cost of that algorithm
drops to O(n2θ). The Lie-theoretic algorithm therefore becomes preferable
from the point of view of the arithmetic cost when d exceeds n2θ−2.

Acknowledgements

P.K. would like to thank Gilles Villard for useful pointers to the literature on
computational linear algebra.

References

[1] Walter Baur and Volker Strassen. The complexity of partial derivatives. The-
oretical Computer Science, 22(3):317–330, 1983.

[2] Åke Björck. Numerical methods in matrix computations. Springer, 2016.

14We recall that the term n2θ comes from the computation of the Lie algebra of f ,
and the term n3d from the arithmetic cost of polynomial interpolation. The arithmetic
computations for these two tasks take place in the coefficient field K of f rather than in
a field extension.

32

[3] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf,
Bruno Salvy, and Éric Schost. Algorithmes efficaces en calcul formel. Published
by the authors, 2017.

[4] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory.
Springer, 1997.

[5] P Bürgisser and F Cucker. Condition: The geometry of numerical algorithms,
volume 349 of Grundlehren der Mathematischen Wissenschaften. Springer
Verlag, 2013.

[6] Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigder-
son. Alternating minimization, scaling algorithms, and the null-cone problem
from invariant theory. In Innovations in Theoretical Computer Science (ITCS),
2018.

[7] Peter Bürgisser and Christian Ikenmeyer. Deciding positivity of Littlewood–
Richardson coefficients. SIAM Journal on Discrete Mathematics, 27(4):1639–
1681, 2013.

[8] Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence ob-
structions in geometric complexity theory. In Proc. 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 386–395, 2016.

[9] Peter Bürgisser, Felipe Cucker, and Elisa Rocha Cardozo. On the condition
of the zeros of characteristic polynomials. Journal of Complexity, 42:72 – 84,
2017.

[10] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic
geometry and geometric modeling, Math. Vis., pages 237–247. Springer, Berlin,
2006.

[11] Enrico Carlini, Maria Virginia Catalisano, and Anthony V Geramita. The solu-
tion to the Waring problem for monomials and the sum of coprime monomials.
Journal of Algebra, 370:5–14, 2012.

[12] Guillaume Chèze and Grégoire Lecerf. Lifting and recombination techniques
for absolute factorization. Journal of Complexity, 23(3):380–420, 2007.

[13] Pierre Comon and Giorgio Ottaviani. On the typical rank of real binary forms.
Linear and multilinear algebra, 60(6):657–667, 2012.

[14] David Cox, John Little, and Donal O’shea. Using algebraic geometry, volume
185 of Graduate Texts in Mathematics. Springer, 2006.

[15] Richard DeMillo and Richard Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193–195, 1977.

[16] Shuhong Gao. Factoring multivariate polynomials via partial differential equa-
tions. Mathematics of computation, 72(242):801–822, 2003.

[17] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Polynomial
equivalence problems for sums of affine powers. To appear in Proc. ISSAC
2018.

33

[18] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A determin-
istic polynomial time algorithm for non-commutative rational identity test-
ing. In Proc. 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 109–117, 2016.

[19] Mark Giesbrecht. Fast algorithms for rational forms of integer matrices. In
Proceedings of the international symposium on Symbolic and algebraic compu-
tation, pages 305–311. ACM, 1994.

[20] Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM
Journal on Computing, 24(5):948–969, 1995.

[21] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of
numerators and denominators. Journal of Symbolic Computation, 9(3):301–
320, 1990.

[22] Erich Kaltofen. Polynomial-time reductions from multivariate to bi-and
univariate integral polynomial factorization. SIAM Journal on Computing,
14(2):469–489, 1985.

[23] Erich Kaltofen. Factorization of polynomials given by straight-line programs.
In Randomness and Computation, pages 375–412. JAI Press, 1989.

[24] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial
equivalence problem. In Symposium on Discrete Algorithms (SODA). Society
for Industrial and Applied Mathematics, January 2011.

[25] Neeraj Kayal. Affine projections of polynomials. In Proceedings of the 44th
Annual ACM Symposium on Theory of Computing (STOC), pages 643–662,
2012.

[26] Hidetsune Kobayashi, Tetsuro Fujise, and Akio Furukawa. Solving systems
of algebraic equations by a general elimination method. Journal of Symbolic
Computation, 5:303–320, 1988.

[27] Joseph M. Landsberg. Geometry and complexity theory, volume 169 of Studies
in Advanced Mathematics. Cambridge University Press, 2017.

[28] Grégoire Lecerf. New recombination algorithms for bivariate polynomial fac-
torization based on Hensel lifting. Applicable Algebra in Engineering, Com-
munication and Computing, 21(2):151–176, 2010.

[29] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[30] Jacques Morgenstern. How to compute fast a function and all its derivatives: A
variation on the theorem of Baur-Strassen. ACM SIGACT News, 16(4):60–62,
1985.

[31] Ketan Mulmuley, Hariharan Narayanan, and Milind Sohoni. Geometric com-
plexity theory III: on deciding nonvanishing of a Littlewood–Richardson coef-
ficient. Journal of Algebraic Combinatorics, 36(1):103–110, 2012.

[32] Ketan Mulmuley and Milind Sohoni. Geometric complexity theory I: An ap-
proach to the P vs. NP and related problems. SIAM Journal on Computing,
31(2):496–526, 2001.

34

[33] Ketan Mulmuley and Milind Sohoni. Geometric complexity theory II: Towards
explicit obstructions for embeddings among class varieties. SIAM Journal on
Computing, 38(3):1175–1206, 2008.

[34] Clément Pernet and Arne Storjohann. Faster algorithms for the characteristic
polynomial. In Proceedings of the 2007 international symposium on Symbolic
and algebraic computation, pages 307–314. ACM, 2007.

[35] J. T. Schwarz. Fast probabilistic algorithms for verification of polynomials
identities. Journal of the ACM, 27:701–717, 1980.

[36] Michael F Singer and Felix Ulmer. Linear differential equations and products
of linear forms. Journal of Pure and Applied Algebra, 117:549–563, 1997.

[37] Arne Storjohann. Deterministic computation of the Frobenius form. In Proc.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages
368–377, 2001.

[38] Mark van Hoeij, Jean-François Ragot, Felix Ulmer, and Jacques-Arthur Weil.
Liouvillian solutions of linear differential equations of order three and higher.
Journal of Symbolic Computation, 28(4-5):589–609, 1999.

[39] Gilles Villard. Fast parallel algorithms for matrix reduction to normal forms.
Applicable Algebra in Engineering, Communication and Computing, 8(6):511–
537, 1997.

[40] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge University press (third edition), 2013.

[41] J.H. Wilkinson. The perfidious polynomial. In G.H. Golub, editor, Studies in
numerical analysis, pages 1–28. American Mathematical Society, 1984.

[42] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic
and algebraic computation, pages 216–226. Springer, 1979.

35

	Introduction
	Connection with invariant theory
	Application to Waring decomposition
	Comparison with previous factorization algorithms
	On the choice of fields
	Complexity of our invariant-theoretic algorithm
	Organization of the paper

	Background
	Background on matrix diagonalization
	Simultaneous diagonalization
	Background on invariants and Lie algebras

	The orbit of a monomial
	Factorization into products of independent forms
	Equal exponents
	General case

	Bivariate projections
	A uniqueness condition
	General case

	Identifying the hyperplanes and their multiplicities
	Appendix: Cost of calls to the black box
	Lie-theoretic algorithm
	Bivariate projections
	The hyperplane algorithm

	Appendix: Cost of other operations
	Lie-theoretic algorithm
	Bivariate projections
	The hyperplane algorithm

