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We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two
dimensions, by means of numerical simulations of a rheological model for the polymer solution. The
flow is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number
is lower than the critical value for inertial instabilities, the rotational dynamics of the polymers
generates a chaotic flow similar to the so-called elastic-turbulence regime observed in extensible
polymer solutions. The temporal decay of the variance of the scalar field and its gradients shows
that this chaotic flow strongly enhances mixing.

I. INTRODUCTION

The mixing properties of laminar flows are generally
poor. In microfluidic applications, where the Reynolds
numbers are typically very low, various methods have
been developed to enhance the mixing efficiency of the
flow. These include the design of grooved walls, the in-
troduction of obstacles, the use of a local forcing, or the
addition of extensible polymers (e.g., Ref. [1]). In this
latter case, elastic stresses can generate instabilities at
vanishing fluid inertia that in turn lead to a chaotic flow
known as elastic turbulence [2, 3]. It was shown in Ref. [4]
that a regime with features similar to those of elastic
turbulence can also be obtained via the addition of rigid
rodlike polymers, i.e. polymer stretching is not essential
for the generation of a chaotic flow at small Reynolds
numbers.

The system considered in Ref. [4] is a dilute solution
of rodlike polymers driven by a sinusoidal parallel body
force (the Kolmogorov force) at a Reynolds number lower
than the critical value for inertial hydrodynamic insta-
bilities. A similar setting was used previously to study
elastic turbulence induced by extensible polymer solu-
tions [5]. For low rodlike polymer concentrations, the
flow is laminar and only displays small deviations from
the Newtonian regime. However, when the concentra-
tion is increased beyond a critical value, the flow becomes
chaotic, the streamlines oscillate and thin vorticity fila-
ments form. An inspection of the snapshots of the vor-
ticity and polymer-orientation fields show that perturba-
tions in the flow are associated with strong deviations
of the polymer orientation from the mean-flow direction.
The kinetic energy fluctuates around a stationary value
lower than that of the laminar case and the mean power
required to maintain the mean flow grows with the con-
centration, which signals a corresponding increase of the
kinetic-energy dissipation. In this regime, the Reynolds

stress is negligible compared to the polymer and viscous
ones. In particular, the polymer stress increases as a
function of polymer concentration. Thus, the chaotic dy-
namics is entirely due to the rotation of polymers, while
fluid inertia plays no role. This is further confirmed by
the analyis of the kinetic-energy balance in Fourier space.
The nonlinear coupling between different Fourier modes
due to inertia is indeed negligible; the dynamics of the
flow rather results from a scale-by-scale balance between
polymer transfer and viscous dissipation. Finally, the
kinetic-energy spectrum displays a power law k−α with
α 6 3, where k is the wave number. A large number of
Fourier modes are thus excited, but the energy is concen-
trated on the large scales and fluctuations decay rapidly
with the wave number. It should be noted that the ex-
ponent α is not universal, since it depends on polymer
concentration and the details of the forcing.

Even though the chaotic regime described above is not
generated by polymer stretching, it is similar to elastic
turbulence in solutions of extensible polymers. The goal
of this paper is to show that the addition of rodlike poly-
mers can be effectively used to enhance mixing at small
Reynolds numbers.

II. PASSIVE-SCALAR DISPERSION IN A
SOLUTION OF RODLIKE POLYMERS

The mixing efficiency of a flow can be quantified by
studying its ability to disperse a passive scalar field, such
as a colorant injected in the fluid.

We consider a scalar field θ(x, t) with diffusivity D in
a two-dimensional solution of rodlike polymers. The dy-
namics of θ is ruled by the advection–diffusion equation

∂tθ + u · ∇θ = D∆θ , (1)

with u(x, t) being the incompressible velocity field of the
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(a1) ηp = 0, t = 0 (a2) ηp = 0, t = 0.6 (a3) ηp = 0, t = 1.2

(b2) ηp = 5, t = 0 (b3) ηp = 5, t = 0.6 (b4) ηp = 5, t = 1.2

FIG. 1: Snapshots of the passive scalar field θ(x, t) at t = 0, 0.6, 1.2 (from left to right) for ηp = 0 (top) and ηp = 5
(bottom) and initial condition B. Here Pe = 1000.

solution. The polymer phase is described by the unit-
trace symmetric tensor field R(x, t), the first eigenvector
of which yields the average orientation of polymers in a
volume element centred at x at time t. In Doi and Ed-
wards’ decoupling approximation the fluid and polymer
phases evolve according to the following equations [6]:

∂tu + u · ∇u = −∇p+ (ν + νp)∆u (2)

+6νηp∇ · [(∇u : R)R] + f ,

∂tR + u · ∇R = (∇u)R + R(∇u)> (3)

−2(∇u : R)R− 2α(2R− I),

where (∇u)ij = ∂ui/∂xj , p is pressure, ν is the kinematic
viscosity of the solvent, I is the identity matrix, and νp
and α are proportional to the orientational diffusivity of
polymers. In numerical simulations a diffusive term κ∆R
(we used κ = 3 × 10−3) is added to Eq. (3) in order to
improve stability [7]. The parameter ηp determines the
coupling between the polymer phase and the fluid and
is an increasing function of the polymer concentration.
The values of ηp considered here (ηp 6 5) correspond

to a dilute solution [4, 8]. The above polymer model
was studied extensively in the turbulent-drag-reduction
regime at high Reynolds number [9].

The system is driven by the Kolmogorov force f(x) =
(0, F sin(Kx)), where F and K are the amplitude and
the wave number of the force, respectively. In the New-
tonian case (ηp = 0), the Navier–Stokes equations ad-
mit the laminar solution u(x) = (0, U0 sin(Kx)) with
U0 = F/νK2. This solution is stable if the Reynolds
number Re = U0/νK is smaller than the critical value

Rec =
√

2 (e.g., Ref. [10]). In the following, we take
Re = 1 < Rec in order to ensure that inertial effects are
negligible and that the chaotic regime arises solely from
the rotational dynamics of the rodlike polymers.

Equations (1), (2) and (3) are solved on a 2π×2π- do-
main periodic in both directions by using a 1/2-dealiased
pseudospectral method on a grid with 10242 mesh points.
Time integration is performed via a fourth-order Runge–
Kutta scheme. In the numerical simulations presented
below, we use K = 8, F = 512 and ν = 1. The molec-
ular diffusivity is D = 10−3 for most of the simulations



3

 0.1

 1

 0  0.5  1  1.5  2  2.5  3

<
θ

2
>

(t
)/

<
θ

2
>

(0
)

t

A ηp=0
ηp=3
ηp=5

B ηp=0
ηp=3
ηp=5

FIG. 2: Temporal decay of the variance 〈θ2〉(t),
normalized with its initial value at t = 0, for ηp = 0

(squares), ηp = 3 (circles), ηp = 5 (triangles), and for
initial conditions A (empty symbols) and B (filled

symbols). Here Pe = 1000.

reported in Sect. III. The corresponding Péclet number
Pe = U0/KD is Pe = 1000. For the study of the Péclet
number effects we also consider D = 5×10−4 (Pe = 2000)
and D = 2.5 × 10−4 (Pe = 4000). In addition, the ori-
entational diffusion of polymers is disregarded (i.e., we
take νp = 0 and α = 0) for two reasons: 1) it is ex-
pected to play a minor role in the chaotic regime and 2)
we wish to ensure that the chaotic regime is not triggered
by Brownian fluctuations.

In the Newtonian case (ηp = 0), the dynamics of the
velocity field is independent of R and the laminar solu-
tion is stable at Re = 1. Therefore we simply integrate
Eq. (1) with u(x) = (0, U0 sin(Kx)). Conversely, in the
non-Newtonian case (ηp > 0), we performed a prelimi-
nary set of simulations by integrating Eqs. (2) and (3)
with initial condition for the velocity field obtained as
a small perturbation of the Newtonian stable flow and
with the components of R initially distributed randomly.
Once the flow has reached the statistically stationary
chaotic regime, we start to integrate the dynamics of the
scalar field θ.

The initial condition for the scalar field, θ(x, 0), is
taken independent of y, so that the initial scalar gradi-
ent ∇θ is oriented in the x direction, i.e, perpendicular
to the direction of the laminar flow for ηp = 0. This
choice ensures that the mixing in the absence of poly-
mers is solely due to molecular diffusion. Two differ-
ent initial conditions are considered: A) the monocro-
matic function θ(x) = cos(Kx) and B) the step func-
tion θ(x) = sign[cos(Kx)]. In both cases we fix K =
8, i.e., the same wavenumber of the base flow. For
the former initial condition and in the Newtonian case
(ηp = 0), the exponential decay rate of the scalar vari-
ance 〈θ2〉(t) ≡

∫
θ2(x, t)dx is known analytically as
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FIG. 3: Temporal evolution of the variance of the scalar
gradients, 〈(∇θ)2〉(t), for ηp = 0 (squares), ηp = 3

(circles), ηp = 5 (triangles), and for initial conditions A
(empty symbols) and B (filled symbols). Here

Pe = 1000.

β0 = −d log[〈θ2〉(t)]/dt = 2DK2. The latter initial
condition is chosen to mimic the experimental setting
in which two differently coloured fluids are injected in a
microchannel [3].

III. MIXING ENHANCEMENT

In Figure 1 we compare the temporal evolution of the
scalar field with and without polymers starting from the
initial condition B. In the absence of polymers, molecular
diffusion simply blurs the borders between the white and
black stripes, and even after a long time the scalar field
remains essentially unmixed. Conversely, over a compa-
rable time interval the chaotic flow induced by the rodlike
polymers mixes the scalar field efficiently.

To quantify the gain in mixing efficiency, we study the
temporal behaviour of the variance of the scalar field
and of its gradients. As shown in Fig 2, after an ini-
tial transient, the decay rate of 〈θ2〉 becomes indepen-
dent of the specific choice of the initial condition. In
the Newtonian case, we recover the analytical prediction
〈θ2〉(t) ∝ exp(−β0t). For ηp > 0, we find that the decay
is much faster. The similar decay observed for the cases
ηp = 3 and ηp = 5 suggests a weak dependence of the de-
cay rate on the concentration of polymers. In Ref. [4], it
was found that increasing ηp at fixed forcing amplitude F
the resulting chaotic flow displays stronger fluctuations,
but the amplitude of the mean flow (which remains si-
nusoidal) is reduced. Likely, the combined effect of the
reduction of the mean flow and the growth of the fluctu-
ations, results in a comparable mixing efficiency for the
two cases considered here.

The time behaviour of 〈θ2〉 is closely related to that of
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FIG. 4: Instantaneous exponential decay rate βp(t),
normalized with β0 = 2DK2, for ηp = 0 (squares),
ηp = 3 (circles), ηp = 5 (triangles), and for initial

conditions A (empty symbols) and B (filled symbols).
Here Pe = 1000.

the scalar gradients. In the absence of polymers, 〈(∇θ)2〉
asymptotically decays with the same rate as the vari-
ance of the field. At short times, however, the decay of
〈(∇θ)2〉 depends on the initial condition (Fig. 3). In case
A, which is monochromatic, the decay is purely exponen-
tial from the beginning, whereas in case B the decay is
faster, since each Fourier mode k of the scalar field decays
with a different exponential rate −2Dk2. In the presence
of polymers and in case A, 〈(∇θ)2〉 initially grows because
mixing creates thin scalar filaments (the so-called direct
cascade of passive scalars); at later times when the gra-
dient scale reaches the diffusive scale we observe a rapid
decay, with a rate similar to that of 〈θ2〉, which indicates
the increased mixing efficiency of the polymer solution
with respect to the Newtonian fluid. Case B is similar
to case A, except for an initial transient characterized by
the fast diffusive decay of the high Fourier modes of the
initial condition.

To accurately measure the asymptotic decay of the
scalar variance, it is useful to introduce the instantaneous
exponential decay rate

βp(t) = − d

dt
log〈θ2〉 = β0

〈(∇θ)2〉
K2〈θ2〉

. (4)

The ratio βp(t)/β0 quantifies the increase of the mixing
efficiency due to the addition of polymers with respect
to molecular diffusion only. As shown in Fig 4, the two
initial conditions A and B recover the same values of βp(t)
after an initial transient. For ηp = 3 we observe initially a
rapid increase of βp(t), which reaches values much larger
than β0. However, at long times, when the scalar field
is almost completely homogeneized, βp(t) reduces and
eventually returns close to β0. For ηp = 5, after an initial
growth similar to the ηp = 3 case, βp(t) seems to fluctuate

around a constant mean value β∗ in the time interval
t ∈ [2, 4]. At later times βp(t) decreases, but its decay is
slower than for ηp = 3.

We notice that an exponential decay of the passive
scalar variance with a constant rate βp(t) implies that
〈(∇θ)2〉 must become proportional to 〈θ2〉, meaning that
the typical scale of the scalar gradients, defined as ` =
[〈θ2〉/〈(∇θ)2〉]1/2, remains constant. For ηp = 5 we have
that the scale separation between the large scale of the
base flow Lu = 2π/K and ` is Lu/` ' 3 for t ∈ [2, 4].

Theoretical predictions on the asymptotic decay of the
scalar field have been derived by exploiting the relation
between the statistics of Lagrangian trajectories and the
statistics of the passive scalar [11, 12]. In particular, it
has been shown that for smooth, statistically homoge-
neous and isotropic flows, in the limit Pe → ∞ and for
large times, the moments of the passive scalar decay ex-
ponentially as 〈|θ|n〉 ∝ exp(−γnt), with γn linked to the
stretching rate statistics. In our notation βp corresponds
to γ2. The fact that we observe an exponential decay
with constant βp only for intermediate times could be
due to various causes. The mechanism for the exponen-
tial decay [11] originates from the chaotic stretching of
the passive scalar, which is effective when there is a large
scale separation between the typical scale of the flow Lu
and the diffusive scale (i.e., in the limit Pe → ∞). In
the following we will show that the asymptotic decrease
of βp(t) observed in Fig 4 could be related to the finite
values of D required by the numerical simulations. Fur-
ther, the Kolmogorov flow is neither homogeneous nor
isotropic. Moreover, in our case the characteristic large
scale of the passive scalar Lθ = 2π/K is equal to that
of the base flow Lu. When Lθ ∼ Lu it has been shown
that the decay, though still exponential, is dominated by
“strange eigenmodes” of the advection-diffusion opera-
tor [13], and its connection to the Lagrangian stretching
rate becomes more complex [12].

On the basis of the previous observations, we ex-
pect that the gain in mixing efficiency due to the ad-
dition of polymers should depend on the Péclet number
Pe = U0/KD. Increasing Pe at fixed Re reduces β0 but
increases the generation of smaller scales in the scalar
field, thus leading to higher values of 〈(∇θ)2〉.

In order to investigate the dependence on Pe, we have
compared three simulations with initial condition A at
ηp = 5 and Re = 1 with different diffusivities: D = 10−3

(Pe = 1000) D = 5 × 10−4 (Pe = 2000) and D = 2.5 ×
10−4 (Pe = 4000). The decay of the variance for the three
cases is shown in Fig. 5. Although an increase of 〈(∇θ)2〉
is observed as a function of Pe at all times (see inset of
Fig. 5), the decay of 〈θ2〉 is slower at greater Pe because
β0 is reduced. Nevertheless, Fig. 6 shows that the gain
in the mixing efficiency increases with Pe. A power-law
fit of β∗, obtained by averaging βp(t)/β0 in the interval

2.5 < t < 4, indicates a growth proportional to Pe0.8.
At present we do not have a clear understanding of this
power law dependence. We notice that at increasing Pe,
the regime in which βp(t) is almost constant continues
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for longer times. This suggests that the asympotic decay
of βp(t) might be a finite-Pe effect.

IV. CONCLUSIONS

The addition of rodlike polymers to a low-Reynolds-
number Newtonian fluid generates a chaotic flow, simi-
larly to the elastic turbulence regime observed in extensi-
ble polymers solutions. We have shown that this regime
strongly enhances the mixing of a passive scalar dispersed
in the solution. In particular, the variance of the scalar
field and of its gradients decays much faster than in the
purely diffusive case. Moreover, we found that this effect
increases with the Péclet number. In order to quantify
the gain in the mixing efficiency we introduced the instan-
taneous exponential decay rate βp(t). The rapid initial
growth of βp(t) to values much higer than the diffusive
decay rate β0 provides a precise measure of the increased
mixing. Our results also show that for high Péclet num-
ber and high polymer concentrations, the decay of the
scalar variance displays an almost exponential regime, in
which βp(t) fluctuates around a constant mean value.

Although our study is conducted in an idealized set-
ting, we hope that it can motivate experimental investi-
gations of the gain in mixing efficiency obtained via the
addition of rodlike polymers to a Newtonian fluid at low
Reynolds number. In future investigations it would also
be interesting to compare the gain in the mixing efficiency
obtained with rodlike or extensible polymer solutions at
similar concentrations.
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