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Abstract

Species distribution models (SDM) are widely used for ecological research and conservation
purposes. Given a set of species occurrence, the aim is to infer its spatial distribution over a given
territory. Because of the limited number of occurrences of specimens, this is usually achieved
through environmental niche modeling approaches, i.e. by predicting the distribution in the
geographic space on the basis of a mathematical representation of their known distribution in
environmental space (= realized ecological niche). The environment is in most cases represented
by climate data (such as temperature, and precipitation), but other variables such as soil type or
land cover can also be used. In this paper, we propose a deep learning approach to the problem in
order to improve the predictive effectiveness. Non-linear prediction models have been of interest for
SDM for more than a decade but our study is the first one bringing empirical evidence that deep,
convolutional and multilabel models might participate to resolve the limitations of SDM. Indeed,
the main challenge is that the realized ecological niche is often very different from the theoretical
fundamental niche, due to environment perturbation history, species propagation constraints and
biotic interactions. Thus, the realized abundance in the environmental feature space can have a
very irregular shape that can be difficult to capture with classical models. Deep neural networks
on the other side, have been shown to be able to learn complex non-linear transformations in
a wide variety of domains. Moreover, spatial patterns in environmental variables often contains
useful information for species distribution but are usually not considered in classical models. Our
study shows empirically how convolutional neural networks efficiently use this information and
improve prediction performance.

1 Introduction

1.1 Context on species distribution models

Species distribution models (SDM) have become increasingly important in the last few decades for the
study of biodiversity, macro ecology, community ecology and the ecology of conservation. An accurate
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knowledge of the spatial distribution of species is actually of crucial importance for many concrete sce-
narios including the landscape management, the preservation of rare and/or endangered species, the
surveillance of alien invasive species, the measurement of human impact or climate change on species,
etc. Concretely, the goal of SDM is to infer the spatial distribution of a given species based on a set
of geo-localized occurrences of that species (collected by naturalists, field ecologists, nature observers,
citizen sciences project, etc.). However, it is usually not possible to learn that distribution directly
from the spatial positions of the input occurrences. The two major problems are the limited number
of occurrences and the bias of the sampling effort compared to the real underlying distribution. In a
real-world dataset, the raw spatial distribution of the observations is actually highly correlated to the
preference and habits of the observers and not only to the spatial distribution of the species. Another
difficulty is that in most cases, we only have access to presence data but not to absence data. In
other words, occurrences inform that a species was observed at a given location but never that it was
not observed at a given location. Consequently, a region without any observed specimen in the data
remains highly uncertain. Some specimens could live there but were not observed, or no specimen
live there but this information is not recorded. Finally, knowing abundance in space doesn’t give
information about the ecological determinants of species presence.
For all these reasons, SDM is usually achieved through environmental niche modeling approaches,
i.e. by predicting the distribution in the geographic space on the basis of a representation in the
environmental space. This environmental space is in most cases represented by climate data (such
as temperature, and precipitation), but also by other variables such as soil type, land cover, distance
to water, etc. Then, the objective is to learn a function that takes the environmental feature vector
of a given location as input and outputs an estimate of the abundance of the species. The main
underlying hypothesis is that the abundance function is related to the fundamental ecological niche
of the species, in the sense of Hutchinson (see Hutchinson [1957]). That means that in theory, a
given species is likely to live in a single privileged ecological niche, characterized by an unimodal
distribution in the environmental space. However, in reality, the abundance function is expected to
be more complex. Many phenomena can actually affect the distribution of the species relative to its
so called abiotic preferences. For instance, environment perturbations, or geographical constraints, or
interactions with other living organisms (including humans) might have encourage specimens of that
species to live in a different environment. As a consequence, the realized ecological niche of a species
can be much more diverse and complex than its hypothetical fundamental niche.

1.2 Interest of deep and convolutional neural networks for SDM

Notations: When talking about environmental input data, there could be confusions between their
different possible formats. Without precisions given, x will represent a general input environmental
variable which can have any format. When a distinction is made, x will represent a vector, while an
array is always noted X. To avoid confusions on notations for the differents index kinds , we note the
spatial site index as superscript on the input variable (xk or Xk for kth site) and the component index
as subscript (so xkj for the jth component of kth site vector xk ∈ Rp, or for the array Xk ∈Md,e,p(R),
Xk
.,j,. is the j

th matrix slice taken on its second dimension). When we denote an input associated with
a precise point location taken in a continuous spatial domain, the point z is noted as argument: x(z).

Classical SDM approaches postulate that the relationship between output and environmental
variables is relatively simple, typically of the form:

g(E[y|x]) =
∑
j

fj(xj) +
∑
j,j′

hj,j′(xj , xj′) (1)

where y is the response variable targeted, a presence indicator or an abundance in our case, the
xj ’s are components of a vector of environmental variables given as input for our model, fj are real
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monovariate functions of it, hj,j′ are bivariate real functions representing pairwise interactions effects
between inputs, and g is a link function that makes sure E[y|x] lies in the space of our response
variable y. State-of-the-art classification or regression models used for SDM in this way include GAM
(Hastie & Tibshirani [1986]), MARS (Friedman [1991]) or MAXENT (Phillips et al. [2004],Phillips
et al. [2006]). Thanks to fj , we can isolate and understand the effect of the environmental factor xj
on the response. Often, pairwise effects form of hj,j′ is restricted to products, like it is the case in
the very popular model MAXENT. It facilitates the interpretation and limits the dimensionality of
model parameters. However, it sets a strong prior constraint without a clear theoretical founding as
the explanatory factors of a species presence can be related to complex environmental patterns.
To overcome this limitation, deep feedforward neural networks (NN) (Goodfellow et al. [2016]) are
good candidates, because their architecture favor high order interactions effects between the input
variables, without constraining too much their functional form thanks to the depth of their architec-
ture. To date, deep NN have shown very successful applications, in particular image classification
(Krizhevsky et al. [2012]). Until now, to our knowledge, only one-layered-NN’s have been tested
in the context of SDM (e.g. in Lek et al. [1996] or Thuiller [2003]). If they are able to capture a
large panel of multivariate functions when they have a large number of neurons, their optimization
is difficult, and deep NN have been shown empirically to improve optimization and performance (see
section 6.4.1 in Goodfellow et al. [2016]). However, NN overfit seriously when dealing with small
datasets, which is the case here (≈ 5000 data), for this reason we need to find a way to regularize
those models in a relevant way. An idea that is often used in SDM (see for example Leathwick et al.
[2006]) and beyond is to mutualize the heavy parametric part of the model for many species responses
in order to reduce the space of parameters with highest likelihood. To put it another way, a NN that
shares last hidden layer neurons for the responses of many species imposes a clear constraint: the
parameters must construct high level ecological concepts which will explain as much as possible the
abundance of all species. These high-level descriptors, whose number is controlled, should be seen as
environmental variables that synthesize the most relevant information in the initial variables.
Another limitation of models described by equation (1) is that they don’t capture spatial autocor-
relation of species distribution, nor the information of spatial patterns described by environmental
variables which can impact species presence. In the case of image recognition, where the explanatory
data is an image, the variables, the pixels, are spatially correlated, as are the environmental variables
used in the species distribution models. Moreover, the different channels of an image, RGB, can not
be considered as being independent of the others because they are conditioned by the nature of the
photographed object. We can see the environmental variables of a natural landscape in the same way
as the channels of an image, noting that climatic, soil, topological or land use factors have strong
correlations with others, they are basically not independent of each other. Some can be explained by
common mechanisms as is the case with the different climatic variables, but some also act directly on
others, as is the case for soil and climatic conditions on land use in agriculture, or the topology on the
climate. These different descriptors can be linked by the concept of ecological environment. Thus,
the heuristic that guides our approach is that the ecological niche of a species can be more effectively
associated with high level ecological descriptors that combine non linearly the environmental variables
on one hand, and the identification of multidimensional spatial patterns of images of environmental
descriptors on the other hand. Convolutional neural networks (CNN, see LeCun et al. [1989]) applied
to multi-dimensional spatial rasters of environmental variables can theoretically capture those, which
makes them of particular interest.

1.3 Contribution

This work is the first attempt in applying deep feedforward neural networks and convolutional neural
networks in particular to species distribution modeling. It introduces and evaluates several architec-
tures based on a probabilistic modeling suited for regression on count data, the Poisson regression.
Indeed, species occurrences are often spatially degraded in publicly available datasets so that it is
statistically and computationally more relevant to aggregate them into counts. In particular, our
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experiments are based on the count data of the National Inventory for Nature Protection (INPN1),
for 50 plant species over the metropolitan French territory along with various environmental data.
Our models are compared to MAXENT, which is among the most used classical model in ecology.
Our results first show how mutualizing model features for many species prevent deep NN to overfit
and finally allow them to reach a better predictive performance than the MAXENT baseline. Then,
our results show that convolutional neural networks performed even better than classical deep feed-
forward networks. This shows that spatially extended environmental patterns contain relevant extra
information compared to their punctual values, and that species generally have a highly autocorre-
lated distribution in space. Overall, an important outcome of our study is to show that a restricted
number of adequately transformed environmental variables can be used to predict the distribution of
a huge number of species. We believe the study of the high-level environmental descriptors learned
by the deep NNs could help to better understand the co-abundance of different species, and would
be of great interest for ecologists.

2 A Deep learning model for SDM

2.1 A large-scale Poisson count model

In this part, we introduce the statistical model which we assume generates the observed data. Our
data are species observations without sampling protocol and spatially aggregated on large spatial
quadrat cells of 10x10km. Thus, it is relevant to see them as counts.

To introduce our proposed model, we first need to clarify the distinction between the notion of
"obsvered abundance" and "probability of presence". Abundance is a number of specimens relatively
to an area. In this work, we model species observed abundance rather than probability of presence
because we work with presence only data and without any information about the sampling process.
Using presence-absence models, such as logistic regression, could be possible but it would require to
arbitrarily generate absence data. And it has been shown that doing so can highly affect estimation
and give biased estimates of total population Ward et al. [2009]. Working with observed abundance
doesn’t bias the estimation as long as the space if homogeneously observed and we don’t look for
absolute abundance, but rather relative abundance in space.
The observed abundance, i.e. the number of specimens of a plant species found in a spatial area, is
very often modeled by a Poisson distribution in ecology: when a large number of seeds are spread
in the domain, each being independent and having the same probability of growing and being seen
by someone, the number of observed specimens in the domain will behave very closely to a Poisson
distribution. Furthermore, many recent SDM models, especially MAXENT as we will see later, are
based on inhomogeneous Poisson point processes (IPP) to model the distribution of species specimens
in an heterogeneous environment. However, when geolocated observations are aggregated in spatial
quadrats (≈ 10km x 10km each in our case), observations must be interpreted as count per quadrats. If
we considerK quadrats named (s1, ..., sK) (we will call them sites from now), with empty intersection,
and we consider observed specimens are distributed according to IPP(λ), where λ is a positive
function defined on Rp and integrable over our study domain D (where x is known everywhere), we
obtain the following equation :

∀k ∈ [|1,K|], N(sk) ∼ P
(∫

sk

λ(x(z))dz

)
(2)

Now, in a parametric context, for the estimation of the parameters of λ, we need to evaluate the
integral by computing a weighted sum of λ values taken at quadrature points representing all the
potential variation of λ. As our variables x are constant by spatial patches, we need to compute
λ on every point with a unique value of x inside sk, and to do this for every k ∈ [|1,K|]. This
can be very computationally and memory expensive. For example, if we take a point per square

1http://https://inpn.mnhn.fr/
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km (common resolution for environmental variables), it would represent 518,100 points of vector, or
patch, input to extract from environmental data and to handle in the learning process. At the same
time, environmental variables are very autocorrelated in space, so the gain estimation quality can
be small compared to taking a single point per site. Thus, for simplicity, we preferred to make the
assumption, albeit coarse, that the environmental variables are constant on each site and we take the
central point to represent it. Under this assumption, we justify by the following property the Poisson
regression for estimating the intensity of an IPP.

Property: The inhomogeneous Poisson process estimate is equivalent to a Poisson regression esti-
mate with the hypothesis that x(z) is constant over every site.

Proof: We note z1, ..., zN ∈ D the N species observations points, K the number of disjoints sites
making a partition of D, and assumed to have an equal area. We write the likelihood of z1, ..., zN
according to the inhomogeneous poisson process of intensity function λ ∈ (R+)D:

p(z1, ..., zN |λ) = p(N |λ)
N∏
i=1

p(zi|λ)

=
(
∫
D λ)

N

N !
exp

(
−
∫
D
λ

) N∏
i=1

λ(x(zi))∫
D λ

=
exp

(
−
∫
D λ
)

N !

N∏
i=1

λ(x(zi))

We transform the likelihood with the logarithm for calculations commodity:

log(p(z1, ..., zN |λ)) =
N∑
i=1

log (λ(x(zi)))−
∫
D
λ− log(N !)

We leave the N ! term, as it has no impact on the optimisation of the likelihood with respect to the
parameters of λ :

N∑
i=1

log (λ(x(zi)))−
∫
D
λ =

N∑
i=1

log (λ(x(zi)))−
∑

k∈Sites

|D|
K
λ(xk)

=
∑

k∈Sites

nk log
(
λ(xk)

)
− |D|

K
λ(xk)

Where nk is the number of species occurrences that fall in site k. We can aggregate the occurrences
that are in a same site because x is the same for them. We can now factorize |D|/K on the whole
sum, which brings us, up to the factor, to the the poisson regression likelihood with pseudo-counts
Knk/|D|.

=
|D|
D

∑
k∈Sites

Dnk
|D|

log
(
λ(xk)

)
− λ(xk)

So maximizing this log-likelihood is exactly equivalent to maximizing the initial Poisson process like-
lihood.

Proof uses the re-expression of the IPP likelihood, inspired from Berman & Turner [1992], as that of
the associated Poisson regression. In the following parts, we always consider that, for a given species,
the number y of specimens observed in a site of environmental input x is as follows:
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y ∼ P(λm,θ(x)) (3)

Where m is a model architecture with parameters θ.
From equation (3), we can write the likelihood of counts on K different sites (x1, ..., xK) for N
independently distributed species with abundance functions (λmi,θi)i∈[|1,N |] ∈ (R+)R

p , respectively
determined by models (mi)i∈[|1,N |] and parameters (θi)i∈[|1,N |]:

p
(
(yik)i∈[|1,N |],k∈[|1,K|]|(λmi,θi)i∈[|1,N |]

)
=

N∏
i=1

K∏
k=1

(λmi,θi(xk))
yik

yik!
exp(−λmi,θi(xk))

Which gives, when eliminating log(yik)! terms (which are constant relatively to models parameters),
the following negative log-likelihood :

L
(
(yik)i∈[|1,N |],k∈[|1,K|]|(λmi,θi)i∈[|1,N |]

)
:=

N∑
i=1

K∑
k=1

λmi,θi(xk)− y
i
k log(λmi,θi(xk)) (4)

Following the principle of maximum likelihood, for fitting a model architecture, we minimize the
objective function given in equation (4) relatively to parameters θ.

2.2 Links with MAXENT

For our experiment, we want to compare our proposed models to a state of the art method commonly
used in ecology. We explain in the following why and how we can compare the chosen reference,
MAXENT, with our models.

MAXENT (Phillips et al. [2004],Phillips et al. [2006]) is a popular SDM method and related
software for estimating relative abundance as a function of environmental variables from presence
only data points. This method has proved to be one of the most efficient in prediction P Anderson
et al. [2006], while guaranteeing a good interpretability thanks to the simple elementary form of its
features and its variable selection procedure. The form of the relative abundance function belongs to
the class described in Equation 1. More specifically:

log (λMAX,θ(x)) = α+

p∑
j=1

S∑
s=1

fsj (x(j)) +
∑
j<j′

βj,j′xjx
′
j (5)

where x(j) is the jth component of vector x. The link function is a logarithm, and variables
interactions effects are product interactions. If xj is a quantitative variable the functions (fs)s∈[|1,S|]
belongs to 4 categories: linear, quadratic, threshold and hinge. One can get details on the hinges
functions used in MAXENT in Phillips & Dudík [2008]. If xj is categorical, then fj takes a different
value for every category, with one zero category.
It has been shown that MAXENT method is equivalent to the estimation of an IPP intensity function
with a specific form and a weighted L1 penalty on its variables Fithian & Hastie [2013]. Let’s call
λMAX,θ(x) the intensity predicted by MAXENT with parameters θ at x. Last property says that
on any given dataset, θ̂ estimated from a Poisson regression (aggregating observations as counts per
site) is the same as the one of the IPP (each observation is an individual point, even when there are
several at a same site). In our experiments, we ran MAXENT using the maxnet package in R Phillips
et al. [2017], with the default regularization, and giving to the function :

1. A positive point per observation of the species.

2. A pseudo-absence point per site.
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MAXENT returns only the parameters of the (fsj )s,j and the (βj,j′)j<j′ , but not the intercept
α, as it is meant to only estimate the absolute abundance. We don’t aim at estimating absolute
abundance either, however, we need the intercept to measure interesting performance metrics across
all the compared models. To resolve this, for each species, we fitted the following model using the
glm package in R as a second step:

y ∼ P (exp(α+ log(p)))

Where α is our targeted intercept, p is the relative intensity prediction given by MAXENT at the
given site, and y is the observed number of specimens at this site.

2.3 SDM based on a fully-connected NN model

We give in the following a brief description of the general structure of fully-connected NN models,
and how we decline it in our tested deep model architecture.

General introduction of fully-connected NN models. A deep NN is a multi-layered model
able to learn complex non-linear relationship between an input data, which in our case will be a
vector x ∈ Rp of environmental variables that is assumed to represent a spatial site, and output
variables y1, ..., yN , which in our case is species counts in the spatial site. The classic so called fully-
connected NN model is composed of one or more hidden layer(s), and each layer is composed
of one or more neuron(s). We note n(l,m) the number of neurons of layer l in model architecture
m. m parameters are stored in θ. In the first layer, each neuron is the result of a parametric linear
combination of the elements of x, which is then transformed by an activation function a. So for a
NN m, a1,jm (x, θ) := a(xT θ1j ) is called the activation of jth neuron of the first hidden layer of m when
it is applied to x. Thus, on the lth layer with l > 1, the activation of the jth neuron is a((θlj)

Tal−1,.m ).
Now, we understand that the neuron is the unit that potentially combines every variables in x, and,
its activation inducing a non-linearity to the parametric combination, it can be understood as a par-
ticular basis function in the p dimensional space of x. Thus, the model is able to combine as many
basis functions as there are neurons in each layer, and the basis functions become more and more
complex when going to further layers. Finally, these operations makes m theoretically able to closely
fit a broad range of functions of x.
Learning of model parameters is done through optimization (minimization by convention) of an ob-
jective function that depends on the prediction goal. Optimization method for NN parameters θ is
based on stochastic gradient descent algorithms, however, the loss function gradient is approximated
by the back-propagation algorithm Rumelhart et al. [1988].
Learning a NN model lead to a lot of technical difficulties that have been progressively dealt with
during last decade, and through many different techniques. We present some that have been of par-
ticular interest in our study. A first point is that there are several types of activation functions, the
first one introduced being the sigmoid function. However, the extinction of its gradient when xT θ1j is
small or big, has presented a serious problem for parameters optimization in the past. More recently,
the introduction of the ReLU (Nair & Hinton [2010]) activation function helped made an important
step forward in NNs optimization. A second point is that when we train a NN model, simultaneous
changes of all the parameters lead to important change in the distribution (across the dataset) of each
activation of the model. This phenomenon is called internal covariate shift, and perturbs learning
importantly. Batch-Normalization (Ioffe & Szegedy [2015]) is a technique that significantly reduces
internal covariate shift and help to regularize our model as well. It consists of a parameterized cen-
tering and reduction of pre-activations. This facilitates optimization and enables to raise the learning
rate leading to a quicker convergence. At the same time, it has a regularization effect because the
centering and reduction of a neuron activation is linked to the mini-batch statistics. The mini-batch
selection being stochastic at every iteration, a neuron activation is stochastic itself, and the model
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will not rely on it when it has no good effect on prediction.

Models architecture in this study. For a given species i, When we know the model parameter
θ, we can predict the parameter of the Poisson distribution of the random response variable yi ∈ N,
i.e. the count of species i, conditionally on its corresponding input x, with the formula :

λm,θ(x) = exp(γTi a
Nh,.
m (x, θ)) (6)

For this work, we chose the logarithm as link function g mentioned in 1.2. It is the conventional link
function for the generalized linear model with Poisson family law, and is coherent with MAXENT.
γi ∈ Rn(Nh,m) is included in θ. It does the linear combinations of last layer neurons activations for the
specific response i. If we set n(Nh,m) := 200 as we do in the following experiments, there are only 200
parameters to learn per individual species, while there are a lot more in the shared part of the model
that builds aNh,.

m (x, θ). Now for model fitting, we follow the method of the maximum likelihood, the
objective function will be a negative-loglikelihood, but it could otherwise be some other prediction
error function. Note that we will rather use the term loss function than negative loglikelihood for
simplicity. We chose the ReLU as activation function, because it showed empirically less opti-
mization problems and a quicker convergence. Plus, we empirically noticed the gain in optimization
speed and less complications with the learning rate initialization when using Batch-Normalization.
For this reason, Batch-Normalization is applied to every pre-activation (before applying the ReLU)
to every class of NN model in this paper, even with CNNs. We give a general representation of the
class of NN models used in this work in Figure 1.

Figure 1: A schematic representation of fully-connected NN architecture. Except writings, image
comes from Michael®Nielsen3

2.4 SDM based on a convolutional NN model

A convolutional NN (CNN) can be seen as a extension of NN that are particularly suited to deal with
certain kind of input data with very large dimensions. They are of particular interest in modeling
species distribution, because they are able to capture the effect of spatial environmental patterns.
Again, we will firstly describe the general form of CNN before going to our modeling choices.

General introduction of CNN models. CNN is a form of neural network introduced in LeCun
et al. [1989]. It aims to efficiently apply NN to input data of large size (typically 2D or 3D arrays,
like images) where elements are spatially auto-correlated. For example, using a fully-connected neural
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network with 200 neurons on an input RGB image of dimensions 256x256x3 would imply around
4 ∗ 107 parameters only for the first layer, which is already too heavy computationally to optimize
on a standard computer these days. Rather than applying a weight to every pixel of an input array,
CNN will apply a parametric discrete convolution, based on a kernel of reasonable size ( 3/3/p
or 5/5/p are common for N/N/p input arrays) on the input arrays to get an intermediate feature
map (2D). The convolution is applied with a moving windows as illustrated in Figure 2 -B. Noting
X ∈ Md,d,p an input array, we simplify notations in all that follows by writing CV(X, kγ(c)) the
resulting feature map from applying the convolution with (c, c, p) kernel of parameters γ ∈ Rc2p. If
the convolution is applied directly on X, the sliding window will pass its center over every Xi,j,. from
the up-left to the bottom-right corner and produce a feature map with a smaller size than the input
because c > 1. The zero-padding operation removes this effect by adding (c− 1)/2 layers of 0 on
every side of the array. After a convolution, there can be a Batch-Normalization and an activation
function is generally applied to each pixel of the features maps. Then, there is a synthesizing step
made by the pooling operation. Pooling aggregates groups of cells in a feature map in order to reduce
its size and introduce invariance to local translations and distortions. After having composed these
operations several times, when the size of feature maps is reasonably small (typically reaching 1 pixel),
a flattening operation is applied to transform the 3D array containing all the feature maps into a
vector. This features vector will then be given as input to a fully-connected layer as we described in
last part. The global concept underlying convolution layers operations is that first layers act as low
level interpretations of the signal, leading to activations for salient or textural patterns. Last layers,
on their side, are able to detect more complex patterns, like eyes or ears in the case of a face picture.
Those high levels features have much greater sense regarding predictions we want to make. Plus, they
are of much smaller dimension than the input data, which is more manageable for a fully-connected
layer.

Constitution of a CNN model for SDM. The idea which pushes the use of CNN models for
SDM is that complex spatial patterns like a water network, a valley, etc., can affect importantly the
species abundance. This kind of pattern can’t be really deducted for punctual values of environmental
variables. Thus, we have chosen to build a SDM model which takes as input an array with a map
of values for each environmental variable that is used in the other models. This way, we will be
able to conclude if there is extra relevant information in environmental variables spatial patterns to
predict better species distribution. In 2 -A, we show for a single site a subsample of environmental
variables maps taken as input by our CNN model. To provide some more detail about the model
architecture, the input array X is systematically padded such that the feature map resulting from
the convolution is of same size as 2 first dimensions of the input ((c − 1)/2 cells of 0 after on the
sides of the 2 dimensions). To illustrate that, our padding policy is the same as the one illustrated
in the example given in Figure 2 -B. However, notice that the kernel size can differ and the third
dimension size of input array will be the number of input variables or feature maps. For an example
of For the reasons described in 2.3, we applied a Batch-Normalization to each feature map
(same normalization for every pixels of a map) before the activation, which is still a ReLU. For the
pooling opreation, we chose the average pooling which seems intuitively more relevant to evaluate
an abundance (=concentration). The different kinds of operations and their succession in our CNN
model are illustrated in the Figure 2 -C.

3 Data and methods

3.1 Observations data of INPN

This paper is based on a reference dataset composed of count data collected and validated by French
expert naturalists. This dataset, referred as INPN4 for "national inventory of natural heritage"

4https://inpn.mnhn.fr
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Figure 2: (a) Examples of input environmental data (b) for convolution, pooling and flattening process
in our (c) Convolutional Neural Network architecture

Dutrève B. [2016], comes from the GBIF portal5. It provides access to occurrences data collected
in various contexts including Flora and regional catalogs, specific inventories, field note books, and
prospections carried out by the botanical conservatories. In total, the INPN data available on the
GBIF contains 20,999,334 occurrences, covering 7,626 species from which we selected 1000 species.
The assets of this data are the quality of their taxonomic identification (provided by an expert
network), their volume and geographic coverage. Its main limitation, however, is that the geolocation
of the occurrences was degraded (for plant protection concerns). More precisely, all geolocations were

5https://www.gbif.org/
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aggregated to the closest central point of a spatial grid composed of 100 km2 quadrat cells (i.e. sites
of 10×10km). Thus, the number of observations of a species falling in a site gives a count.
In total, our study is based on 5,181 sites, which are split in 4,781 training sites for fitting models,
and 400 test sites for validating and comparing models predictions.

3.2 Species selection

For the genericity of our results and to make sure they are not biased by the choice of a particular
category of species, we have chosen to work with a high number of randomly chosen species. From
the 7,626 initial species, we selected species with more than 300 observations. We selected amongst
those a random subset of 1000 species to constitute an ensemble E1000. Then, we randomly selected
200 species amongst E1000 to constitute E200, and finally randomly selected 50 in E200 which gave
E50. E50 being the main dataset used to compare our model to the baselines, we provide in Figure 1
the list of species composing it. The full dataset with species of E1000 contains 6,134,016 observations
in total (see Table 1 for the detailed informations per species).

3.3 Environnemental data

In the following, we denote by p the number of environmental descriptors. For this study, we gath-
ered and compiled different sources of environmental data into p = 46 geographic rasters containing
the pixel values of environmental descriptors presented in the table 2 with several resolutions, na-
ture of values, but having a common cover all over the metropolitan French territory. We chose
some typical environmental descriptors for modeling plant distribution that we believe carry relevant
information both as punctual and spatial representation. They can be classified as bioclimatic, topo-
logical, pedologic hydrographic and land cover descriptors. In the following, we briefly describe the
sources, production method, and resolution of initial data, and the contingent specific post-process
for reproducibility.

3.3.1 Climatic descriptors: Chelsea Climate data 1.1

Those are raster data with worldwide coverage and 1km resolution. A mechanistical climatic model
is used to make spatial predictions of monthly mean-max-min temperatures, mean precipitations and
19 bioclimatic variables, which are downscaled with statistical models integrating historical measures
of meteorologic stations from 1979 to today. The exact method is explained in the reference papers
Karger et al. [2016b] and Karger et al. [2016a]. The data is under Creative Commons Attribution
4.0 International License and downloadable at (http://chelsa-climate.org/downloads/).

3.3.2 Potential Evapotranspiration : CGIAR-CSI ETP data

The CGIAR-CSI distributes this worldwide monthly potential-evapotranspiration raster data. It is
pulled from a model developed by Antonio Trabucco (Zomer et al. [2007], Zomer et al. [2008]). Those
are estimated by the Hargreaves formula, using mean monthly surface temperatures and standard
deviation from WorldClim 1:4 (http://www.worldclim.org/version1), and radiation on top of
atmosphere. The raster is at a 1km resolution, and is freely downloadable for a nonprofit use at
http://www.cgiar-csi.org/data/global-aridity-and-pet-database#description.

3.3.3 Pedologic descriptors : The ESDB v2 - 1kmx1km Raster Library

The library contains multiple soil pedology descriptor raster layers covering Eurasia at a resolution
of 1km. We selected 11 descriptors from the library. More precisely, those variables have ordinal
format, representing physico-chemical properties of the soil, and come from the PTRDB. The PTRDB
variables have been directly derived from the initial soil classification of the Soil Geographical Data
Base of Europe (SGDBE) using expert rules. SGDBE was a spatial relational data base relating spatial
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Table 1: List of species in E50 with the total number of observations and prevalence in the full
database.
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Name Description Nature Values Resolution
CHBIO_1 Annual Mean Temperature quanti. [-10.6,18.4] 30
CHBIO_2 Mean of monthly max(temp)-min(temp) quanti. [7.8,21.0] 30
CHBIO_3 Isothermality (100*chbio_2/chbio_7) quanti. [41.2,60.0] 30
CHBIO_4 Temperature Seasonality (std. dev.*100) quanti. [302,778] 30
CHBIO_5 Max Temperature of Warmest Month quanti. [36.4,6.2] 30
CHBIO_6 Min Temperature of Coldest Month quanti. [-28.2,5.3] 30
CHBIO_7 Temp. Annual Range (5- 6) quanti. [16.7,42.0] 30
CHBIO_8 Mean Temp. of Wettest Quarter quanti. [-14.2,23.0] 30
CHBIO_9 Mean Temp. of Driest Quarter quanti. [-17.7,26.5] 30
CHBIO_10 Mean Temp. of Warmest Quarter quanti. [-2.8,26.5] 30
CHBIO_11 Mean Temp. of Coldest Quarter quanti. [-17.7,11.8] 30
CHBIO_12 Annual Precipitation quanti. [318,2543] 30
CHBIO_13 Precip. of Wettest Month quanti. [43.0,285.5] 30
CHBIO_14 Precip. of Driest Month quanti. [3.0,135.6] 30
CHBIO_15 Precip. Seasonality (Coef. of Var.) quanti. [8.2,26.5] 30
CHBIO_16 Precipitation of Wettest Quarter quanti. [121,855] 30
CHBIO_17 Precipitation of Driest Quarter quanti. [20,421] 30
CHBIO_18 Precip. of Warmest Quarter quanti. [19.8,851.7] 30
CHBIO_19 Precip. of Coldest Quarter quanti. [60.5,520.4] 30
etp Potential Evapo Transpiration quanti. [133,1176] 30
alti Elevation quanti. [-188,4672] 3
awc_top Topsoil available water capacity ordinal {0, 120, 165, 210}30
bs_top Base saturation of the topsoil ordinal {35, 62, 85} 30
cec_top Topsoil cation exchange capacity ordinal {7, 22, 50} 30
crusting Soil crusting class ordinal [|0, 5|]
dgh Depth to a gleyed horizon ordinal {20, 60, 140} 30
dimp Depth to an impermeable layer ordinal {60, 100} 30
erodi Soil erodibility class ordinal [|0, 5|] 30
oc_top Topsoil organic carbon content ordinal {1, 2, 4, 8} 30
pd_top Topsoil packing density ordinal {1, 2} 30
text Dominant surface textural class ordinal [|0,5|] 30
proxi_eau <50 meters to fresh water bool. {0, 1} 30
arti Artificial area: clc ∈ {1, 10} bool. {0, 1} 30
semi_arti Semi-artificial area: clc ∈ {2, 3, 4, 6} bool. {0, 1} 30
arable Arable land: clc ∈ {21, 22} bool. {0, 1} 30
pasture Pasture land: clc ∈ {18} bool. {0, 1} 30
brl_for Broad-leaved forest: clc ∈ {23} bool. {0, 1} 30
coni_for Coniferous forest: clc ∈ {24} bool. {0, 1} 30
mixed_for Mixed forest: clc ∈ {25} bool. {0, 1} 30
nat_grass Natural grasslands: clc ∈ {26} bool. {0, 1} 30
moors Moors: clc ∈ {27} bool. {0, 1} 30
sclero Sclerophyllous vegetation: clc ∈ {28} bool. {0, 1} 30
transi_wood Transitional woodland-shrub: clc ∈ {29} bool. {0, 1} 30
no_veg No or few vegetation: clc ∈ {31, 32} bool. {0, 1} 30
coastal_area Coastal area: clc ∈ {37, 38, 39, 42, 30} bool. {0, 1} 30
ocean Ocean surface: clc ∈ {44} bool. {0, 1} 30

Table 2: Table of 46 environmental variables used in this study.
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units to a diverse pedological attributes of categorical nature, which is not useful for our purpose. For
more details, see Panagos [2006], Panagos et al. [2012] and Van Liedekerke et al. [2006]. The data
is maintained and distributed freely for scientific use by the European Soil Data Centre (ESDAC) at
http://eusoils.jrc.ec.europa.eu/content/european-soil-database-v2-raster.

3.3.4 Altitude : USGS Digital Elevation data

The Shuttle Radar Topography Mission achieved in 2010 by Endeavour shuttle managed to measure
digital elevation at 3 arc second resolution over most of the earth surface. Raw measures have been
post-processed by NASA and NGA in order to correct detection anomalies. The data is available
from the U.S. Geological Survey, and downloadable on the Earthexplorer (https://earthexplorer.
usgs.gov/). One can refer to https://lta.cr.usgs.gov/SRTMVF for more informations.

3.3.5 Hydrographic descriptor: BD Carthage v3

BD Carthage is a spatial relational database holding many informations on the structure and nature
of the french metropolitan hydrological network. For the purpose of plants ecological niche, we focus
on the geometric segments representing watercourses, and polygons representing hydrographic fresh
surfaces. The data has been produced by the Institut National de l’information Géographique et
forestière (IGN) from an interpretation of the BD Ortho IGN. It is maintained by the SANDRE
under free license for non-profit use and downloadable at http://services.sandre.eaufrance.fr/
telechargement/geo/ETH/BDCarthage/FX. From this shapefile, we derived a raster containing the
binary value of variable proxi_eau, i.e. proximity to fresh water, all over France. We used qgis
to rasterize to a 12.5 meters resolution, with a buffer of 50 meters, the shapefile COURS_D_EAU.shp
on one hand, and the polygons of SURFACES_HYDROGRAPHIQUES.shp with attribute NATURE="Eau
douce permanente" on the other hand. We then created the maximum raster of the previous ones
(So the value of 1 correspond to an approximate distance of less than 50 meters to a watercourse or
hydrographic surface of fresh water).

3.3.6 Land cover : Corine Land Cover 2012, version 18.5.1, 12/2016

It is a raster layer describing soil occupation with 48 categories across Europe (25 countries) at a
resolution of 100 meters. This classification is the result of an interpretation process from earth surface
high resolution satellite images. This data base of the European Union is freely accessible online for all
use at http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 and commonly
used for the purpose of plant distribution modeling. For a need of meaningfull variables at our
scale and reduced memory consumption, we reduced the number of categories to 14 following mainly
the procedure of They eliminate some categories of few interest, too rare or inaccurate, and groups
categories that are associated with similar plant communities. In addition, we introduce a category
"Semi artificial surfaces", which regroups perturbed natural areas, interesting for the study of alien
invasive species. We keep the Corine Land Cover category called "Sea and ocean" that can be an
important contextual variable for the convolutional neural network model, and . The final categories
groups are detailed in the table 2. for each of the retain categories, we created a raster of the same
resolution as the original one, where the value 1 means the pixel belongs to the category, or the value
is 0 otherwise.

3.3.7 Environmental variables extraction and format

When creating the p global GeoTIIF rasters, as the original coordinate system of the layer vary among
sources, we change it if necessary to WGS84 using rgdal package on R, which is the coordinate
system INPN occurrences databases. As explained previously, for computational reasons considering
the scale, and simplicity, we chose to represent each site by a single geographic point, and chose the
center of the site. We are going to compare two types of models. For a site k, the first takes as input
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a vector of p elements which values are those of the environmental variables taken at the geolocation
of the center of the site k, while the other takes p rasters of size (d,d) cropped (with package raster)
from the global raster of each environmental descriptors and centered at the center of k. If we denote
reslon,j the spatial resolution in longitude of global raster of the jth environmental descriptor, and
reslat,j its resolution in latitude, the spatial extent of Xk

.,.,j is (d.reslat,j×d.reslon,j). As a consequence,
the extents are heterogeneous across environmental descriptors. In this study, we experimented the
method with d = 64, so the input data items Xk learned by our convolutional model is of dimension
64× 64× 46.

3.4 Detailed models architectures and learning protocol

MAXENT is learned independently on every species of E50. Similarly, we fit a classic loglinear model
to give a naive reference. Then, two architectures of NN are tested, one with a single hidden layer
(SNN), one with six hidden layers (DNN). Those models take a vector of environmental variables xk

as input. As introduced previously, we want to evaluate if training a multi-response NN model, i.e.
a NN predicting several species from a single aNh(m)

m (x, θ), can prevent overfitting. One architecture
of CNN is tested, which takes as input an array Xk. Hereafter, we described more precisely the
architecture of those models.

3.4.1 Baseline models

• LGL Considering a site k, and its environmental variables vector xk, the output function λLGL of
the loglinear model parametrized by β ∈ Rp is simply the exponential of a scalar product between xk

and β :

λLGL(x
k, β) = exp

(
βTxk

)
As LGL has no hidden layer, we learned a multi-response model, which is equivalent to fitting the

50 mono-response models independently.

• MAXENT.

3.4.2 Proposed models based on NN

• SNN has only 1 hidden layer (Nh = 1) with 200 neurons (|a1SNN | = 200) all batch-normalized
and the activation function is ReLU. As the architecture is not deep, it makes a control example
to evaluate when stacking more layers. SNN is tested in 3 multi-response versions, on E50, E200 or
E1000.

• DNN is a deep feedforward network with Nh = 6 hidden layers and n(l,DNN) = 200, ∀l ∈ [|1, 6|].
Every pre-activation is Batch-normalized and has a ReLU activation. DNN is tested in 4 versions,
the mono-response case fitted independently on each species of E50 like MAXENT and LGL, and the
multi-response fitted on E50, E200 or E1000.

• CNN is composed of two hidden convolutional layers and one last layer fully connected with 200
neurons, exactly similar to previous ones. The first layer is composed of 64 convolution filters of
kernel size (3, 3) and 1 line of 0 padding. The resulting feature maps are batch-normalized (same
normalization for every pixels of a feature map) and transformed with a Relu. Then, an average
pooling with a (8, 8) kernel and (8, 8) stride is applied. The second layer is composed of 128 convolution
filters of kernel size (5, 5) and 2 lines of padding, plus Batch-Normalization and ReLU. After, that a
second average pooling with a (8, 8) kernel and (8, 8) kernel and (8, 8) stride reduces size of the 128
feature maps to one pixel. Those are collected in a vector by a flattening operation preceding the fully
connected layer. This architecture is not very deep. However, considered the restricted number of
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samples, a deep CNN would be very prone to over fitting. CNN is tested in multi-responses versions
on E50, E200 and E1000.

3.4.3 Models optimization

Our experiments were conducted using the R framework (version 3.3.2), on a Windows 10 machine
with 2 CPUs with 2.60 GHz and 4 cores each, and one GPU NVIDIA Quadro M1000M. mxnet (Chen
et al. [2015]) is a convenient C++ library for learning deep NN models and is deployed as an R
package. It integrates a high level symbolic language for quickly building customized models and loss
functions, and automatically distributes calculations under CPUs or GPUs.
We fit the MAXENT model for every species of E50 with the recently released R package maxnet
Phillips et al. [2017] and the vector input variables.
The LGL model was fitted with the package mxnet. The loss being convex, we used a simple gradient
descent algorithm and stopped when the gradient norm was close to 0. The learning took around
2 minutes.
SNN, DNN and CNN models are fitted with the package mxnet: All model parameters were initial-
ized with a uniform distribution U(−0.03, 0.03), then we applied a stochastic gradient descent
algorithm with a momentum of 0.9, a batch-size of 50 (batch samples are randomly chosen at
each iteration), and an initial learning rate of 10−8. The choice of initial learning rate was critical for
a good optimization behavior. A too big learning rate can lead to training loss divergence, whereas
when it is too small, learning can be very slow. We stopped when the average slope of the training
mean loss had an absolute difference to 0 on the last 100 epochs inferior to 10−3. The learning took
approximately 5 minutes for SNN, 10 minutes for DNN, and 5 hours for CNN (independently of the
version).

3.5 Evaluation metrics

Predictions are made for every species of E50 and several model performance metrics are calculated for
each species and for two disjoints and randomly sampled subsets of sites: A train set (4781 sites) which
is used for fitting all models and a test set (400 sites) which aims at testing models generalization
capacities. Then, train and test metrics are averaged over the 50 species. The performance metrics
are described in the following.

Mean loss Mean loss, just named loss in the following, is an important metric to consider because
it is relevant regarding our ecological model and it is the objective function that is minimized during
model training. The Mean loss of model m on species i and on sites 1, ...,K is:

Loss(m, i, {1, ...,K}) = 1

K

K∑
k=1

λm,θi(xk)− y
i
k log(λm,θi(xk))

In Table 3, the loss is averaged over species of E50. Thus, in the case of a mono-response model,
we averaged the metric over the 50 independently learned models. In the multi-response case, we
averaged the metric over each species response of the same model.

Root Mean Square Error (Rmse). The root mean square error is a general error measure, which,
in contrary to the previous one, is independent of the statistical model:

Rmse(m, i, {1, ..., L}) =

√√√√ 1

K

K∑
k=1

(
yik − λm,θi(xk)

)2
In Table 3, the average of the Rmse is computed over species of E50. Mono-response models are
treated as explained previously.
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Accuracy on 10% densest quadrats (A10%DQ). It represents the proportion of sites which
are in the top 10% of all sites in term of both real count and model prediction. This is a meaningful
metric for many concrete scenarios where the regions of a territory have to be prioritized in terms of
decision or actions related to the ecology of species. However, we have to define the last site ranked
in the top 10% for real counts, which is problematic for some species, because of ex-aequo sites. That
is why we defined the following procedure which adjust for each species the percentage of top cells,
such that the metrics can be calculated and the percentage is the closest to 10%. Denoting y the
vector of real counts over sites and ŷ the model prediction :

A10%DQ(ŷ, y) :=
Np&c(ŷ, y)

Nc(y)
(7)

Where Np&c(ŷ, y) is the number of sites that are contained in the Nc(y) highest values of both y
and ŷ.

Calculation of Nc(y) : We order the sites by decreasing values of y and note Ck the value of
the kth site in this order. Noting d := round(dim(y)/10) = round(dim(ŷ)/10), as we are interested
in the sites ranked in the 10% highest, if Cd > Cd+1 we simply set Nc(y) = d. Otherwise, if
Cd = Cd+1 (ex-aequo exist for dth position), we note Sup the position of the last site with value
Cd+1 and Inf the position of the first site with count Cd. The chosen rule is to take Nc(y) such that
Nc(y) = min(|Sup− d|, |Inf− d|).

4 Results

In the first part we describe and comment the main results obtained from performance metrics. Then,
we illustrate and discuss qualitatively the behavior of models from the comparison of their predictions
maps to real counts on some species.

4.1 Quantitative results analysis.

Table 3 provides the results obtained for all the evaluated models according to the 3 evaluation
metrics. The four main conclusions that we can derive from that results are that (i) performances of
LGL and mono-response DNN are lower than the one of MAXENT for all metrics, (ii) multi-response
DNN outperforms SNN in every version and for all metrics, (iii) multi-response DNN outperforms
MAXENT in test Rmse in every version, (iv) CNN outperforms all the other models, in every versions
(CNN50, 200, 1000), and for all metrics.
According to these results, MAXENT shows the best performance amongst mono-response models.
The low performance of the baseline LGL model is mostly due to underfitting. Actually, the evaluation
metrics are not better on the training set than the test set. Its simple linear architecture is not able
to exploit the complex relationships between environmental variables and observed abundance. DNN
shows poor results as well in the mono-response version, but for another reason. We can see that
its average training loss is very close to the minimum, which shows that the model is overfitting,
i.e. it adjusts too much its parameters to predict exactly the training data, loosing its generalization
capacity on test data.
However, for multi-responses versions, DNN performance increases importantly. DNN50 shows better
results than MAXENT for the test Loss and test Rmse, while DNN200 and DNN1000 only show better
Rmse. To go deeper, we notice that average and standard deviation of test rmse across E50 species
goes down from DNN1 to DNN1000, showing that model becomes less sensitive to species data. Still,
test loss and A10%DQ decrease, so there seems to be a performance trade-off between the different
metrics as a side effect of the number of responses.
Whatever is the number of responses for SNN, the model is under-fitting and its performance are
stable, without any big change between SNN50, 200, and 1K. This model doesn’t get improvement
from the use of training data on a larger number of species. Furthermore, its performance is always
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lower than DNN’s, which shows that stacking hidden layers improves the model capacity to extract
relevant features from the environmental data, keeping all others factors constant.
The superiority of the CNN whatever the metric is a new and important result for species distribution
modeling community. Something also important to notice, as for DNN, is the improvement of its
performance for te.Loss and te.Rmse when the number of species in output increases. Those results
suggest that the multi-response regularization is efficient when the model is complex (DNN) or the
input dimensionality is important (CNN) but has no interest for simple models and small dimension
input (SNN). There should be an optimal compromise to find between model complexity, in term of
number of hidden layers and neurons, and the number of species set as responses.
For the best model CNN1000, it is interesting to see if the performance obtained on E50 could be
generalized at a larger taxonomic scale. Therefore, we computed the results of the CNN1000 on the
1,000 plant species used in output. Metrics values are :

• Test Loss = -1.275463 (minimum=-1.95)

• Test Rmse = 2.579596

• Test A10%DQ = 0.58

These additional results show that the average performance of CNN1000 on E1000 remains close from
the one on E50. Furthermore, one can notice the stability of performance across species. Actually,
the test Rmse is lower than 3 for 710 of the 1000 species. That means that the learned environmental
features are able to explain the distribution of a wide variety of species. According to the fact that
French flora is compound of more than 6,000 plant species, the potential of improvement of CNN
predictions based on the use of this volume of species could be really important and one of the first
at the country level (which is costly in terms of time with classical approaches).

We can go a bit deeper in the understanding of model performances in terms of species types.
Figure 3 provides for CNN1000 and MAXENT the test Rmse as a function of the species percentage
of presence sites. It first illustrates the fact that all SDMs are negatively affected by an higher per-
centage of presence sites, even the best, which is a known issue amongst species distribution modelers.
Actually, the two models have quite similar results for species with high percentage of presence sites.
Moreover, CNN1000 is better for most species compared to Maxent, and especially for species with
low percentage of presence sites. For those species, we also notice that CNN’s variance of Rmse is
much smaller than MAXENT: there is no hard failing for CNN.

4.2 Qualitative results analysis

As metrics are only summaries, visualization of predictions on maps can be useful to make a clearer
idea of the magnitude and nature of models errors. We took a particular species with a spatially
restricted distribution in France, Festuca cinerea, in order to illustrate some models behavior that
we have found to be consistent across this kind of species in E50. The maps of real counts and
several models predictions for this species are shown on Figure 4. As we can note on map A of,
Festuca cinerea was only observed in the south east part of the French territory. When we compare
the different models prediction, CNN1000 (B) is the closest to real counts though DNN50 (C) and
MAXENT (E) are not far. Clearly, DNN1000 (E) and LGL (F) are the models that over estimate the
most the species presence over the territory. Another thing relative to DNN behavior can be noticed
regarding Figure 4. DNN1000 has less peaky punctual predictions than DNN50, it looks weathered.
This behavior is consistent across species and could explain that the A10%DQ metric is weak for
DNN1000 (and DNN200) compared to DNN50: A contraction of predicted abundance values toward
the mean will imply less risk on prediction errors but predictions on high abundance sites will be less
distinguished from others.
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# species
in output Archi. Loss on E50 Rmse on E50 A10%DQ on E50

tr.(min:-1.90) te.(min:-1.56) tr. te. tr. te.

1
MAX -1.43 -0.862 2.24 3.18 0.641 0.548
LGL -1.11 -0.737 3.28 3.98 0.498 0.473
DNN -1.62 -0.677 3.00 3.52 0.741 0.504

50
SNN -1.14 -0.710 3.14 3.05 0.494 0.460
DNN -1.45 -0.927 2.94 2.61 0.576 0.519
CNN -1.82 -0.991 1.18 2.38 0.846 0.607

200
SNN -1.09 -0.690 3.25 3.03 0.479 0.447
DNN -1.32 -0.790 5.16 2.51 0.558 0.448
CNN -1.59 -1.070 2.04 2.34 0.650 0.594

1K
SNN -1.13 -0.724 3.27 3.03 0.480 0.455
DNN -1.38 -0.804 3.86 2.50 0.534 0.467
CNN -1.70 -1.09 1.51 2.20 0.736 0.604

Table 3: Train and test performance metrics averaged over all species of E50 for all tested models.
For the single response class, the metric is averaged over the models learnt on each species.

Figure 3: Test Rmse plotted versus percentage of presence sites for every species of E50, with linear
regression curve, in blue with Maxent model, in red with CNN1000.

Good results provided in Table 3 can hide bad behavior of the models for certain species. Indeed,
when we analyze, on Figure 5, the distribution predicted by Maxent and CNN1000 for widespread
species, such as Anthriscus sylvestris (L.) and Ranunculus repens L., we can notice a strong diver-
gence with the INPN data. These 2 species, with the most important number of observation and
percentage of presence sites in our experiment (see Table 1), are also the less well predicted by all
models. For both species, MAXENT shows very smooth variations of predictions in space, which is
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sharply different from their real distribution. If CNN1000 seems to better fit to the presence area, it
has still a lot of errors.

As last interesting remark, we note that a global maps analysis, on more species than the ones
illustrated here, shows a consistent stronger false positive ratio for models under-fitting the data or
with too much regularization (high number of responses in output).
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Figure 4: Real count of Festuca cinerea Vill. and prediction for 5 different models. Test sites are
framed into green squares. A) Number of observations in INPN dataset, and geographic distribution
predicted with B) CNN1000, C)DNN50, D)DNN1000, E) Maxent, F)LGL.
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Figure 5: A) Species occurrences in INPN dataset, and geographic distribution predicted with Maxent
and CNN1000 for Anthriscus sylvestris (L.) Hoffm., B) Species occurrences in INPN dataset, and
geographic distribution predicted with Maxent and CNN1000 for Ranunculus repens L.

5 Discussion

The performance increase with multi-responses models shows that multi-responses architecture are
an efficient regularization scheme for NNs in SDM. It could be interesting to evaluate the perfor-
mance impact of going multi-response on rare species where data are limited. We have systematically
noticed false predicted presence for species that are not in the Mediterranean region. It could be
due to a high representativity of species from this region in France. In the multi-response modeling,
the Mediterranean species could favor prediction in this area through neurons activations rather than
other areas where few species are present, inducing bias. Thus, the distributions complementarity
between selected species could be an interesting subject for further research.

Even if our study presents promising results, there are still some open problems. A first one is
related to the bias in the sampling process that is not taken into account in the model. Indeed, even
if the estimation of bias in the learning process is difficult, this could strongly improve our results. Bias
can be related to the facts that (i) some regions and difficult environments are clearly less inventoried
than others (this can be seen with "empty region" in South western part of the country in Figure 4
and 5) ; (ii) some regions are much more inventoried than others, according to the human capacities
of the National botanical conservatories, which have very different sizes ; (iii) some common and less
attractive species for naturalists are not recorded, even if they are present in prospected areas, which
is a bias due to the use of opportunistic observations rather than exhaustive count data.

In the NN models learning, there is still work to be done on quick automated procedure for tun-
ing optimization hyper-parameters, especially the initial learning rate, and we are looking for a more
suited stopping rule. On the other hand, in the case of models of species distributions, we can imagine
to minimize the number of not null connections in the network, to make it more interpretable, and
introduce an L1-type penalty on the network parameters. This is a potential important perspective
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of future works.

One imperfection in our modeling approach that induces biased distribution estimate is that the
representation (vector or array of environmental variables) of a site is extracted from its geographic
center. MAXENT, SNN and DNN models typically only integrate the central value of the environ-
mental variables on each site, omitting the variability within the site. Instead of that, an unbiased
data generation would sample for each site many representations uniformly in its spatial domain and
in number proportional to its area. This way, it would provide richer information about sites and at
the same time prevent NN model over-fitting by producing more data samples.

A deeper analysis of the behavior of the models according to the ecological preferences of the species
could be of a strong interest for the ecological community. This study could allow to see dependences
of the models to particular spatial patterns and/or environmental variables. Plus, it would be inter-
esting to check if NN perform better when the species environmental niche is in the intersection of
variables values that are far from their typical ranges into the study domain, which is something that
MAXENT cannot fit.

Another interesting perspective for this work is the fact that, new detailed fine-scale environmental
data become freely available with the development of the open data movement, in particular thanks
to advances in remote sensing methods. Nevertheless, as long as we only have access to spatially
degraded observations data at kilometer scales like here, it is difficult to consistently estimate the
effect of variables that vary at high frequency in space. For example, the informative link between
species abundance and land cover, proximity to fresh water or proximity to roads, is very blurred
and almost lost. To overcome this difficulty, there is much hope in the high flow of finely geolocated
species observations produced by citizen sciences programs for plant biodiversity monitoring like Tela
Botanica 6 , iNaturalist 7 , Naturgucker 8 or Pl@ntNet 9. From what we can see on the GBIF
10, the first three already have high resolution and large cover observation capacity: they have accu-
mulated around three hundred thousand finely geolocated plant species observations just in France
during last decade. Citizen programs in biodiversity sciences are currently developing worldwide. We
expect them to reach similar volumes of observations to the sum of national museums, herbaria and
conservatories in the next few years, while still maintaining a large flow of observations for the future.
With good methods for dealing with sampling bias, those fine precision and large spatial scale data
will make a perfect context for reaching the full potential of deep learning SDM methods. Thus, NN
methods could be a significant tool to explore biodiversity data and extract new ecological knowledge
in the future.

6 Conclusion

This study is the first one evaluating the potential of the deep learning approach for species distribu-
tions modeling. It shows that DNN and CNN models trained on 50 plant species of French flora clearly
overcomes classical approaches, such as Maxent and LGL, used in ecological studies. This result is
promising for future ecological studies developed in collaboration with naturalists expert. Actually,
many ecological studies are based on models that do not take into account spatial patterns in envi-
ronmental variables. In this paper, we show for a random set of 50 plant species of the French flora,
that CNN and DNN, when learned as multi-species output models, are able to automatically learn

6http://www.tela-botanica.org/site:accueil
7https://www.inaturalist.org/
8http://naturgucker.de/enjoynature.net
9https://plantnet.org/en/

10https://www.gbif.org/
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non-linear transformations of input environmental features that are very relevant for every species
without having to think a priori about variables correlation or selection. Plus, CNN can capture extra
information contained in spatial patterns of environmental variables in order to surpass other classical
approaches and even DNN. We also did show that the models trained on higher number of species in
output (from 50 to 1000) stabilize predictions across species or even improve them globally, according
to the results that we got for several metrics used to evaluate them. This is probably one the most
important outcome of our study. It opens new opportunities for the development of ecological studies
based on the use of CNN and DNN (e.g. the study of communities). However, deeper investigations
regarding specific conditions for models efficiency, or the limits of interpretability NN predictions
should be conducted to build richer ecological models.
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