Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model

S. Lines
  • Fonction : Auteur
N. J. Mayne
  • Fonction : Auteur
Ian A. Boutle
  • Fonction : Auteur
James Manners
  • Fonction : Auteur
Graham K. H. Lee
  • Fonction : Auteur
Ch. Helling
  • Fonction : Auteur
Benjamin Drummond
  • Fonction : Auteur
David S. Amundsen
  • Fonction : Auteur
Jayesh Goyal
  • Fonction : Auteur
David M. Acreman
  • Fonction : Auteur
Pascal Tremblin
Max Kerslake
  • Fonction : Auteur

Résumé

To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. We couple the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self--consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption and, crucially, scattering. Fluxes directly obtained from the UM are used to produce synthetic SEDs and phase curves. Our simulations show extensive cloud formation in both planets, however, cooler temperatures in the HD 189733 b result in higher cloud particle number densities. Sub-micron particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, result in enhanced cloud coverage for latitudes > 30 degrees and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet(s), as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, our simulated optical phase curve for HD 209458 b shows no `offset', in contrast to observations. Efficient scattering by cloud results an atmospheric cooling of up to 250K, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements and suggests both a note of caution of interpretations neglecting such cloud feedback and scattering, and merits further study.

Dates et versions

hal-01834172 , version 1 (10-07-2018)

Identifiants

Citer

S. Lines, N. J. Mayne, Ian A. Boutle, James Manners, Graham K. H. Lee, et al.. Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model. 2018. ⟨hal-01834172⟩
90 Consultations
0 Téléchargements

Altmetric

Partager

More