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ABSTRACT

To study the complexity of hot Jupiter atmospheres revealed by observations of increasing quality, we have adapted the UK Met
Office Global Circulation Model (GCM), the Unified Model (UM), to these exoplanets. The UM solves the full 3D Navier-Stokes
equations with a height-varying gravity, avoiding the simplifications used in most GCMs currently applied to exoplanets. In this
work we present the coupling of the UM dynamical core to an accurate radiation scheme based on the two-stream approximation
and correlated-k method with state-of-the-art opacities from ExoMol. Our first application of this model is devoted to the extensively
studied hot Jupiter HD 209458b. We have derived synthetic emission spectra and phase curves, and compare them to both previous
models also based on state-of-the-art radiative transfer, and to observations. We find a reasonable agreement between observations
and both our days side emission and hot spot offset, however, our night side emissions is too large. Overall our results are qualitatively
similar to those found by Showman et al. (2009, ApJ, 699, 564) with the SPARC/MITgcm, however, we note several quantitative
differences: Our simulations show significant variation in the position of the hottest part of the atmosphere with pressure, as expected
from simple timescale arguments, and in contrast to the “vertical coherency” found by Showman et al. (2009). We also see significant
quantitative differences in calculated synthetic observations. Our comparisons strengthen the need for detailed intercomparisons of
dynamical cores, radiation schemes and post-processing tools to understand these differences. This effort is necessary in order to make
robust conclusions about these atmospheres based on GCM results.

Key words. planets and satellites: gaseous planets – planets and satellites: atmospheres – methods: numerical – radiative transfer –
hydrodynamics

1. Introduction

Hot Jupiters, Jupiter-sized planets orbiting close to their par-
ent stars, have the most observationally constrained atmospheres
of all exoplanets. Transmission spectroscopy has been used
to detect sodium, potassium and water (Charbonneau et al.
2002; Snellen et al. 2008; Redfield et al. 2008; Sing et al.
2011, 2012, 2015; Deming et al. 2013; Wakeford et al. 2013;
McCullough et al. 2014; Evans et al. 2016) as well as iden-
tifying a continuum of hot Jupiter atmospheres ranging from
“cloudy” to “clear” (Sing et al. 2016). Temperature contrasts
and brightness temperature maps have been derived from phase
curves (Knutson et al. 2007, 2009, 2012; Maxted et al. 2013;
Zellem et al. 2014; Stevenson et al. 2014), and finally wind
velocities have been estimated (Snellen et al. 2010; Louden &
Wheatley 2015). These measurements have revealed that many
hot Jupiters are subject to significant heat redistribution between
their day and night sides, with hot spots shifted eastward of the
substellar point, which can not be modelled consistently with
one-dimensional (1D) models.

This has motivated the adaptation of global circulation mod-
els (GCMs), which to date have been applied to study the atmo-
spheric circulation of several hot Jupiters (Showman & Guillot
2002; Cooper & Showman 2005; Showman et al. 2009; Lewis
et al. 2010; Rauscher & Menou 2010; Thrastarson & Cho 2010;
Polichtchouk & Cho 2012; Dobbs-Dixon & Agol 2013; Kataria
et al. 2013, 2015, 2016). More recently, GCMs have also been
used to study some aspects of cloud formation and evolution in
hot Jupiter atmospheres (Parmentier et al. 2016; Helling et al.
2016; Lee et al. 2016). GCMs are three-dimensional (3D) mod-
els and include a dynamical core solving the equations of mo-
tion for the fluid, combined with a radiation scheme for treat-
ing stellar heating and thermal cooling of the atmosphere. Many
GCMs applied to hot Jupiters solve the primitive equations (see
e.g. Showman & Guillot 2002; Showman et al. 2009; Rauscher
& Menou 2010; Kataria et al. 2013, 2015), which are an approx-
imation to the full Navier-Stokes equations assuming that the at-
mosphere is shallow compared to the radius of the planet, in hy-
drostatic equilibrium and has a gravity constant with height. The
exceptions are Dobbs-Dixon & Agol (2013) and Mayne et al.
(2014a), who solved the full Navier-Stokes equations. As the
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vertical extent of hot Jupiter atmospheres can be about 10 % of
the planet radius, the validity of the primitive equations is ques-
tionable (Mayne et al. 2014a).

Radiation schemes in initial hot Jupiter GCMs employed
Newtonian forcing, where the temperature is relaxed linearly
towards equilibrium P–T profiles (Showman & Guillot 2002;
Cooper & Showman 2005, 2006; Showman et al. 2008; Rauscher
& Menou 2010). Such approaches have many disadvantages as
radiative heating and cooling are not treated self-consistently: (i)
appropriate equilibrium profiles are difficult to obtain from 1D
models; (ii) the temperature relaxation is linear while in reality
it may be non-linear for large deviations from the equilibrium
profiles; (iii) atmospheric interactions due to exchange of radia-
tive energy such as emission and absorption of thermal radiation
are ignored and (iv) the model flexibility is poor since for each
new planet modelled, the forcing must be changed.

More recent hot Jupiter GCMs have adopted radia-
tion schemes using the two-stream approximation with
grey (Rauscher & Menou 2012) or average opacity
schemes (Dobbs-Dixon & Agol 2013), which has recently
been shown to yield inaccurate heating rates when considering
molecular absorption in these atmospheres (Amundsen et al.
2014). The most sophisticated radiation scheme employed
to date is that presented in Showman et al. (2009) and later
used in Lewis et al. (2010) and Kataria et al. (2013, 2015,
2016), which adopts the two-stream approximation (Thomas &
Stamnes 2002) for the stellar component and the two-stream
source function technique (Toon et al. 1989) for the thermal
component, combined with the correlated-k method (Lacis &
Oinas 1991) for treating opacities. This has been shown to
yield significantly better agreement with observations compared
to using Newtonian forcing (Showman et al. 2008, 2009).
Amundsen et al. (2014) showed that the two-stream approxima-
tion and correlated-k method give accurate fluxes and heating
rates for hot Jupiter atmospheres.

We have adapted the UK Met Office GCM, the Unified
Model (UM), for the study of hot Jupiters. The UM dynamical
core solves the full 3D Navier-Stokes equations with a height-
varying gravity, and the radiation scheme is state-of-the-art us-
ing the two-stream approximation and correlated-k method to
treat opacities. The adaptation of the dynamical core (Mayne
et al. 2014a,b) and radiation scheme (Amundsen et al. 2014)
have been presented in previous publications. Preliminary results
from our model have been presented in Helling et al. (2016),
however, here we use an updated opacity database and present
the model and results in more detail.

The goal of the present work is to (i) provide the techni-
cal details of the coupling between the UM dynamical core and
adapted radiation scheme for hot Jupiters for future reference;
(ii) provide the first comparison between two hot Jupiter GCMs
(ours and that of Showman et al. 2009) with similar state-of-
the-art radiation schemes and investigate the robustness of these
GCMs; (iii) evaluate differences in resulting synthetic observa-
tions calculated from model output as the model of Showman
et al. (2009) has already been used extensively in the litera-
ture (see e.g. Agúndez et al. 2014; Fortney et al. 2010; Kataria
et al. 2015; Moses et al. 2011; Wong et al. 2016; Zellem et al.
2014); and (iv) provide a guide for future more in-depth inter-
comparisons of these models.

To ease comparison with earlier GCMs and the models of
Showman et al. (2009), we use parameters similar to those of
HD 209458b. This is the first attempt to compare results ob-
tained with two different hot Jupiter GCMs with sophisticated

radiation schemes. Both dynamical cores1 and radiation schemes
(Ellingson et al. 1991; Collins et al. 2006; Oreopoulos et al.
2012) are tested thoroughly through intercomparison projects for
Earth-like conditions. Intercomparison of hot Jupiter GCMs will
in the future become crucially important as the quality of obser-
vations improve.

In contrast to Showman et al. (2009), we do not include TiO
and VO in our model. Unfortunately the model becomes unsta-
ble due to the intense heating of the upper atmosphere caused by
these molecules, a consequence of their large opacity at visible
wavelengths. This prevents a detailed comparison to the model
of HD 209458b in Showman et al. (2009), however, at present
there is no evidence for TiO and VO, or even a temperature in-
version, in the atmosphere of this planet (Diamond-Lowe et al.
2014; Hoeijmakers et al. 2015; Evans et al. 2015; Schwarz et al.
2015; Line et al. 2016).

This paper is organised as follows: in Sect. 2 we briefly de-
scribe the model, including the dynamical core and radiation
scheme. In Sect. 3 we discuss results from running the model of
Mayne et al. (2014a) which uses Newtonian forcing in place of
an accurate radiation scheme before discussing results from our
coupled model with sophisticated radiative transfer in Sect. 4.
Synthetic observations are calculated for all models presented
and compared to available observations of HD 209458b in the
literature. Our conclusions are presented in Sect. 5.

2. Model description

In this section we briefly describe the dynamical core (Sect. 2.1)
and radiation scheme (Sect. 2.2), but refer to Mayne et al.
(2014a), Amundsen et al. (2014), Amundsen (2015) and
Amundsen et al. (2016) for more details.

2.1. Dynamics

We used the Met Office UM with the Even Newer Dynamics
for General Atmospheric Modelling of the Environment
(ENDGAME) dynamical core (Wood et al. 2014) to solve the
non-hydrostatic, deep-atmosphere Navier-Stokes equations for
planetary atmospheres with a height-varying gravity. The equa-
tions are solved on a latitude-longitude-height grid using a semi-
Lagrangian semi-implicit scheme. We use free-slip impermeable
upper and lower boundaries located at a fixed height. We have
previously applied ENDGAME to HD 209458b successfully us-
ing a Newtonian forcing scheme (Mayne et al. 2014a), and we
refer to this paper and references therein for more details on the
dynamical core. Here we exclusively solve the “full” equation
set solving the non-hydrostatic deep-atmosphere equations with
a height-varying gravity.

The diffusion scheme is described in Mayne et al. (2014a,b),
and includes separate components in the longitude (Kλ) and lat-
itude (Kφ) directions. The UM numerical scheme does not ex-
plicitly enforce axial angular momentum conservation (AAM),
however, in the results presented here AAM is conserved to
better than 98%. AAM conservation was maximised by using
Kλ ∼ 0.16 and Kφ = 0.0, which is applied in all simulations pre-
sented in this work and those presented in Mayne et al. (2014a),
where the latter incorrectly reported the values of these con-
stants. As described in Mayne et al. (2014a,b), due to the par-
ticular horizontal grid staggering adopted at the pole, we do not
need to use a polar filter, but note that the diffusion scheme has
some aspects in common with a polar filter.

1 See http://earthsystemcog.org/projects/dcmip-2012/
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2.2. Radiation scheme

To calculate radiative heating rates we used the Suite of
Community Radiative Transfer codes based on Edwards and
Slingo (SOCRATES) scheme2 (Edwards & Slingo 1996;
Edwards 1996), which uses the two-stream approximation com-
bined with the correlated-k method for both the stellar and ther-
mal components. We have presented the adaptation and test-
ing of this radiation scheme for hot Jupiter-like atmospheres
in Amundsen et al. (2014), where it was found to yield accu-
rate fluxes and heating rates by comparing to discrete ordinate
line-by-line calculations. Here we review modifications made to
the radiation scheme since it was presented in Amundsen et al.
(2014).

2.2.1. The radiative transfer equation

For the thermal component of the radiation we solve the two-
stream equations as formulated by Zdunkowski & Korb (1985)
and Edwards (1996) with no scattering and a diffusivity D =
1.66, which was found to yield the most accurate fluxes and heat-
ing rates in Amundsen et al. (2014). For the stellar component
we solve the two-stream equations as formulated by Zdunkowski
et al. (1980), which uses D = 2. Rayleigh scattering by H2
and He is included, with refractive indices for H2 and He from
Leonard (1974) and Mansfield & Peck (1969), respectively3, and
an anisotropy factor ρn = 0.02 (Penndorf 1957). Refractive in-
dices for H2 and He are combined using the Lorentz-Lorentz
relation (Heller 1965).

Vertically, the dynamical core defines potential temperatures
in layers and exner pressures on levels (layer interfaces). The
radiation scheme uses the same grid, with fluxes calculated at
the levels defined by the exner pressure, and layer properties are
set based on the potential temperature. As temperatures are also
required at the exner pressure levels by the radiation scheme
they are interpolated linearly in height from the layer values.
Layer radiative heating rates can then be calculated and applied
directly by differencing fluxes at neighbouring levels without
interpolation.

2.2.2. Opacities
Our opacity database includes absorption by H2O, CO, CH4,
NH3, and H2–H2 and H2–He collision induced absorption (CIA)
as described in Amundsen et al. (2014), using the newest
ExoMol line lists (Tennyson & Yurchenko 2012; Tennyson et al.
2016) where available, with the recent addition of the alkali met-
als Li, Na, K, Rb and Cs. Alkali metal opacities are included
using transition probabilities and broadening coefficients from
VALD3 (Heiter et al. 2008). Voigt profiles are used for all lines
with a line cut-off at 4000 cm−1 from the line centres except
for the Na and K D lines for which we use line profiles from
the PHOENIX atmosphere code (Allard et al. 1999, 2003, 2007,
Derek Homeier, priv. comm.). We have updated our CH4 opaci-
ties to use the YT10to10 CH4 line list (Yurchenko & Tennyson
2014).

Opacities are treated using the correlated-k method (Lacis
& Oinas 1991) as described in Amundsen et al. (2014), but k-
coefficients are here computed individually for each gas. Our 32
bands are defined in Amundsen et al. (2014), and in each band
the main absorber is found by comparing transmissions using
the maximum equilibrium abundance for each gas. k-coefficients

2 https://code.metoffice.gov.uk/trac/socrates
3 Data collected from http://refractiveindex.info/

for individual gases are combined on-the-fly in the UM using
equivalent extinction (Edwards 1996), where all gases except the
strongest absorber in each band is taken into account through a
grey absorption. The direct stellar component, however, is com-
puted directly by multiplying transmissions for each gas, which
assumes absorption lines for different gases are randomly over-
lapping (Lacis & Oinas 1991), using all k-coefficients for all
gases. We have found this approach to be more accurate than
using a pre-computed table of k-coefficients for the gas mixture
as used in Amundsen et al. (2014) and Showman et al. (2009)
as the use of such tables involves interpolating both mixing ra-
tios and gas opacities in temperature and pressure, not only the
opacities of individual absorbers. For a more detailed discussion
and a comparison of different treatments of overlapping gaseous
absorption, see (Amundsen et al. 2016).

2.2.3. Abundances

Abundances were calculated as in Amundsen et al. (2014) us-
ing the analytical chemical equilibrium abundance formulas for
H2O, CO, CH4 and NH3 from Burrows & Sharp (1999). The al-
kali metal abundances are approximated by assuming they are
in atomic gaseous form above the chemical transformation tem-
perature, T i

trans(P) for alkali metal i, and that for T < T i
trans(P)

their atomic gaseous abundance is negligible. We take the chem-
ical transformation curves for the alkali metal chlorides from
Burrows & Sharp (1999) and apply an additional smoothing of
the form

φi(T ) =
1

e−(T−T i
trans)/∆T i

char + 1
, (1)

where φi(T ) is the normalised abundance, T i
trans is the chemi-

cal transformation temperature and ∆T i
char is the characteristic

scale over which the abundance changes for species i. We adopt
∆T i

char = 20 K for alkali metals. Physically this is a primitive
way of taking into account the transition between for example
Na and NaCl and avoids numerical problems associated with
non-continuous abundance changes. We note, however, that the
particular functional form of this smoothing has no physical ba-
sis, but was chosen as it is symmetric about T i

trans, and it and all
its derivatives are continuous functions of temperature.

2.2.4. Boundary conditions

An extra layer is included in the radiation scheme to account for
absorption, emission and scattering above the dynamically mod-
elled domain. The layer extends up to zero pressure, and exten-
sive testing has shown that the absorption is accurately taken into
account with temperatures extrapolated linearly in log pressure
and the temperature at zero pressure set to the smallest temper-
ature in our P–T grid (70 K). At the lower boundary we impose
a net intrinsic flux Fint = σT 4

int, thereby taking into account heat
escaping from the planet interior. The thermal upward flux at the
lower boundary surface, F+

surf = σT 4
surf, is then given by

F+
surf = σT 4

int + F−surf. (2)

where F−surf is the downward flux at the lower boundary. To ease
implementation we use the value of F−surf in Eq. (2) from the pre-
vious radiation time step. Consequently, the value of Tsurf, and
therefore the upward surface flux F+

surf used in the lower bound-
ary condition, will lag one radiative time step behind the radia-
tive transfer calculation. We have found the temporal variations
in F+

surf to be very small compared to the radiative time step,
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which ensures the validity of this approximation. More details
on the boundary conditions are presented in Amundsen (2015).

2.3. Synthetic observations

We have calculated synthetic observations from UM output us-
ing our 1D discrete ordinate radiation code ATMO (Amundsen
et al. 2014; Tremblin et al. 2015, 2016; Drummond et al. 2016).
It uses the same opacity sources as described in Sect. 2.2.2,
and to compute synthetic observations we use high resolution
k-tables with 5000 bands with band limits evenly spaced at
10 cm−1 intervals. We note that the use of high resolution k-
tables is necessary as a line-by-line approach is too computation-
ally expensive and a reduced line-by-line resolution of ∼1 cm−1

yields very large errors in band-integrated fluxes. Chemical equi-
librium abundances are calculated using a Gibbs energy min-
imisation scheme (Drummond et al. 2016). Our calculations of
emission spectra and phase curves from UM output are detailed
below.

2.3.1. Emission spectra

The emission from a planet as measured on Earth is given
by (Seager 2010)

Fo =

(
Rp,TOA

Do

)2 ∫ 2π

0

∫ π/2

0
Is(θ, φ, ϑo, ϕo) cos θ sin θ dθdφ, (3)

where Rp,TOA is the planet radius at the top of the atmosphere, Do
is the distance to the observer, and Is(θ, φ, ϑo, ϕo) is the intensity
at the top of the atmosphere at the location defined by the polar
angle θ and azimuth angle φ, which can be directly related to the
latitude and longitude, in the direction of the observer (ϑo, ϕo),
where ϑo is the polar angle and ϕo is the azimuth angle. The def-
initions of these angles are illustrated in Fig. 1. The coordinate
system in which both the location (θ, φ) and direction (ϑ, ϕ) of
the radiation are defined is placed so that the z-axis always points
towards the observer, that is, ϑo = 0 and the angle between the
planet surface normal at (θ, φ) and the direction of the observer
is θ.

The intensity Is is calculated at 16 discrete angles determined
by the Gauss-Legendre points of the discrete ordinate method for
all atmospheric columns from the UM and interpolated to obtain
the intensity in the direction of the observer. These intensities,
Is(θ, φ, ϑo, ϕo), are then integrated according to Eq. (3) to obtain
the observed emitted flux.

2.3.2. Phase curves

Phase curves are the emission from the planet, as viewed from
Earth, as a function of time or orbital phase angle. The integrated
emission as a function of orbital phase is given by Eq. (3) for
different observer directions, which are given by the phase angle
α ∈ [0◦, 360◦), where α = 0 is primary eclipse and α = 180◦ is
secondary eclipse. Assuming the planet is tidally locked and in a
steady state the intensity at the top of the atmosphere for a given
latitude and longitude will be constant as a function of time. This
simplification enables us to calculate Is(θ, φ, ϑ, ϕ) only once for
the entire phase curve, greatly decreasing the computation time.
As in Showman et al. (2009) we ignore the small inclination of
the orbit (Fortney et al. 2006).

Rp,TOA

θ

z

y

φ

z

y

ϑ

ϕ

Is(θ, φ, ϑ, ϕ)

Direction of observer

Fig. 1. Illustration of the definition of the angles used to calculate the
hemispherically integrated emission, see Eq. (3). (θ, φ) and (ϑ, ϕ) denote
the position and the direction of the radiation, respectively, with the co-
ordinate system placed such that the z-axis points towards the observer.

2.4. Model setup and parameters

Our model setup is similar to that used in Mayne et al. (2014a)
with a few modifications. We provide our adopted model param-
eters in Table 1. Compared to Mayne et al. (2014a) the planet
radius at the lower boundary of the model, Rp, has been de-
creased to account for the vertical extent of the atmosphere, the
specific heat capacity, cP, has been changed to be in agreement
with Showman et al. (2009), the specific gas constant, R = R/m̄,
has been changed to account for the mean molecular weight
m̄ = 2.3376 g/mol used in Amundsen et al. (2014), the pressure
at the lower boundary, Pbottom, has been chosen to be in agree-
ment with Showman et al. (2009) and the height of the upper
boundary has been slightly adjusted to account for the modified
atmospheric scale height. We find that, for both numerical stabil-
ity and accuracy, we need to use a dynamical time step of 30 s,
much smaller than the time step used in Mayne et al. (2014a),
but in agreement with time steps used by Showman et al. (2009).

It is common practice in GCMs to call the radiation scheme,
that is, update fluxes and heating rates, less frequently than every
dynamical time step. This is done mainly for computational effi-
ciency, and is possible as changes in fluxes and heating rates may
be small between dynamical time steps. We have tried several
different radiative time steps, from calling the radiation scheme
every dynamical time step to calling it every ten dynamical time
steps, and have found that calling it every five dynamical time
steps is a good compromise between numerical accuracy and
computational cost. This leads to a radiative time step of 150 s.

We initialise our model with a P–T profile from our
radiative-convective equilibrium code ATMO (Amundsen et al.
2014; Tremblin et al. 2015, 2016). Profiles are calculated us-
ing µ0 = cos θ0 = 0.5, where θ0 is the star zenith angle, which
corresponds to a day-side average and reduces the stellar flux at
the top of the atmosphere by a factor of 1/2. To obtain a globally
averaged P–T profile the top of the atmosphere flux is further
reduced by a factor 1/2 to account for redistribution to the night-
side. All models are initialised with zero winds.
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Table 1. Model parameters adopted for HD 209458b.

Parameter Value
Radius, Rp 9.0 × 107m = 1.259 RJup
Mass, Mp 1.31 × 1027 kg = 0.690 MJup
Intrinsic temperature, Tint 100 K
Specific heat capacity, cP 1.3 × 104 J/(kg K)
Specific gas constant, R = R/m̄ 3556.8 J/(kg K)
Lower boundary pressure, Pbottom 2 × 107 Pa = 200 bar
Rotation rate, Ω 2.06 × 10−5 s−1

Vertical damping coefficient 0.15
Height of upper boundary 9 × 106 m
Horizontal resolution 144 × 90
Vertical resolution 66
Dynamical time step 30 s
Radiative time step 150 s

Notes. Values are similar to those in Mayne et al. (2014a) and Showman
et al. (2009), differences are explained in the text.

3. Model with Newtonian forcing from Mayne et al.
(2014a)

Before discussing results from the coupled model we briefly
summarise the results from running the model of Mayne et al.
(2014a), which uses the Newtonian forcing scheme described in
Cooper & Showman (2005, 2006), Rauscher & Menou (2010)
and Heng et al. (2011). This enables us to compare the UM
and SPARC/MITgcm without the additional complication of the
radiation schemes used. The model setup used here is identi-
cal to Mayne et al. (2014a), with equilibrium P–T profiles and
timescales are from Iro et al. (2005). We initialise the model
using an average between the day and night side P–T profiles
with zero winds. In Mayne et al. (2014a) results are averaged
temporally from 200 d to 1200 d (d denotes Earth days) as pre-
scribed by the Heng et al. (2011) benchmarks. We have run the
model for >1000 d, and, in contrast to Mayne et al. (2014a)
who computed temporal averages from 200 d to 1200 d, we gen-
erally show model results after 1600 d with no temporal av-
eraging as is most common in studies applying GCMs to hot
Jupiters (Showman et al. 2008, 2009; Kataria et al. 2013, 2015).
We observe temperatures to reach an approximate steady-state
after 1000 d for P < 105 Pa, which is expected to be the ob-
servable part of the atmosphere (see Sect. 3.2). Longer simu-
lation times will be needed to study the deeper P > 105 Pa re-
gions. This is in agreement with previously published hot Juptier
GCMs with simplified forcing (Showman et al. 2008).

3.1. Results

We show in Fig. 2 (left column) the temperature and horizon-
tal wind at various atmospheric depths as a function of longi-
tude and latitude after 1600 d. At 100 Pa winds diverge from the
hotspot located at substellar point (180◦ longitude, 0◦ latitude).
It is worth noting that, due to the very small radiative timescale
at 100 Pa, the temperature is almost identical to the equilibrium
temperature, which causes a large temperature contrast (>900 K)
between the day and night side. For increasing pressures, the
dynamical regime is dominated by a super-rotating equatorial
jet spanning all longitudes. Dynamical processes redistributing
the heat away from the substellar point become more dominant,
which causes the temperature difference between the day and
night side to decrease.

We show in the left-hand panel of Fig. 3 the zonal mean of
the zonal wind as a function of pressure and latitude. The zonal
jet in the eastward direction mentioned above is clearly seen, and
it reaches its maximum strength at about 103 Pa with a velocity
of about 7 km s−1. At higher latitudes the mean flow is in the
opposite (westward) direction, and much weaker in amplitude,
with a maximum of about 1.2 km s−1.

In Fig. 4 we plot P–T profiles for several different latitudes
and longitudes. The temperature varies significantly across the
globe, with night side temperatures down to ∼600 K and day
side temperatures up to ∼1500 K at 103 Pa. A dynamically in-
duced temperature inversion is even seen on the day side of the
planet, which is caused by strong heating at the top of the atmo-
sphere due to the short radiative timescale and the equatorial jet
bringing cold material from the night side to the day side cooling
the atmosphere down at larger pressures.

3.2. Discussion

These results are similar to those obtained with other hot Jupiter
GCMs using Newtonian forcing schemes (see e.g. Cooper &
Showman 2005; Showman et al. 2008; Heng et al. 2011;
Rauscher & Menou 2010), as discussed in Mayne et al. (2014a).
Using ATMO we have calculated synthetic day-side emission
spectra and phase curves, which are shown in Figs. 5 and 6, re-
spectively, together with observational data points from the liter-
ature.

The day-side emission spectrum agrees reasonably well with
observations. This is rather surprising as the forcing profiles
were estimated from the globally averaged P–T profile of Iro
et al. (2005; Cooper & Showman 2005; Rauscher & Menou
2010; Heng et al. 2011), and are therefore not expected to
be particularly accurate. The amplitudes of the 4.5 µm phase
curve show reasonably good agreement with the observed phase
curve (Zellem et al. 2014), but the significant phase offset in the
observed phase curve is lacking. The latter could be due to an
underestimate of the radiative timescale, which would lead to
a smaller offset of the hottest point in the atmosphere from the
substellar point.

Fortney et al. (2006) presented synthetic day side emission
spectra and phase curves using results from the GCM presented
in Cooper & Showman (2005, 2006), which uses the same forc-
ing scheme as the one adopted here (Mayne et al. 2014a). We
have plotted the synthetic observations from Fortney et al. (2006)
in Figs. 5 and 6 as dashed lines to ease comparison with our syn-
thetic observations. Our day-side emission is somewhat larger
than that obtained by Fortney et al. (2006), while differences in
night side fluxes are smaller. There is also a noticeable difference
in the phase offsets of the peak flux from 180◦ between the mod-
els, we obtain a significantly smaller phase offset than Fortney
et al. (2006).

It is difficult to pinpoint the exact causes of these differences,
but there are several factors that might contribute: slight discrep-
ancies in the temperature may be caused by numerical details
of the GCMs. The model of Cooper & Showman (2005, 2006)
solve the primitive equations on a pressure based grid using a
gravity constant with height, while we solve the full 3D Navier-
Stokes equations with a height-varying gravity on a height-based
grid. In addition the numerical schemes, grids and resolutions are
different. In our model, however, solving the primitive equations
and assuming a gravity constant with height only has a minor
effect on the emission compared to solving the full 3D Navier-
Stokes equations with a height-varying gravity.
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Fig. 2. Horizontal wind velocity as arrows and temperature [K] as colours and contours from our models of HD 209458b after 1600 d. Left
column: results from the model with Newtonian forcing discussed in Sect. 3 at 100 Pa, 3 × 103 Pa, 3 × 104 Pa and 1 × 105 Pa (from top to bottom,
from Mayne et al. 2014a). Right column: results from the coupled model discussed in Sect. 4 at 3 Pa, 3 × 103 Pa, 3 × 104 Pa and 1 × 105 Pa (from
top to bottom).
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Fig. 3. Zonal mean of the zonal wind velocity [m/s] after 1600 d for the models of HD 209458b. Left: model with Newtonian forcing from Mayne
et al. (2014a) discussed in Sect. 3. Right: coupled model discussed in Sect. 4. Red indicates a prograde wind, blue indicates a retrograde wind.
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Fig. 4. P–T profiles around the globe after 1600 d for the model of
HD 209458b with Newtonian forcing from Mayne et al. (2014a). Red
solid lines and blue dashed-dotted lines are day and night side profiles,
respectively, at 0◦ latitude. Magenta dashed lines and cyan dotted lines
are profiles between 0◦ and 90◦ latitude for longitudes 180◦ and 0◦,
respectively.

The main differences in emission may therefore be caused by
differences in the tools used for post-processing such as different
line list and line width sources, and slightly different elemental
abundances, resulting in the calculation of somewhat different
opacities. The fact that GCMs with the same simplified forcing
scheme give such different results emphasise the need to include
the post-processing tools in intercomparison studies.

Before discussing results from the coupled model we briefly
reiterate the disadvantages of using Newtonian forcing schemes,
as in e.g. Cooper & Showman (2005), Heng et al. (2011), Mayne
et al. (2014a), Menou & Rauscher (2009), Rauscher & Menou
(2010), Showman & Guillot (2002) and Showman et al. (2008),
to treat the radiation:

1. Equilibrium P–T profiles needed by the forcing schemes,
which vary as a function of latitude and longitude, are dif-
ficult to obtain from 1D models.

2. The temperature relaxation is linear while in reality it is non-
linear for large deviations from the equilibrium profiles.

3. Atmospheric interactions due to exchange of radiative en-
ergy such as emission and absorption of thermal radiation
are ignored.

4. The model flexibility is poor since for each new planet mod-
elled the forcing prescription must be changed.

Global circulation models with Newtonian forcing schemes can
still be useful for exploring underlying dynamical processes,
see e.g. Showman & Polvani (2011) and Komacek & Showman
(2016). Including a proper treatment of radiative heating and
cooling are essential, however, in order to improve model flexi-
bility and, as we demonstrate in the next section (and discuss in
Sect. 1), improve agreement with observations.

4. Full coupled model results

Here we present results from simulations using the UM incor-
porating the full radiation scheme discussed in Amundsen et al.
(2014), including the modifications described in Sect. 2.2. In the
literature it is usually not explicitly stated how long simulations
have been run for (Showman et al. 2009; Kataria et al. 2013,
2014, 2015). We have run simulations for >1000 d. For the ob-
servable part of the atmosphere, that is, pressures .105 Pa, the
atmosphere has approximately reached a steady-state, while at
larger pressures the atmosphere is still evolving and much longer
integration timescales would be needed to study the evolution
and its ramifications.

4.1. Results

Horizontal wind velocities and temperatures are plotted in Fig. 2
(right column) after 1600 d at several different pressures, and
can be compared to the left column obtained with the model
with Newtonian forcing. General features are similar to those
found in the model with Newtonian forcing. At low pressures
(.100 Pa) the flow is again diverging from the substellar point,
with a hotspot shifted eastward from the substellar point.

In the right panel of Fig. 3 we show the zonal mean zonal
wind velocity after 1600 d as a function of pressure and latitude.
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Fig. 5. Observed (points) and synthetic (lines) emission spectra for
HD 209458b models with Newtonian cooling. The solid line has been
calculated from the model presented in Mayne et al. (2014a) and Sect. 3
using ATMO, the dashed line is the synthetic emission spectrum from
Fortney et al. (2006), which is based on the models of Cooper &
Showman (2005, 2006) using the same Newtonian forcing scheme. The
black points are observations from Swain et al. (2008) (e), Crossfield
et al. (2012) (c), Deming et al. (2005) (b), Zellem et al. (2014) (d),
Diamond-Lowe et al. (2014) (`) and Evans et al. (2015) (f).
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Fig. 6. Synthetic Spitzer IRAC phase curves from the Newtonian forc-
ing model. The solid lines are calculated from the model presented
in Mayne et al. (2014a) and Sect. 3 using ATMO, the dashed lines are
the synthetic phase curves from Fortney et al. (2006), which are based
on the models of Cooper & Showman (2005, 2006) using the same
Newtonian forcing scheme. The models have been integrated over the
IRAC bands using the filter functions. The data points are from Zellem
et al. (2014) (d), Diamond-Lowe et al. (2014) (`) and Evans et al.
(2015) (f). The best fit to the observed 4.5 µm phase curve from Zellem
et al. (2014) is shown as a solid black line, the grey shaded area is the
1σ uncertainty for the offset of the observed planet to star flux ratio.

As in the model with Newtonian forcing the eastward equatorial
jet is prominent, with a mean westward flow at higher latitudes.

In Fig. 7 we show the variation in P–T profiles across the
globe. A large variation is evident, and some night side profiles
have higher temperatures than some day side profiles. This is
due to the strong eastward advection causing the terminator at
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Fig. 7. P–T profiles around the globe after 1600 d for the coupled model
of HD 209458b discussed in Sect. 4. Red solid lines and blue dashed-
dotted lines are day and night side profiles, respectively, at 0◦ latitude.
Magenta dashed lines and cyan dotted lines are profiles between 0◦ and
90◦ latitude for longitudes 180◦ and 0◦, respectively. The black line is
the initial P–T profile adopted.

270◦ longitude to be much warmer than that at 90◦ longitude.
For pressures �105 Pa profiles at 0◦ latitude are dominated by
the equatorial jet, causing very small temperature variations as
a function of longitude. At other latitudes, however, tempera-
ture variations are larger. The deep atmosphere between 105 and
107 Pa is generally much hotter than the initial P–T profile, with
temperatures approaching 2000 K. This region is, due to the long
dynamical timescale, evolving very slowly, and has not yet con-
verged to a steady-state (Mayne et al. 2014a). It is clear, however,
that temperatures are slowly increasing across the globe at these
deep levels.

We also run simulations using a hotter initial temperature
pressure profile, increasing from the standard global average 1D
profile, uniformly, by 400 K and 800 K. The results are shown
in Figs. 8 and 9, where it becomes clear that the initial P–T has
not converged to a steady-state for P & 105 Pa. In fact, the at-
mosphere may be converging towards temperatures significantly
hotter than estimated from a 1D global average at P ∼ 106 Pa.
Unfortunately, due to computational limitations, we are unable
to run our model for significantly longer timescales. However,
these initial results suggest further work is required with regard
to the sensitivity of hot Jupiter GCM results to such changes in
the initial profile.

4.2. Discussion

Our results are in qualitative agreement with those of Showman
et al. (2009). The model exhibits a strong eastward equato-
rial jet, and hotspot shifted eastward of the substellar point.
Unfortunately SPARC/MITgcm results for HD 209458b without
TiO and VO have not been published in detail, which prohibits
a more detailed comparison of temperature and wind fields.
One characteristic of the hot Jupiter simulations presented in
Showman et al. (2009) is what the authors term a “vertical co-
herency” of temperatures. This is particularly apparent in the so-
lar metallicity HD 187733b setup, which excludes TiO and VO
opacities, and is the most well matched to our HD 209458b sim-
ulations in terms of opacities. Vertical coherency describes the
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Fig. 8. P–T profiles around the globe after 1600 d for the coupled model of HD 209458b initialised with a P–T profile that is 400 K (left) and
800 K (right) hotter than the global 1D mean. Lines are as in Fig. 7.
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Fig. 9. Temperature difference ∆T between the P–T profiles in the right-
hand panel of Fig. 8, which are from the model with a 800 K hotter
initial condition compared to the global 1D mean, and the P–T profiles
in Fig. 7, which are from the model initialised with the global 1D mean
P–T profile. Temperature differences are small for P . 105 bar, while
the models have clearly not reached a steady-state for P & 105 bar.
Results are similar for the case with a 400 K hotter initial condition.
Lines are as in Fig. 7.

fact that the horizontal position of the hottest and coldest parts of
the atmosphere vary only modestly between 102 Pa and 105 Pa.
This was not seen, nor expected, in previous simulations adopt-
ing Newtonian forcing, as the radiative timescale varies by about
two orders of magnitude over these depths. Therefore, one might
expect the balance between the radiative forcing and advection
to change with depth and lead to a significant change in the hori-
zontal temperature distribution. Showman et al. (2009) proposed
that the observed vertical coherency was caused by the verti-
cal interaction of thermal radiation reducing vertical temperature
gradients. This effect is self-consistently included in the models
of Showman et al. (2009), but not included in those adopting
Newtonian forcing.

We do not see vertical coherency in our simulations, despite
self-consistently treating the thermal radiation: the position of
the hottest and coldest points vary significantly with pressure.

This is particularly noticeable at 105 Pa = 1 bar where both
winds and temperatures are dominated by the eastward equato-
rial jet, and a weak retrograde flow at higher latitudes. Our lon-
gitudinal temperature variations are very small (<100 K), in con-
trast to the models in Showman et al. (2009) where temperatures
vary by up to 500 K at high latitudes. The reason for this discrep-
ancy is unclear, but we have run our model significantly longer,
giving the system time to equilibrate at higher pressures, and
we do not assume the atmosphere to be shallow. This may help
explain the weaker vertical coherency in our model, but more in-
depth comparisons are needed to understand these differences in
more detail.

The fact that the deep layers are heating up compared to the
initial P–T profile is intriguing. Even though the temperatures
have not converged to a steady-state, it suggests that the deep
atmosphere, in equilibrium, should be hotter than predicted by
simple 1D models. Further analysis is required to understand this
feature.

We show in Figs. 10 and 11 the synthetic day side emission
spectrum and phase curves calculated using ATMO. The day side
emission spectrum provides a reasonably good fit to the obser-
vations, and so does the offset of the peak emission from 180◦ in
the 4.5 µm phase curve, while the offset of the minimum emis-
sion is larger than observed.

As mentioned above, Showman et al. (2009) do not pro-
vide results for their model of HD 209458b without TiO and
VO, which prevents direct comparison. The 4.5 µm phase curve
from their model without TiO and VO is, however, presented in
Zellem et al. (2014), and we have plotted it in Fig. 11 as a dashed
line. The model 4.5 µm phase curves agree reasonably well, with
minor differences in the night side emission. Interestingly, both
models significantly overestimate the night side flux, indicating
that this is a common feature of current GCMs. Zellem et al.
(2014) suggest that this may be due to non-equilibrium car-
bon chemistry, specifically vertical quenching of CH4, leading
to larger CH4 abundances and consequently more efficient night
side cooling. Another potential explanation could be horizontal
quenching of CO increasing the abundance of CO on the night
side relative to that predicted by equilibrium. As CO has a strong
absorption feature at 4.5 µm this could potentially decrease the
emission at this wavelength.
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Fig. 10. Same as Fig. 5, but the synthetic emission spectrum has been
calculated using results from our coupled model (Sect. 4) with ATMO.
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Fig. 11. Same as Fig. 6, but the synthetic emission spectrum has been
calculated using results from our coupled model (Sect. 4) with ATMO.
The dashed line is the model 4.5 µm phase curve from Zellem et al.
(2014) obtained using the GCM of Showman et al. (2009) without TiO
and VO.

We have previously found that the effect of non-equilibrium
chemistry has likely been overestimated in previous studies due
to the inconsistent treatment of non-equilibrium chemistry and
its feedback on the P–T profile Drummond et al. (2016). In ad-
dition, most previous studies are limited to considering vertical
non-equilibrium effects due to the 1D models used. To investi-
gate the effect of horizontal mixing in these atmospheres, which
could dominate over vertical mixing due to the large horizontal
wind speeds, we are currently coupling a non-equilibrium chem-
istry network to the GCM, which may provide a solution to our
current inability to reproduce the observed night side emission.

The lack of a temperature inversion potentially caused by
TiO and VO in the atmosphere of HD 209458b has been
suggested to be due to a cold-trap (Hubeny et al. 2003; Spiegel
et al. 2009; Parmentier et al. 2013, 2016). TiO and VO could
potentially be advected from the day side to the night side, con-
dense, rain out and be trapped on night side at high pressures.
We note that, as these calculations were based on GCM results
where the model, like ours, has not equilibrated for pressures

P & 105 Pa. Temperatures at these pressures may be higher than
estimated by the 1D global average used to initialise the models,
see Figs. 7 and 8, and we therefore emphasise the need to study
the long-term evolution of the deep atmosphere of hot Jupiters,
both to study potential cold-traps and radius inflation.

We note that all temperatures in our model initialised with
the 1D globally averaged P–T profile are below the condensa-
tion temperature of TiO/VO. Consequently, we would not expect
gaseous TiO and VO to form even if we included their opacity.
They may form, however, shortly after the simulations start as
the models are initialised with zero advection, causing the day
side to initially heat up to temperatures potentially above the
condensation temperature, and then cool down as the advection
becomes more efficient. Studying the formation of TiO and VO
with varying initial conditions in these models would therefore
be beneficial in order to understand the robustness of the pres-
ence of these gases in hot Jupiter atmospheres.

5. Conclusions

We have presented results from the first application of the UM,
including a sophisticated and accurate radiation scheme, to hot
Jupiters. We have performed comparisons to both the model of
Mayne et al. (2014a) which employs Newtonian forcing, to the
SPARC/MITgcm of Showman et al. (2009) and to existing ob-
servations. Our main conclusions are

– Our models with Newtonian forcing and sophisticated radia-
tive transfer have qualitatively similar wind and temperature
patterns: a hotspot shifted eastward of the substellar point, a
broad eastward equatorial jet and a westward mean flow at
higher latitudes. This is in good qualitative agreement with
results obtained with the SPARC/MITgcm (Showman et al.
2009).

– The day side emission and phase offset of the coupled model
fit the observed 4.5 µm phase curve reasonably well, while
the night side emission is about a factor of two too large.
This is similar to the results of Showman et al. (2009), and
potential explanations are effects of non-equilibrium chem-
istry and super-solar metallicities. We are in the process of
investigating this by coupling a non-equilibrium chemistry
scheme to our GCM.

– We do not see the vertical coherence of temperatures, that
is, the small variation in the location of the hottest and
coldest points in the atmosphere with pressure, seen in the
SPARC/MITgcm. The cause of this difference is unclear, but
the vertical coherence is not expected from simple time scale
arguments.

– The deep atmosphere has not converged to a steady-state
even though we have run the model for 1600 d, and we see
evidence for significant deviations from the globally aver-
aged 1D radiative-convective equilibrium profile used to ini-
tialise the model. This highlights the need to use very long
runs when evaluating the feasibility of cold-traps and study-
ing mechanisms for radius inflation.

– The observed differences between the UM and the
SPARC/MITgcm highlight the importance of model inter-
comparisons, which are needed to separate physically ro-
bust results from model degeneracies. There is a need to
compare the dynamical cores in more detail, but also both
the radiation schemes and post-processing tools in isola-
tion. In addition it will be important study the sensitivity of
the model to the initialisation, particularly when including
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strong absorbers of stellar radiation with high condensation
temperatures such as TiO and VO.

Despite the difficulties discussed here, GCMs have seen rapid
improvement in their application to hot Jupiters. Combined with
ever improving observations, as well as extensive intercompar-
ison exercises, they will enable us to significantly improve our
understanding of these exotic planets.
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